
TLB Poisoning Attacks on AMD Secure Encrypted Virtualization
Mengyuan Li

The Ohio State University
Columbus, Ohio, USA

li.7533@osu.edu

Yinqian Zhang�

Southern University of Science &
Technology

Shenzhen, Guangdong, China
yinqianz@acm.org

Huibo Wang
Baidu Security

Sunnyvale, California, USA
wanghuibo01@baidu.com

Kang Li
Baidu Security

Sunnyvale, California, USA
kangli01@baidu.com

Yueqiang Cheng
NIO Security Research

San Jose, California, USA
yueqiang.cheng@nio.io

ABSTRACT
AMD’s Secure Encrypted Virtualization (SEV) is an emerging tech-
nology of AMD server processors, which provides transparent mem-
ory encryption and key management for virtual machines (VM)
without trusting the underlying hypervisor. Like Intel Software
Guard Extension (SGX), SEV forms a foundation for confidential
computing on untrusted machines; unlike SGX, SEV supports full
VM encryption and thus makes porting applications straightfor-
ward. To date, many mainstream cloud service providers, including
Microsoft Azure and Google Cloud, have already adopted (or are
planning to adopt) SEV for confidential cloud services.

In this paper, we provide the first exploration of the security
issues of TLB management on SEV processors and demonstrate a
novel class of TLB Poisoning attacks against SEV VMs. We first
demystify how SEV extends the TLB implementation atop AMD
Virtualization (AMD-V) and show that the TLB management is no
longer secure under SEV’s threat model, which allows the hypervi-
sor to poison TLB entries between two processes of a SEV VM. We
then present TLB Poisoning Attacks, a class of attacks that break
the integrity and confidentiality of the SEV VM by poisoning its
TLB entries. Two variants of TLB Poisoning Attacks are described
in the paper; and two end-to-end attacks are performed successfully
on both AMD SEV and SEV-ES.

CCS CONCEPTS
• Security and privacy → Hardware security implementa-
tion; Side-channel analysis and countermeasures; Trusted
computing; Virtualization and security.
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1 INTRODUCTION
AMD’s Secure Encrypted Virtualization (SEV) is a new security
feature of AMD Virtualization (AMD-V) [5] that prevents the priv-
ileged cloud providers from manipulating or inspecting the data
and applications of cloud tenants. It supports full virtual machine
encryption through a hardware memory encryption engine and a
secure co-processor (i.e., AMD-SP) that transparently manages the
hardware encryption keys. Compared to similar technology like
Intel Software Guard Extension (SGX) [8], SEV is more advanta-
geous in its ease of adoption without the need of altering software
to be protected. So far, SEV has been adopted in Azure Cloud and
Google Cloud as a backend of confidential cloud computing ser-
vices [10, 26].

Nonetheless, numerous works have shown that SEV is vulnerable
in several aspects: First, the VM control block (VMCB) used to store
register values and control information is not encrypted during
context switch, allowing a malicious hypervisor to manipulate or
inspect the register values of guest VMs, which would lead to a
complete breach of confidentiality or integrity of guest VMs [12, 30].
To counter these threats, AMD released SEV Encrypted State (SEV-
ES) [16]. In SEV-ES, the register states in VMCBwould be encrypted
and saved in the VM Save Area (VMSA) during the world switch,
leaving no chance of these attacks for the malicious hypervisor.
Necessary register values are passed through a Guest-Hypervisor
Communication Block (GHCB), which is not encrypted.

Second, neither SEV nor SEV-ES protects the integrity of en-
crypted memory and nested page tables (NPT). Therefore, the ma-
licious hypervisor could replay the encrypted memory blocks or
change the mapping of guest memory pages in the nested page
tables to breach the security of SEV and SEV machines [7, 9, 22,
27, 28, 32]. To mitigate these attacks, AMD recently released the
third generation of SEV—SEV Secure Nested Paging (SEV-SNP) [3],
which introduces a Reverse Map Table (RMP) and a mechanism of
page validation to prevent malicious modification of nested page
tables by tracking the ownership of the memory. As AMD claims,
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SEV-SNP provides strong integrity protection for the guest VMs,
and hence mitigates all these attacks.

Third, SEV, including SEV-ES and SEV-SNP, allows the untrusted
hypervisor to manage the address space identifier (ASID), which is
used to control the VM’s accesses to the encrypted memory. The
principle adopted by AMD is a “security-by-crash” design, which
assumes that mismatch of ASID could lead to VM crashes and hence
guarantee the security of the guest VMs. However, the abuse of
ASIDs has been exploited by the Crossline attacks, which leverage
the short window before VM crashes to leak secret data through
page faults or to execute instructions that form decryption and
encryption oracles [21].

This paper outlines a new category of security attacks against
SEV, namely TLB Poisoning Attacks, which enable the adversary
who controls the hypervisor to poison the TLB entries shared be-
tween two processes of the same SEV VM. The root cause of TLB
Poisoning Attacks is that the hypervisor is in control of the TLB
flushes by the design of AMD SEV. Specifically, because TLB is
tagged with ASIDs to distinguish the TLB entries used by different
entities, unnecessary TLB flushes can be avoided during the world
switches (VMEXIT and VMRUN between the guest VM and the
hypervisor) or the context switches (context switches between the
process hosting the guest VM’s current virtual CPU (vCPU) and
other processes). As it is difficult for the CPU hardware to determine
whether to flush the entire TLB or only TLB entries with certain
ASIDs, the TLB flush is solely controlled by the hypervisor. The
hypervisor can inform the CPU hardware to fully or partially flush
the TLB by setting the TLB control field in the VMCB, which will
take effect after VMRUN. As such, the adversary can intentional
skip TLB flushes, such that a victim process of the victim SEV VM
may unwillingly use the TLB entries injected by another process of
the same VM.

Two attack scenarios of TLB Poisoning attacks are considered in
this paper: (1) With the help of an unprivileged attacker process
running in the targeted SEV VM, the adversary is able to poison the
TLB entries used by a privileged process and alter its execution. (2)
Without the help of a process directly controlled by the adversary,
the adversary could still exploit the misuse of TLB entries on a
network-facing process (not in his control) that share the same
(or similar) virtual address space with the targeted process and
bypass authentication checks. We have demonstrated two end-to-
end attacks against two SSH servers to show the feasibility of the
two attack scenarios, respectively, on an AMD EPYC Zen processor
that supports SEV-ES.

Responsible disclosure.We have disclosed the vulnerability that
enables TLB Poisoning Attacks to AMD via emails in December
2019. After an in-depth teleconference discussion with the SEV
team, we have been confirmed that the vulnerability exists on SEV
and SEV processors, but the upcoming SEV-SNP has a new feature
that prevents the attack. Therefore, AMD will not release a patch
for the discovered vulnerability but will rely on the new SEV-SNP
processor as a line of defense.

Contributions. The paper makes the following contributions to
field of study.
• It demystifies AMD SEV’s TLB management mechanisms, which
have never been studied and reported in-depth, and identifies a

severe flaw of its design of TLB isolation that leads to misuse
of TLBs under the assumption of a malicious or compromised
hypervisor.
• It presents a novel category of attacks against SEV, namely TLB
Poisoning Attacks, which manipulate the TLB entries shared by
two processes within the same SEV VM and breach the integrity
and confidentiality of one of the processes. To the best of our
knowledge, it is the first TLB poisoning attack demonstrated in
any context.
• It demonstrates two end-to-end TLB Poisoning Attacks against
SEV-ES-protected VMs. In one attack, it shows the feasibility of
poisoning TLB entries to change the code execution of the victim
process; in the other, it provides an example of stealing secret
data from the victim process by a process (not controlled by the
adversary) through shared TLB entries.

2 BACKGROUND
In this section, we present some background information about
SEV’s memory and TLB isolation.

Secure Encrypted Virtualization (SEV). As AMD’s new mem-
ory encryption feature for AMD-V [5], SEV aims to produce a
confidential VM environment in the public cloud and protect VMs
from the privileged but untrustworthy cloud host (e.g., the hypervi-
sor). SEV is built atop an on-chip encryption system composed of
an ARM Cortex-A5 co-processor [17] and AES encryption engines.
The co-processor, also known as AMD-SP, stores and maintains a
set of VM encryption keys (Kvek ) which is uniquely assigned to
each SEV-enabled VM. The Kvek in the co-processor could not be
accessed by either the privileged hypervisor or the guest VM itself.
The AES encryption engine automatically encrypts all data in the
memory, and decrypts them in the CPU by using the correct Kvek .

Nested Page Tables. AMD adopts two-level of page tables to help
the hypervisor manage the SEV VM’s memory mapping. The upper-
level page table, also called the guest page table (gPT), is part of the
guest VM’s encrypted memory and is maintained by the guest VM,
and is usually a 4-level page table that translates the guest virtual
address (gVA) to the guest physical address (gPA). Moreover, Guest
Page Fault (gPF) caused by the gPT walk is trapped and handled by
the guest VM. The lower-level page table is also called NPT or host
page table (hPT), which translates gPA to system physical address
(sPA), and is maintained by the hypervisor. The NPT structure gives
the SEV VM the ability to configure the memory pages’ encryption
states. By changing the C-bit (Bit 47 in the page table entry) to
be 1 or 0, the states of the guest VM’s memory page can either be
private (encrypted with his Kvek ) or shared (encrypted with the
hypervisor’s Kvek ). The gPT and all instruction pages are forced
to be private states no matter of the value of C-bit.

Moreover, Nested Page Faults (NPF) may be triggered by the
hardware during the NPT walk. According to the NPF event, the hy-
pervisor can grab useful information that could reflect the behavior
of a program, and therefore leak sensitive information, including
the gPA of the NPT and the NPF error code [2]. This forms a well-
known controlled-channel attack [12, 22, 30], which compromises
SEV’s confidentiality and integrity.
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Address Space LayoutRandomization (ASLR).ASLR is awidely
used spectrum protection technique that randomizes the virtual
memory areas of a process to defend against memory corruption
attacks. This defense mechanism prevents attackers from directly
learning the pointer’s virtual address and forces them to rely on
software vulnerabilities or side-channel attacks [6, 13, 14, 18] to
locate the randomized virtual address. Different operating systems
have different ASLR implementations. For example, a 64-bit Linux
system usually exhibits 28-bit of ASLR entropy for executable [11]
while Windows 10 exhibits only 17-19 bits of ASLR entropy for
executables [31].

Translation Lookaside Buffer (TLB) and Address Space Iden-
tifier (ASID). TLB is a caching hardware inside the chip’s memory-
management unit (MMU). After a successful page table walk, the
mapping from the virtual address to the system address is cached in
TLB. For a nested page table on SEV, the mapping of the gVA and the
sPA is cached in the TLB. During a page table walk, given a guest
CR3 (gCR3) and a host CR3 (hCR3), the hardware automatically
translate a gVA to a sPA using the two-level page tables despite the
gPT and the NPT are encrypted by different Kvek s. AMD-SP uses
ASID to uniquely identify the SEV-enabled VM and its Kvek . ASID
is also part of the tag for both cache lines and TLB entries [17].

3 UNDERSTANDING AND DEMYSTIFYING
SEV’S TLB ISOLATION MECHANISMS

In this section, we briefly sketch our understanding of TLB isolation
mechanisms used in AMD Virtualization for both non-SEV VMs
and SEV-enabled VMs. For some of the mechanisms that are not
documented, we experimentally validated our conjectures.

3.1 TLB Management for Non-SEV VMs
To avoid frequent TLB flushes during VM world switches, AMD
introduced ASID in TLB entries [1]. ASID 0 is reserved for the
hypervisor and the rest of the ASID are used by the VM. The range
of the ASID pool can be determined by CPUID 0x8000000a[EBX].
TLB is tagged with the ASIDs of each VM and the hypervisor, which
avoids flushing the entire TLB at the world switch and also prevents
misuses of the TLB entries belonging to other entities.

We explore the TLB management algorithm for non-SEV VMs
by diving into the source code of AMD SVM [4]. Specifically, the
hypervisor is responsible for maintaining the uniqueness and the
freshness of the ASID in each logical core of the machine. For each
logical core, the hypervisor stores the most recently used ASID in
the svm_cpu_data data structure. Before each VMRUN of a vCPU of
a non-SEV VM, the hypervisor checks whether the CPU affinity of
the vCPU has changed by comparing the ASID stored in its VMCB
with the most recently used ASID of this logical core. If a mismatch
is observed, which means either the vCPU was not running on this
logical core before the current VMEXIT or more than one vCPUs
sharing the same logical core concurrently, the hypervisor assigns
an incremental and unused ASID to this vCPU. In either of these
cases, the increment of the ASID ensures the residual TLB entries
cannot be reused. Otherwise, no TLB flushing is needed and the
vCPU can keep its ASID and reuse its TLB entries after VMRUN.

The hypervisor is in charge of enforcing TLB flushes under cer-
tain conditions. For example, when the recently used ASID exceeds

the max ASID range on the logical core, a complete TLB flush
for all ASIDs is required. To flush TLBs, the hypervisor sets the
TLB_CONTROL bits in TLB_CONTROL filed (058h) of the VMCB during
VMEXITs. With different values of bits 39:32 of TLB_CONTROL, the
hardware will perform the different operation on the TLB:
• TLB_CONTROL_DO_NOTHING (00h). The hardware does nothing.
• TLB_CONTROL_FLUSH_ALL_ASID (01h). The hardware flushes the
entire TLB.
• TLB_CONTROL_FLUSH_ASID (03h). The hardware flushes all TLB
entries whose ASID is equal to the ASID in the VMCB.
• TLB_CONTROL_FLUSH_ASID_LOCAL (07h). The hardware flushes
this guest VM’s non-global TLB entries.
• Other values. All other values are reserved, so other values may
cause problems when resuming guest VMs.
After each VMRUN, hardware checks these bits and performs

the corresponding actions. The hypervisor is in charge of informing
the hardware to flushes TLBs and maintain TLB isolation. Hard-
ware may also automatically perform a partial TLB flush without
triggering a special VMEXIT when observing context switches
or MOV-to-CR3 instructions. In such cases, only the TLB entries
tagged with the current ASID (either in guest ASID or the hypervi-
sor ASID) are flushed [2].

3.2 Demystifying SEV’s TLB management
The TLB management for SEV VMs and non-SEV VMs is slightly
different. The ASIDs of SEV VMs remain the same in their lifetime.
Therefore, instead of dynamically assigning an ASID to a vCPU,
all vCPUs of the same SEV VM have the same ASID. At runtime,
TLB flush is still controlled by the hypervisor. Especially, KVM
records the last resident CPU core of each vCPU. For each CPU
logical core, it also records the VMCB of the last running vCPU
(sev_vmcbs[asid]) for each ASID. Before the hypervisor resumes a
vCPU via VMRUN, it sets the TLB control field in the VMCB to the
value of TLB_CONTROL_FLUSH_ASID when (1) this vCPU was
not run on this core before or (2) the last VMCB running on this
core with the same ASID is not the current VMCB. This enforces
the isolation between two vCPUs of the same SEV VM. The code
is listed in Listing 1. However, if the hypervisor chooses not to set
the TLB control field, no TLB entries will be flushed.

1 struct svm_cpu_data *sd = per_cpu(svm_data , cpu);

2 int asid = sev_get_asid(svm ->vcpu.kvm);

3 pre_sev_es_run(svm);

4 svm ->vmcb ->control.asid = asid;

5 // No CPU affinity change and No VMCB change

6 if (sd->sev_vmcbs[asid] == svm ->vmcb &&

7 svm ->vcpu.arch.last_vmentry_cpu == cpu)

8 return;

9 //Otherwise , flush the TLB tagged with the ASID

10 sd->sev_vmcbs[asid] = svm ->vmcb;

11 svm ->vmcb ->control.tlb_ctl = TLB_CONTROL_FLUSH_ASID;

12 vmcb_mark_dirty(svm ->vmcb , VMCB_ASID);

13 }

Listing 1: Code snippet of pre_sev_run().

Experiments to demystify TLB tags. According to AMD man-
ual [2], ASID is part of TLB tag. But is unclear what are the remain-
ing parts of the tag. We conducted some experiments to explore
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Table 1: TLB flush rules. The World column indicates whether the
event happens in host world or the guest world; TLB tag represents
the TLB entry’s ASID to be flushed—the host’s ASID is 0 and the SEV
VM’s ASID is N; Forced indicates whether the TLB flush is forced
by the hardware or controllable by the hypervisor. * highlights a
special case, in which when the world switch happens between two
vCPUs, the TLB tagged with 0 is forced to be flushed while the TLB
tagged with N is flushed under the control of the hypervisor.

World Events TLB Tag Forced

Host/Guest MOV-to-CR3, Context-switch 0/N ✓
Host/Guest Update Cr0.PG 0/N ✓
Host/Guest Update CR4 (PGE, PAEm and PSE) 0/N ✓
Host Address transliation Registers All ✓
Host Activate an ASID for SEV VM N ✓
Host Deactivate an ASID for SEV VM N ✗
Host ASID exceeds ASID pool range All ✗
Host Two vCPUs switch 0+N* ✓+ ✗*
Host Change vCPU’s CPU affinity N ✗

the structure of TLB tags. Specifically, we checked whether vCPUs’
TLB entries on the co-resident logical cores will influence each
other and whether TLB entries from the different VM modes (non-
SEV, SEV, or SEV-ES) will influence each other. The experiment
settings are similar. To explore TLB isolation between co-resident
logical cores, we manually set the ASID of two vCPUs to the two
co-resident logical cores of the same physical core. To explore TLB
isolation between VMs with different VM modes (e.g., SEV and non-
SEV), we configured a non-SEV VM and a SEV/SEV-ES VM on the
same logical core and set the non-SEV VM’s ASID to be identical
to the SEV/SEV-ES VM’s ASID. In both cases, we skipped the TLB
flush to check whether the TLB poison is observed (using steps
in Section 4.2.1). In neither of two cases, TLB poison is observed.
Therefore, we conclude:
• ASID. ASID is part of the TLB tag, which provides TLB isolation
for TLB entries with different ASID.
• Logical Core ID. The Logical Core ID is also part of the TLB
tag, which provides TLB isolation for TLB entries on the same
physical core but different logical cores.
• VMmode. VMmode is part of the TLB tag. Even a non-SEV VM
may have the same ASID as a SEV or SEV-ES VM, however, the
TLB tag field contains information about the VM’s mode, which
isolates TLB entries from VMs under different modes.
Besides these components, we have also conjectured that C-bits—

the C-bit in the guest page table (gC-bit) and the C-bit in the nested
page table (nC-bit)—are also part of the TLB tag. The reason is
that when address translation bypasses the page table walk, the
values of the gC-bit and nC-bit are still required for the processor to
determine which ASID to present to AMD-SP if memory encryption
is needed. However, there is no direct evidence for us to conclude
the exact C-bit tag format in TLB entries. We have no way to
empirically affirm that, for instance, whether both of the C-bits are
in the TLB tag or only one C-bit is in the TLB tag.

3.3 TLB Flush Rules for SEV VMs
We summarize the TLB flush rules for SEV/SEV-ES VMs in both
hardware-enforced TLB flush and the hypervisor-coordinated TLB
flush in Table 1. The hardware-enforced TLB flush rules cannot
be skipped, while the hypervisor-coordinated TLB flush can be

CPU Core

Attacker
vCPU

Victim
vCPU

Context
Switch

Skip TLB
flush

Fill

TLB Lookup VA0

TLB

ASID VA5 sPA5

ASID VA0 sPA0

ASID VA1 sPA1

ASID VA2 sPA2

ASID VA3 sPA3

ASID VA4 sPA4

TLB Hit =>Trust
TLB Lookup VA6

Miss => PT walk

Figure 1: TLB misuses across vCPUs.

skipped by a malicious hypervisor, which is the root cause of the
TLB Poisoning Attack.

Hardware-enforced TLB flushes. All TLB entries are flushed
when there is System Management Interrupt (SMI), Returning from
System Management (RSM), Memory-Type Range Register (MTRR),
and I/O Range Registers (IORR) modifications or MSRs access re-
lated to address translation, no matter their ASIDs. At the same
time, hardware will automatically flush TLB tagged with the current
ASID when observing activities like MOV-to-CR3, context switches,
updates of CR0.PG, CR4.PGE, CR4.PAEm and CR4.PSE. Hardware
will also force a TLB flush when the hypervisor wants to activate
an ASID for a SEV VM.

Hypervisor-coordinated TLB flushes. There are mainly two
cases where the hypervisor is coordinated in TLB management.
(1) When different VMCB with the same ASID (different vCPUs of
the same SEV VM) is to be run on the same logical core. (2) The
VMCB to be run was executed on a different logical core prior to
this VMRUN.

4 ATTACK PRIMITIVES
In this section, we discuss the threat models consider in this paper,
and then introduce three attack primitives: TLB misuse across vC-
PUs (Section 4.2), TLB misuse within the same vCPU (Section 4.3),
and a covert data transmission channel between the hypervisor and
a process in the victim VM that is under the adversary’s control
(Section 4.4).

4.1 Threat Model
We consider a scenario where the platform is hosted by a hypervisor
controlled by the adversary. The victim VM is a SEV-ES enabled
VM and thus protected by all SEV-ES features. We assume the ASLR
is enabled inside the victim VM.

There is an unprivileged attacker process controlled by the ad-
versary running in the victim VM. The attacker process does not
have access to the kernel or learn sensitive information from procfs.
The attacker process does not need to have capabilities to perform
network communication. We note that the assumption of having
an attacker process running inside the victim VM can be weakened
(see Section 6). The victim process can be any process in the victim
VM other than the attacker processes. We assume the adversary can
learn the virtual address range of the victim VM via other attacks,
such as CrossLine attacks [21].
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4.2 TLB Misuse across vCPUs
When the victim VM has more than one vCPU, the attacker process
and the victim process can run on different vCPUs. We call the
vCPU running the attacker process the attacker vCPU and the
vCPU running the victim process the victim vCPU. The adversary
canmisuse TLB entries by skipping the TLB flush during the context
switch of these two vCPUs. We use two examples to show how this
may be exploited to breach the integrity and the confidentiality of
the victim process.

4.2.1 TLB Poisoning. We first show that by poisoning TLB entries,
the attacker process can alter the execution of the victim process.
The attack is illustrated in Figure 1.
• Step-I: The victim process is suspended before executing an
instruction at address VA0. This can be achieved by manipulating
PTEs to trigger NPFs. Note that the content of this instruction is
not relevant to this attack.
• Step-II: The hypervisor schedules the attacker vCPU to the same
logical core as the victim vCPU, and the TLB control field is set
to TLB_CONTROL_FLUSH_ASID (03h) to flush the TLB entries
with the SEV VM’s ASID.
• Step-III: It then instructs the attacker process to run an in-
struction sequence “mov $0x2021, %rax; CPUID” also at address
VA0. The CPUID instruction will trigger a VMEXIT. During the
VMEXIT, the attacker vCPU is paused, and the victim vCPU is
scheduled to run without flushing the TLB entries.
• Step-IV: When the victim process executes the instruction at
VA0, a VMEXIT due to CPUID can be observed with the %rax value
set to 0x2021 in the GHCB. This means the victim process has
been successfully tricked to execute the same instruction as the
attacker process at VA0, because it reuses the TLB entry poisoned
by the attacker process.

4.2.2 Secret Leaking. The second example shows that the attacker
process can read the victim process’s memory space directly.
• Step-I: The attacker process uses mmap() syscall to pre-map a
data page such that the virtual address VA0 points to a data region
on this page.
• Step-II: The victim process is scheduled to run and accesses the
memory at address VA0, which can be either a instruction fetch
or a data load. This step loads a TLB entry into the TLB.
• Step-III: The victim vCPU is de-scheduled by the hypervisor,
and the attacker vCPU is scheduled to run on the same logical core.
The hypervisor sets the TLB control field of the attacker’s VMCB
to TLB_CONTROL_DO_NOTHING (00h), such that no TLB entry
is flushed.
• Step-IV: After being scheduled to run and loading data from
VA0, we observe that the attacker process successfully loads the
data from the victim’s address space, compromising the victim’s
confidentiality. This is because the TLB entries created by the
victim process is reused by the attacker process.

4.3 TLB Misuse within the Same vCPU
When the victim VMhas only one vCPU, the attacker process shares
the vCPU with the victim process. In this case, TLB misuse is less

straightforward. The TLB flush rules we illustrated in Section 3.3
suggest that the hardware will automatically flush the entire TLB
tagged by the victim VM vCPU’s ASID when there is an internal
context switch in the guest VM, which leaves no chance for the
hypervisor to skip the TLB flush. As such, the hypervisor cannot
directly misuse the TLB entries between two processes within the
same vCPU. To address this challenge, we propose a novel VMCB-
switching approach to bypass the hardware-enforced TLB flush
during the internal context switch.

4.3.1 Bypassing Hardware-enforced TLB Flushes. The key to by-
passing the hardware-enforced TLB flush is to reserve the attacker
process’s TLB entries on one CPU core and then migrate the vCPU
to another CPU core. The internal context switch between the
victim process and the attacker process is then performed on the
second CPU core, which automatically flushes all TLB entries on
the second logical core. Because the hypervisor isolates the first
CPU core to prevent other processes from evicting its TLB entries,
the TLB entries of the attacker processes are hence preserved. The
hypervisor then migrates the vCPU back, with the victim process
executing on it. The victim process will then misuse the TLB entries
poisoned by the attacker process.

The challenges for bypassing the hardware-enforced TLB flush
are two-fold: First, changing the vCPU affinity inside the victim VM
leads to TLB flush for both the victim and attacker processes, which,
nevertheless, can only be done by a privileged process. Secondly,
changing the CPU affinity outside the victim VM—from the hyper-
visor side—may easily evict the reserved TLB entries. Thus, tradi-
tional CPU schedule methods like taskset or sched_setaffinity
cannot work in our case.

4.3.2 VMCB Switching. The following VMCB-switching approach
can be used to bypass the hardware-enforced TLB flushes (shown
in Figure 2).
• Step-I: The hypervisor first isolates the target vCPU hosted in
a hypervisor process HP1 on logical core LC1 and prevents other
processes from accessing LC1, as well as its co-resident logical core
on the same physical core. The hypervisor also reserves another
logical core LC2 with an idle hypervisor process HP2. This is to
ensure irrelevant processes will not evict the reserved TLB entries.
• Step-II: After the attacker process poisons the targeted TLB en-
tries, the hypervisor traps the vCPU into a yield() loop during
one VMEXIT. Meanwhile, the hypervisor lets the idle process
HP2 on LC2 to resume the attacker vCPU using its VMCB, VMSA
pointer, and NPT structures. This is possible because all states of
the attacker vCPU (e.g., registers, ASID, Nested CR3) are stored in
the DRAM, encrypted using either hypervisor’s memory encryp-
tion key (e.g., VMCB, NPT) or the guest VM’s VM encryption key
(e.g., VMSA). After resuming the attacker vCPU on LC2, there are
no valid TLB entries on LC2, but the attacker process inside the
attacker vCPU can continue execution after page table walks.
• Step-III: The hypervisor traps and traces gCR3 changes to moni-
tor the internal context switches on the attacker vCPU. Specifically,
it intercepts TRAP_CR3_WRITE VMEXIT and extract the gCR3
value in the EXITINFO1 field of VMCB. Since the inner context
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Figure 2: VMCB switching.

switch happens on LC2, no hardware-enforced TLB flush is trig-
gered on LC1, and thus the attacker process’s TLB entries are
preserved on LC1.
• Step-IV: After observing a context switch from the attacker pro-
cess to the victim process is scheduled, the hypervisor switches the
attacker vCPU back to LC1 following a similar method described
in Step-II. The hypervisor stops HP2 on LC2 and releases HP1 on
LC1 from the empty loop.
• Step-V:After resuming execution on LC1, the victim process first
tries to execute its next instruction pointed by RIP in VMSA via a
TLB lookup. The preserved TLB entries on LC1 are unconditionally
trusted by the hardware. After the victim process has used the
attacker’s TLB entries to execute instructions, some remaining
TLB entries belonging to the attacker process may potentially
disturb the execution of the victim process afterwards. Thus, the
hypervisor can choose to perform a total TLB flush.
Note that the attacker process and the hypervisor can also breach

the confidentiality of the victim process in a reversed way, where
the hypervisor reserves the victim process’s TLB entries and let the
attacker process to reuse it to exfiltrate secrets from the victim’s
address space.

4.4 CPUID-based Covert Channel
The third primitive we build is for transmitting data between the
hypervisor and the attacker process in the victim VM that is un-
der the adversary’s control. To do so, we build a CPUID-based

covert channel so that network communication is not required. The
adversary-controlled process may execute CPUID instructions to
receive data or pass the data to the hypervisor. Specifically, to send
data to the hypervisor, the attacker process may trigger a CPUID
with a reserved RAX value (e.g., 1234) to initiate data transfer. The
attacker process then repeatedly triggers CPUID with RAX filled
with the data to be transferred. Similarly, to receive data from the
hypervisor, the attacker process can trigger a CPUID with another
reserved RAX value (e.g., 1235). The hypervisor retrieves the value
of RAX and passes the data into GHCB’s RAX field before VM-
RUN. The attacker process can then read the value of RAX after
the CPUID instruction. Data received from the covert channel can
use used as commands; the attacker process performs pre-defined
actions (e.g., mmap memory page and read certain virtual address)
in accordance with the command received. On our testbed, the max-
imum transmission speed is 1.854MB/s when using the 8-byte RAX
register for data transmission. Other covert channels that make use
of cache timing [24, 25] or AMD’s way predictor [23] can also be
adopted as covert channels, but are less robust.

5 TLB POISONINGWITH ASSISTING
PROCESSES

In this section, we introduce the first variant of TLB Poisoning at-
tacks, which is assisted by an unprivileged attacker process running
in the victim VM. Following the threat model described in Section 4,
we assume the attacker process is unprivileged with limited access
to system resources, such as procfs, networking, or any privileged
system capabilities. This is practical either when the adversary has
an unprivileged user account on the victim VM or an application
with security vulnerabilities remotely exploitable by the adversary.
To simplify the attack, we assume the ASLR is disabled on the vic-
tim VM or the attacker process can learn the virtual memory area
(VMA) of the victim process. In a real attack, the attacker process
can break the ASLR either by CROSSLINE attack or other existing
methods [6, 13, 21].

5.1 Case Study: OpenSSH
In this case study, we show that with the help of an unprivileged
attacker process within a guest VM, the adversary can poison the
TLB entries of a privileged victim process and then control its
execution. The attack is applied to OpenSSH and used to bypass
password authentication.

5.1.1 OpenSSH’s Process Management. The sshd daemon process
(denoted Pd ) is launched during system boot. The daemon process
runs in the background and listens to connections on SSH ports
(i.e., 22). Its address space is defined in the kernel by the VMA
data structures. Upon receiving a connection, Pd forks a sshd child
process Pc , which performs a privilege separation (or privsep) by
spawning another unprivileged process Pn to deal with the net-
work transmission and keeps the root privilege itself to act as a
monitoring process. Once the user has successfully authenticated,
Pn is terminated, and a new process Pu is created under the new
user’s username. In our TLB Poisoning Attack, the victim process is
the privileged child sshd process Pc and the attacker process aims
to poison the TLB entries of Pc .
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5.1.2 Password Authentication Bypass. The adversary first initial-
izes a SSH connection to the target VM and monitors gCR3 changes
by setting the CR3_WRITE_TRAP intercept bit in its VMCB. When
the SSH packet from the adversary is received by the SEV-ES VM,
the adversary will immediately observe a context switch (i.e., gCR3
change). The new process to run is the sshd child process Pc . In
this way, the adversary can identify the gCR3 of Pc .

➀ Locate the shared library. The attacker process first helps the
adversary to locate the gPA of the shared library. In our attack, we
target at pam_authenticate(), which is a function of the shared
library libpam.so.0 and used by sshd for password authentica-
tion. pam_authenticate() returns 0 if the authentication succeeds.
The adversary can use the attacker process to help locate the gPA
of pam_authenticate() (denoted gPApam ). He first synchronizes
with the two colluding entities using the covert channel described in
Section 4.4 and then calls pam_authenticate() from the attacker
process. The hypervisor can learn gPApam by triggering NPFs.

➁Track the victim’s execution. The adversary clears the Present
bit of all pages and monitors NPFs after intercepting his SSH packet
with the incorrect password. If a NPF of gPApam is observed, the
adversary knows the victim process is going to authenticate the
password by calling pam_authenticate(). The adversary then
pauses the victim process by trapping the victim in the gPApam
NPF handler. This is used to provide a time window for the attacker
process to poison the TLB entries. Note that this step is rather
important in real attacks. The attacker process needs to poison
the TLB entries right before the victim process accessing those
poisoned TLB entries. Otherwise, the poisoned TLB entries may be
evicted by other activities.

➂ Poison TLB entries. The adversary can then poison the TLB
entries of the victim. Let the virtual address of the instruction page
containing pam_authenticate() in Pc be gVApam . We assume the
adversary can learn gVApam in advance. gVApam is predictable
if ASLR is disabled. The adversary can also learn gVApam using
existing attack methods [6, 13, 21]. The adversary targets at poison-
ing the TLB entries indexed by gVApam . Specifically, the attacker
process first mmap a page with the virtual address to be gVApam .
Note that gVApam is only used in Pc and the attacker process can
assign this virtual address to a new instruction page. The attacker
process then copies the same instruction page as the victim into the
new page, but replaces a few instructions of pam_authenticate
(offset 0x5b0 - 0x65f of the binary, starting with test %rdi %rdi)
with mov $0 %eax and ret (0xb8 0x00 0x00 0x00 0x00 0xc3). The
adversary also schedules the attacker process to the same logical
core as the victim process by changing the CPU affinity of the vCPU.
The attacker process then repeatedly accesses this instruction page
in a loop to preserved the TLB entries.

➃ Bypass authentication. After the attacker process poisons the
TLB entries of pam_authenticate(), the adversary directly re-
sumes Pc without a TLB flush. Recall in step ➁, Pc was paused
before a page table walk to resolve gPApam . The adversary re-
sumes Pc without handling this page table walk in order to force
Pc to reuse the poisoned TLB entries. In this way, when Pc calls

pam_authenticate(), it will execute the instruction in the at-
tacker’s address space. Therefore, the function will directly return
with an 0 in EAX and thus allow arbitrary user to login.

5.2 Evaluation
The experiment settings are list below. The CPU we used is AMD
EPYC 7251 with 8 physical cores. All the software needed to launch
a SEV-ES VM is download from AMD SEV repository [4]. The host
kernel version is sev-es-v3 . The QEMU version used was sev-es-v12
and the OVMF version was sev-es-v27 . The victim VM was a SEV-
ES-enabled VMs with 4 vCPUs, 4 GB DRAM and 30 GB disk storage.
The OpenSSH version is OpenSSH_7.6p1 and the OpenSSL version
is 1.0.2n. We repeated the attack 20 times and evaluated the attacks
in terms of successful rate: All the 20 attacks could successfully
bypass the password authentication and logged in with incorrect
passwords.

6 TLB POISONINGWITHOUT ASSISTING
PROCESSES

In this section, we show that TLB Poisoning attacks can work
even without the help of an attacker process in the victim VM. The
intuition is that when processes share similar virtual address spaces,
TLB misuse may happen between these processes without direct
control of either of them.

Specifically, we target at fork(), which is a system call used
to create new processes. fork() is widely used in server-side ap-
plications, e.g., OpenSSH, sftp, Nginx, and Apache web server, to
serve requests from different clients. The forked child processes
has a high probability to share a very similar virtual memory area
with majority of their virtual address space layout overlapped. Even
the VM’s administrator chooses to enable ASLR, the same VMA
randomization will be applied to the parent process and all child
processes, which gives the adversary the chance to conduct TLB
poisoning without concerning about the unpredictable VMA. This
similarity of address spaces of forked processes has been exploited
in memory hijacking attacks [19].

Attack scenarios. Similar to the previous case study, we choose
to showcase our TLB Poisoning attack against an SSH server. But
this time, we target Dropbear SSH [15], which is a lightweight
open-source SSH server written in C and released frequently since
2003. We did not choose the more popular OpenSSH because it
alters its memory address space in all its children processes that
serve incoming connections (by calling exec()). However, this
mechanism is only observed in OpenSSH and OpenBSD. Other
network applications like Dropbear SSH and Nginx will not change
their virtual memory layout for different connections.

We assume the targeted Dropbear SSH server application is free
of memory safety vulnerabilities and timing channel vulnerabilities.
We assume the binary of the Dropbear Server application is known
by the adversary. We assume the username of a legitimate user
is also known by the adversary; this is a practical assumption as
usernames are not considered secrets. To simplify the attack, we also
assume the two processes are scheduled on two different vCPUs,
which makes the attack easier to perform; otherwise the VMCB-
switching approach is required.
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6.1 Poison TLB Entries between Connections
We consider two SSH connections: One is the connection from
the adversary, which is served by the process Patk that is forked
from the DropSSH server daemon; the other is a connection from
a legitimate user, which is served by the process Pvic . The attack
goal is to allow the attacker process to temporarily use the victim
process’s TLB entries and circumvent the password authentication.

Regular login procedures. After the login password packet is
received by the victim VM, Pvic calls svr_auth_password() to
validate the password. As shown in Listing 2, the password en-
cryption function in the POSIX C library crypt() is called to gen-
erate a hash of the user-provided password. The result is stored
in a buffer called testcrypt. The buffer storing the plaintext of
the password is freed immediately. After that, the hash of the
user-provided password is compared with the stored value in the
system file using constant_time_strcmp(), which returns 0 if
these two strings are identical. If the user-provided password is
correct, Pvic will take the correct-password branch, which calls
send_msg_userauth_success(). Otherwise, the incorrect-password
branch is taken.

1 void svr_auth_password(int valid_user) {

2 char * passwdcrypt = NULL;

3 // store the crypt from /etc/passwd

4 char * testcrypt = NULL;

5 // store the crypt generated from the password sent

6 ...

7 // ** Execution Point 1 (NPF)

8 if (constant_time_strcmp(testcrypt , passwdcrypt) == 0)

{

9 // successful authentication

10 // ** Execution Point 2 (NPF)

11 send_msg_userauth_success ();

12 } ...

13 }

Listing 2: Code snippet of svr_auth_password().

Attack overview.We show that by breaking the TLB isolation, the
attacker process Patk can bypass the password authentication even
with an incorrect password. Specifically, the virtual addresses of the
testcrypt buffer are usually the same for both Patk and Pvic (this
fact will be empirically evaluated later). We use <gVApwd , sPAvic>
to denote the TLB entry owned by Patk , which caches the mapping
from the virtual address of the testcrypt buffer to the system
physical address that stores the hashed password used in Pvic .
The goal here is to make sure the TLB entry <gVApwd , sPAvic>
is not flushed when Patk executes constant_time_strcmp(). In
this way, Patk can re-use the testcrypt of Pvic to circumvent
password authentication.

Key challenges. The key challenge in this attack is to ensure only
necessary TLB entries are preserved. Otherwise, later TLB entries
may flush those necessary TLB entries. To address the challenge,
it is important to perform TLB poisoning at the proper execution
point. As shown in Figure 3, the adversary needs to locate the
execution points right before and after the password authentication
(e.g., constant_time_strcmp()), which can be done using the NPF
controlled channels.

The attack overview is shown in Figure 3. Let the guest physical
address of the instruction page where the svr_auth_password()
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Figure 3: Attack steps to bypass password authentication.

and the constant_time_strcmp() are located be gPA1 and gPA2,
respectively. The adversary first traps the attacker process in an
empty loop when handling the NPF of gPA2 (execution point 1),
whichmeans Patk is about to call constant_time_strcmp(). Then
the adversary will not interrupt Pvic until it also reaches the NPF
of gPA2 (execution point 1). When handling this NPF, the adver-
sary triggers a complete TLB flush. Pvic then continues execution
until it finishes the password authentication and tries to return to
svr_auth_password(). A NPF of gPA1 (execution point 2) will be
observed and the adversary traps Pvic . Meanwhile, the adversary re-
leases the attacker process and skips the TLB flush. All TLB entries
used by Pvic during the execution of constant_time_strcmp()
are thus preserved in the TLB, including TLB (gVApwd , sPAvic ).
After the attacker process completes constant_time_strcmp(),
passes the password check, and reaches execution point 2, the ad-
versary triggers a complete TLB flush (to avoid unnecessary TLB
misuses) and releases Pvic . Both Patk and Pvic continue execu-
tion as normal afterwards and no traces will be left in the kernel
message.

6.2 An End-to-end Attack
The adversary follows these steps for an end-to-end attack:

➀ Monitor network traffic. Even the adversary cannot directly
learn the content of encrypted network packets, the adversary can
inspect incoming and outgoing network packets through the un-
encrypted metadata (e.g., destination address, source address or
the port number). The adversary continuously monitors network
traffic to identify the SSH handshake procedure. Once the adver-
sary identifies a client_hello packet sent from a legitimate user, the
adversary traps that packet and sends a client_hello packet from a
remote machine controlled by himself. Once this client_hello packet
reaches the victim VM, the adversary resumes the processing of
the client_hello packet from the legitimate user. Thus, the victim
VM shall receive two connection requests, one from the adversary
and another from a legitimate user.

➁Monitor fork() and gCR3 changes.Next, the adversary locates
the gCR3 of the forked child processes. During the victim VM’s
booting period, the adversary continuously monitors gCR3 changes
by setting the CR3_WRITE_TRAP intercept bit in the VMCB. Af-
terwards, gCR3 changes will cause an automatic VMEXIT with the
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new gCR3 value stored in VMEXIT EXITINFO. After receiving the
two SSH connection packets, the Dropbear Daemon will fork twice
to generate the child process for the adversary’s connection and the
legitimate user’s connection. We call the forked child process for
the adversary’s connection Patk , whose gCR3 is gCR3atk . We call
the forked child process for the legitimate user’s connection Pvic ,
whose gCR3 is gCR3vic . The adversary can identify the gCR3atk
and gCR3vic by correlating them with the received client_hello
packets.

➂ Monitor NPFs to locate the target gPAs. The adversary may
try to log in by sending an arbitrary password. The legitimate
user logs in by sending a correct password. The adversary trig-
gers NPFs by clearing the Present bits in the NPT, when the en-
crypted SSH packets that contain the passwords are observed. A
sequence of NPF for Patk and a sequence of NPFs for Pvic will
be observed. The adversary also collects additional information
(e.g., NPF EXITINFO2) along with the NPF VMEXITs, which re-
veals valuable information. For instance, the adversary can learn
that the NPF is caused by write/read access, user/kernel access,
code read, or page table walks. The adversary also periodically
(e.g., every 50 NPFs) clears all Present bits to fine tune the NPF
sequence. Since the Dropbear’s binary is known by the adversary,
the adversary can learn the NPF patterns offline to locate the gPA
of svr_auth_password() (denoted gPA1) and the gPA of the first
instruction in constant_time_strcmp() (denoted gPA2). The fea-
tures used in pattern recognition are the sequence of NPFs and their
error code. During the attack, the adversary can use the recognized
pattern to locate gPA1 and gPA2.

➃ Skip TLB flush. The adversary continuously monitors Patk
and Pvic . When the adversary observes the NPF of gPA2 in Patk ,
he traps Patk in an empty loop and clears the Present bit of all
pages. When the adversary observes the NPF of gPA2 in Pvic , he
clears the Present bit for all memory pages and performs a complete
TLB flush. The adversary traps Pvic when he observes the NPF of
gPA1. Patk is then resumed and the adversary skips the TLB flush.
Patk will use the preserved TLB entries from Pvic to to read the
password hash from the testcrypto in the address space of Pvic ,
which leads to a successful login with an incorrect password. To
void further TLB pollution, the adversary then forces a complete
TLB flush and resumes the victim process. Both Patk and Pvic will
continue their execution normally afterwards.

6.3 Evaluation.
All experiments were performed on a workstation whose CPU is
AMD EPYC 7251 Processor (8 physical core with SMT enabled). The
VMs (including victimVMand the training VMs) used in this section
were SEV-ES-enabled VMswith four vCPUs, 4 GBDRAM, and 30GB
disk storage. The software of the OS, QEMU, and the UEFI image are
the same in Section 5.2. ASLR is enabled in the SEV-ES-enabled VMs
by setting the parameter in /proc/sys/kernel/randomize_va_space
to 2. The source code of Dropbear is downloaded from Github [15]1.
The Dropbear SSH Server is configured as the default setting. The
Dropbear SSH Server is bond to Port 22. One minor non-default
setting to assist the attack is that we forced Patk and Pvic to execute

1commit:846d38fe4319c517683ac3df1796b3bc0180be14
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Figure 4: Variation of the virtual address of testcrypto.

on different vCPUs of the victim VM. Note, this setting improves the
success rate of the attack but is not necessary in practical attacks.

Buffer address variation. We first evaluated the variation of the
virtual address of testcrypto under different connection ratios. In
the training VM, the Dropbear server is modified to print the virtual
address of testcrypto to the console after each connection. Then
we used a simple script to initiate new SSH connections, send the
correct password to login, obtain the virtual address of testcrypto,
and end the current SSH connection. In total, 120 connections were
collected. For the first 60 connections, the time interval between
two contiguous connections was set to 0.1 second. For the second
60 connections, the time interval was set to 1 second. As shown
in Figure 4a, when the time interval is set to 0.1 second, although
3 different virtual addresses of the testcrypto are observed, the
virtual address of testcrypto remains the same in 57 out of the
total 60 connections. When the time interval is set to 1 second,
the virtual address of testcrypto remains the same in 55 out of
the total 60 connections. The experiment results show that the
virtual addresses for testcrypto are relatively stable for different
connections, which gives the adversary the chance to poison the
TLB entries of the testcrypto buffer between two connections.

Patternmatching.Weevaluated the performance of patternmatch-
ing. Specifically, we repeated the above attack steps 100 times and
performed pattern matching on-the-fly each time. In 98 out of the
100 trials, the adversary is able to correctly recognize the pattern
and locate the gPA. The average time used to locate the pattern is
0.10137 second with a standard deviation of 0.02460 second.

End-to-end attacks. We then evaluated the success rate of end-
to-end attacks. The adversary conducted end-to-end attacks in the
victim VM. An incorrect password is used by the adversary for his
SSH connections. The adversary repeated the attacks 20 times. In
17 out of the 20 connections, the adversary is able to log in with
the incorrect password. There are two reasons that might count for
the 3 failed cases. The first reason is that the reserved TLB entries
might be evicted before use. The second reason is that there are
false positives in pattern matching. However, the adversary can
always repeat the attacks the next time a legitimate user logs in.

7 DISCUSSION AND COUNTERMEASURE
In this section, we discuss applications of TLB Poisoning Attacks on
SEV-SNP, their differences compared to known attacks, and their
countermeasures.
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7.1 TLB Poisoning on SEV-SNP
Although we have not tested TLB Poisoning Attacks on SEV-SNP
processors, according to the feedback from the AMD team, SEV-SNP
has fixed the TLB misuse problem. The latest AMD architecture
programmer’s manual [2] also shows some newly added fields
in the VMSA: TLB_ID (offset 3d0h) and PCPU_ID (offset 3d8h).
However, from the public documents, it is unclear how exactly
these two fields enforce additional TLB flushes. We conjecture that
the hardware use TLB_ID and PCPU_ID as parts of TLB tags to
identify vCPU and TLB entry’s ownership. We inspected the source
code of software supports of SNP (branch: sev-snp-devel)2 [4], and
failed to locate any software function that controls these two VMCB
fields. Therefore, we conjecture these two fields are managed solely
by the hardware. The hypervisor can still use TLB_CONTROL field
to enforce TLB flushes but has lost the capability to deliberately
skipping TLB flushes.

7.2 Comparison with Known Attacks
Previous works break the confidentiality and/or the integrity of
SEV by replacing unprotected I/O traffic [22], manipulating NPT
mapping [27, 28] and unauthenticated encryption [7, 9, 32]. All of
these previous works can be mitigated by SEV-SNP via the Reversed
Map table (RMP), which establishes a unique mapping between
each system physical address with either a guest physical address
or a hypervisor physical address. The RMP also records the own-
ership of each system physical address (e.g., a hypervisor page, a
hardware page, or a SEV-SNP VM’s page) as well as the ASID. For
SEV-SNP VM, the RMP checks the correctness and the ownership
after a nested page table walk. Only if the ownership is correct,
will the mapping between the guest virtual address and the system
physical address be cached in the TLB. This ownership check pre-
vents the hypervisor from remapping the guest physical address
to another system physical address and thus prevents attacks that
require manipulation of the NPT. Meanwhile, the RMP restricts
the hypervisor’s ability to write to the guest VM’s memory page,
which mitigates attacks relying on unauthenticated encryption and
unprotected I/O operations.

In contrast, this work is the first to demystify how TLB isolation
is performed in SEV and the first to demonstrate the security risks
caused by the hypervisor-controlled TLB flushes. TLB Poisoning
Attacks by themselves do not rely on the known vulnerabilities of
SEV and SEV-ES, such as the lack of authenticated memory encryp-
tion, the lack of NPT protection, and the lack of I/O protection, and
RMP alone does not prevent TLB Poisoning Attacks.

7.3 Countermeasures
TLB Poisoning Attacks affect all SEV and SEV-ES servers, including
all first and second generation EPYC server CPUs (i.e., Zen 1 and
Zen 2 architecture). Older processors may use a microcode patch
to enforce a TLB flush during VMRUN for all SEV/SEV-ES vCPUs.
From the software side, to mitigate TLB Poisoning Attacks, we
recommend all network-related applications (e.g., HTTPS, FTP, and
SSH server) to use exec() to ensure a completely new address
space for a new connection.

2Commit: 0965d085cd2453a3512c98924dac70e5cdf17402.

8 RELATEDWORK
There have been several reported design flaws of AMD SEV since
its debut in 2016, including unencrypted VMCB [29, 30], unpro-
tected I/O interface [22], unprotected memory mapping [12, 27, 28],
unauthenticated memory encryption [7, 9, 32], and most recently
unauthenticated ASID [21].

Unencrypted VMCB. The unencrypted VMCB vulnerability only
applies to SEV and is the key reason for AMD’s release of SEV-
ES. The VM’s states (e.g., registers) are saved in plaintext during
a traditional world switch in AMD hardware-based Virtualization
(AMD-V) [5] under the assumption that the hypervisor is trusted.
However, with SEV, unencrypted VMCB leads to numerous attacks
(e.g., [30]). AMD released SEV-ES in February 2017.

Lack of memory integrity. Most of the rest attacks can work on
SEV-ES. Among those attacks, Li et al. [22] studied unencrypted
I/O operations on SEV and SEV-ES. On SEV, peripheral devices (e.g.,
disk, the network interface card) are not supported to directly read-
/write guest VMs’ memory with the corresponding Kvek . Thus, an
additional buffer area is reserved and maintained by the guest VM,
which provides an interface for the hypervisor to generate encryp-
tion/decryption oracles during I/O transmission. Hetzelt et al. [12]
first studied memory mapping problems caused by hypervisor-
controlled nested page tables on SEV. These types of attacks are
further explored by others [27, 28].

Lack of memory confidentiality. SEV (including SEV-ES and
SEV-SNP) leaves the read access ability to the hypervisor for the
performance concern, which, on the other hand, gives attackers
the chance to steal secrets by monitoring ciphertext changes. Li
et al. [20] studied an unexplored ciphertext side channel against
all SEV, SEV-ES, and SEV-SNP. Attackers can intercept cipher-
text changes inside the VMSA area and infer VM’s internal regis-
ter states. The authors then presented CIPHERLEAKs attack and
showed that attackers can steal RSA’s private key and ECDSA sig-
nature’s nonce in the latest cryptography library by monitoring
registers’ ciphertext changes. CIPHERLEAKs attack is believed to
be the first attack against SEV-SNP.

Unauthenticated ASID. Crossline attacks [21] studied the ASID
misuse and the “Security-by-Crash" principle of AMD SEV and SEV-
ES. ASID is used as tags in TLB entries and cache lines, and also
the identifier of memory encryption keys in AMD-SP. However,
the hypervisor is in charge of the ASID management. AMD relies
on a “Security-by-Crash" principle to prevent ASID misuses; it is
expected that an incorrect ASID will crash the VM immediately.
However, the authors showed that by assigning the ASID of a victim
VM to a helper VM, the adversary could extract the victim VM’s
arbitrary memory block with the PTE format. Crossline attacks are
stealthy, but NPT page remapping is still required.

Page-fault side channels. Page-fault side channels are widely
used in many prior SEV attacks [12, 21, 22, 27, 28, 30]. The guest
VMmaintains its own guest page table, which transfers guest virtual
address to guest physical address and is encrypted and protected
by SEV [1]. The lower nested page table is transparent to and main-
tained by an untrusted hypervisor. The hypervisor can easily track
the victim VM’s execution paths by clearing the Present bit in the
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lower NPT pages. Moreover, NPFs also reveal valuable information
to the hypervisor (e.g., write/read access and user/privileged access).
That information can be actively gathered by the hypervisor and
used to locate both the time point and the physical address of some
sensitive data. The controlled-channel methods in theory should
still work on SEV-SNP.

9 CONCLUSION
In this paper, we present the first work to demystify AMD SEV’s
insecure TLB management mechanisms and demonstrate end-to-
end TLB Poisoning Attacks that exploit the underlying design flaws.
Our study not only presents another vulnerability in the design
of SEV, but reveals the difficulty of securely isolating TLBs with
untrusted privileged software.
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