
See through Walls: Detecting Malware in SGX Enclaves with
SGX-Bouncer

Zeyu Zhang
1,2,3∗

, Xiaoli Zhang
1,2∗

, Qi Li
1,2
, Kun Sun

3
, Yinqian Zhang

4
, Songsong Liu

3
, Yukun Liu

5
,

Xiaoning Li
5

1
Institute for Network Sciences and Cyberspace & Dept. of Computer Science and Technology, Tsinghua University

2
Beijing National Research Center for Information Science and Technology (BNRist), Tsinghua University, China

3
Department of Information Sciences and Technology, CSIS, George Mason University

4
Ohio State University,

5
Alibaba Inc.

{zy-zhang18@mails., zhangxl15@mails., qli01@}tsinghua.edu.cn, ksun3@gmu.edu, yinqian@cse.ohio-state.edu,

sliu23@masonlive.gmu.edu, {yidun.lyk, xiaoning.li}@alibaba-inc.com

ABSTRACT
Intel Software Guard Extensions (SGX) offers strong confidentiality

and integrity protection to software programs running in untrusted

operating systems. Unfortunately, SGX may be abused by attackers

to shield suspicious payloads and conceal misbehaviors in SGX

enclaves, which cannot be easily detected by existing defense solu-

tions. There is no comprehensive study conducted to characterize

malicious enclaves. In this paper, we present the first systematic

study that scrutinizes all possible interaction interfaces between

enclaves and the outside (i.e., cache-memory hierarchy, host vir-

tual memory, and enclave-mode transitions), and identifies seven

attack vectors. Moreover, we propose SGX-Bouncer, a detection

framework that can detect these attacks by leveraging multifarious

side-channel observations and SGX-specific features. We conduct

empirical evaluations with existing malicious SGX applications,

which suggests SGX-Bouncer can effectively detect various abnor-

mal behaviors from malicious enclaves.

CCS CONCEPTS
• Security and privacy → Malware and its mitigation; Trusted
computing.

KEYWORDS
trusted computing; malware detection; side channel

ACM Reference Format:
Zeyu Zhang, Xiaoli Zhang, Qi Li, Kun Sun, Yinqian Zhang, Songsong Liu,

Yukun Liu, Xiaoning Li. 2021. See through Walls: Detecting Malware in

SGX Enclaves with SGX-Bouncer. In Proceedings of the 2021 ACM Asia
Conference on Computer and Communications Security (ASIA CCS ’21), June
7–11, 2021, Hong Kong, Hong Kong. ACM, New York, NY, USA, 13 pages.

https://doi.org/10.1145/3433210.3437531

*Both authors contributed equally to this research.

Permission to make digital or hard copies of all or part of this work for personal or

classroom use is granted without fee provided that copies are not made or distributed

for profit or commercial advantage and that copies bear this notice and the full citation

on the first page. Copyrights for components of this work owned by others than ACM

must be honored. Abstracting with credit is permitted. To copy otherwise, or republish,

to post on servers or to redistribute to lists, requires prior specific permission and/or a

fee. Request permissions from permissions@acm.org.

ASIA CCS ’21, June 7–11, 2021, Hong Kong, Hong Kong
© 2021 Association for Computing Machinery.

ACM ISBN 978-1-4503-8287-8/21/06. . . $15.00

https://doi.org/10.1145/3433210.3437531

1 INTRODUCTION
Intel Software Guard Extensions (SGX) is an emerging hardware

security feature available on modern Intel processors. It offers hard-

ware protection for user-level applications against attacks from

compromised system software. The security of SGX applications

is guarded by memory isolation, memory encryption and remote

attestation. Since SGX successfully decouples the trust between

the applications and the underlying system software, it enables

applications to be securely executed on untrusted environments.

For example, commercial cloud service providers have offered SGX-

enabled infrastructure as a service (IaaS) [10, 11] and function as

a service (FaaS) [15, 20]. Meanwhile, software vendors have de-

veloped various client-side SGX applications [4, 6]. Particularly,

blockchain systems use SGX-protected cryptocurrency wallets [5]

and run smart contracts in SGX-enabled platforms for guaranteed

computation integrity [18].

Unfortunately, similar to other security mechanisms that have

been misused by attackers (e.g., rootkit in SMM [52]), SGX may also

be exploited by attackers to protect malicious enclaves [34, 41] or

misuse software vulnerabilities in third-party SGX applications [17].

Potential victims include machines running third-party SGX ap-

plications [4], worker clients in privacy-preserving Blockchain

systems [18], and FaaS clouds [15, 20]. Recently, Schwarz et al. [41]

show that enclave malware can recover a full 4096-bit RSA key

used in another enclave. SGX-based ransomware [34] has been

implemented to encrypt vital information for access restriction,

where encryption keys are maintained inside the enclave to defeat

key recovery.

One reason for the growing popularity of using SGX as a hotbed

for malware is its stealthiness under the state-of-the-art anti-virus

software. First, malicious code may stay in the encrypted form

before being loaded into enclave, e.g., via Intel Protected Code

Loader (PCL). This protects malware against reverse engineering

and static code analysis. Second, SGX inherently offers isolated

enclaves that cannot be accessed from outside, even with the root

privilege. Thereby, existing anti-virus tools cannot access the mem-

ory content of malicious enclave. Third, SGX explicitly suppresses

x86 hardware debug assistance features when the enclave is run-

ning in the release mode [8]. It protects malicious enclave from

being analyzed by traditional debuggers. As such, allowing an ap-

plication to use SGX is equivalent to permitting it to possess a

shielded region to conceal malware payload, which unfortunately

is out of reach for any state-of-the-art malware detector. Moreover,

https://doi.org/10.1145/3433210.3437531

on Linux servers that support flexible launch control (FLC) [8], as

the intended behavior of the SGX driver permits the application to

launch any production enclaves (no longer needs a token issued

by Launch Enclave), neither the server administrator nor Intel can

control the credibility of the enclave code. Therefore, an affected

application can be instrumented to run malicious enclave as long

as loading an enclave inside the application is expected.

Since Intel SGX has restricted any code running inside enclave

from directly calling outside code, making system calls, or exe-

cuting privileged instructions [8], all enclave interactions with

outside are forced to go through their host applications. Therefore,

it seems applying advanced malware analysis (e.g., static binary

analysis [31] or dynamic syscall tracing [21]) on the applications

running outside would be sufficient to detect malicious behaviors of

the enclave malware. However, we find this is not the case at least

in two scenarios. First, a malicious enclave may exploit the shared

micro-architectural components (e.g., cache hierarchy) to launch

side channel attacks against other applications [44, 51]. Second, a

malicious enclave may hijack the control flow of its host application

(e.g., via ROP attacks [43]) and interact with the OS in ways not

dictated by the code outside the enclave.

This observation motivates us to seek answers to two questions.

First, what attack methods enable malicious enclave to evade tradi-
tional malware detection techniques. To answer this question, we

perform a systematic study on the attack vectors of enclave mal-

ware by scrutinizing all interaction interfaces between the enclave

and the outside software components. Specifically, there are three

types of interaction interfaces. 1) Cache-memory hierarchy is shared
between enclaves and other co-located processes. This can be ex-

ploited by an enclave to launch various side channel attacks and

infer sensitive information. 2) Host virtual memory can be directly

accessed by the enclave to exchange data with the host application.

This enables the enclave to conduct abnormal memory read and

write and further violate memory safety of the host application. 3)

Enclave-mode transitions via EENTER/EEXIT instructions can switch

execution flows between the enclave and its host application, which

can also be abused by the enclave. Accordingly, we have identified

seven concrete attack vectors that fall into these three categories.

Second, we aim to explore how malicious enclave can be detected
with sufficient accuracy. However, it is not trivial to detect those

identified attack vectors. First, traditional detection methods for

cache side channel attacks [56] cannot work, since they rely on

Performance Monitoring Counters (PMC) to monitor abnormal

cache hits/misses, but PMC is disabled when the CPU is in the

enclave mode. Second, prior detection methods against abnormal

memory access (e.g., ROP attacks) run in emulation modes [23],

which is not compatible with SGX; tracing the enclave execution

directly is infeasible too. Third, there lacks a generic method to

capture enclave-mode transitions, since they can be implemented

not only by wrapper functions (e.g., ECall/OCall) of specific SGX
development frameworks but also by enclave developers.

To overcome these challenges, we propose an offline analysis

framework for malicious enclave, which we call SGX-Bouncer. Fol-
lowing the idea of Google Bouncer [1], our goal is to run SGX-Bouncer

as a malicious enclave detection service. It could be leveraged by

vendors like Intel who want to build an SGX app store to check

if the SGX programs are benign. Also, SGX platform providers

can upload enclave programs submitted by third-party software

developers to SGX-Bouncer for potential malware detection before

running them on production platforms. Similar to many of the

malware detection frameworks [45], SGX-Bouncer is designed as a

framework, which allows users to customize detection rules and

can be extended when new features need to be included. 1 In this

paper, we design and implement three detection capabilities. First,

to monitor cache behaviors, we put some specific memory lines

that use the same cache sets with the enclave into the cache of dif-

ferent levels. By inspecting cache hit/miss events of these memory

lines, we can infer whether there exist cache contentions, finally

discovering enclave abnormal cache usage behaviors. Second, to

detect abnormal memory access behaviors, we devise a monitoring

mechanism that is triggered once the CPU switches to the enclave

mode. It detects abnormal read and write of host memory via check-

ing side channels and data consistency. Third, to monitor enclave

interfaces in a generic manner, instead of focusing on high-level

wrapper functions of enclave-mode transitions provided by runtime

systems, we directly capture all executions of EENTER and EEXIT
instructions. Particularly, we identify pages that must be accessed

before enclave entries and leverage the page-fault exception han-

dler to capture all entries. To capture enclave exits, we leverage

the SGX anti-debugging feature and set the debugging flag before

enclave entries.

We implement a prototype of SGX-Bouncer by modifying In-

tel SGX Platform Software (PSW) and Intel SGX driver. Also, we

develop a number of proof-of-concept malicious enclaves exploit-

ing various attack vectors, and the experimental results show that

SGX-Bouncer can effectively detect all these malicious enclaves.

In summary, the contributions of this paper are three-fold:

• We conduct the first systematic analysis on plausible attack

vectors of malicious enclaves. These vectors are comprehensive to

represent potential attacks from malicious enclaves.

• We propose a generic SGX malware detection framework

SGX-Bouncer that is not limited to specific SGX development frame-

works and includes a number of novel techniques to detect mali-

cious behaviors on cache usage, memory access, and enclave-mode

transitions. These techniques illustrate the positive use of side chan-

nel analysis in defense systems.

• We implement a prototype of SGX-Bouncer and validate its

effectiveness with various proof-of-concept malicious enclaves. We

also deploy SGX-Bouncer in real world to conduct case study.

2 BACKGROUND
Intel SGX is an extension to the x86 instruction set architecture

of Intel processors. It confers hardware protections on user-level

applications against hardware attacks and malicious software in-

cluding compromised OS and hypervisor. SGX builds a shielded

execution environment, called enclave, that provides confidentiality
and integrity protection for inside applications against privileged

attacks. All code and data of the enclave are encrypted and stored

in isolated memory space, i.e., Processor Reserved Memory (PRM).

Particularly, the enclave memory forbids accesses outside the en-

clave, but the enclave code can access the memory belonging to the

host application (denoted as host memory). Besides, an enclave can-

not directly make syscalls, since instructions that change privilege

levels are illegal inside the enclave.

Enclave entry and exit. Enclave entry and exit are implemented

by new instructions. To enter the enclave, the software performs

the EENTER instruction with the address of one Thread Control

Structure (TCS) in the enclave, which enables the processor to find

the first instruction for execution. To exit the enclave, the soft-

ware conducts EEXIT that cleans relevant contexts like Translation

Lookaside Buffer (TLB) and transfers the execution to a designated

location outside the enclave. Both of them will not clear the regis-

ters. In addition to the EEXIT instruction, Enclave Exiting Events
triggered by exceptions or interrupts convert the processor into

the non-enclave mode. To prevent potential leakage of secrets, an

Asynchronous Enclave eXit (AEX) is performed to securely store

states in a State Save Area (SSA) and create synthetic states. The

RIP register will be replaced with Asynchronous Exit Pointer (AEP)

that indicates the ERESUME instruction to re-enter the enclave.

SGX development framework. In both industry and academia,

a wide spectrum of SGX development frameworks have been pro-

posed to facilitate development of SGX applications. Some of them

(e.g., Intel SGX SDK and Rust SGX SDK) demand the developers to

divide the application into trusted and untrusted parts, and install

the trusted part into the enclave. Others like Graphene-SGX [47]

support to load unmodified application into an enclave to sim-

plify the development complexity. To provide runtime libraries for

applications building upon SGX, these frameworks generate the

runtime systems including the SGX Kernel driver in the kernel

space, the untrusted runtime system (uRTS) in the user space, and

the trusted runtime system (tRTS) in the enclave space. uRTS and

tRTS wrap low-level instructions as high-level enclave interfaces,

e.g., ECall/OCall, that can be directly invoked by SGX developers.

Also, SGX developers can customize runtime systems to provide

enclave interfaces.

3 THREAT ANALYSIS
In this paper, we consider a scenario where SGX platform owners

and developers of enclave programs are mutually distrusted. SGX

platforms are victims that could be PCs, cloud virtual machines [10],

bare-metal machines [11], or machines supporting function as a

service (FaaS) [15]. Enclave developers are attackers who leverage

the SGX technology as a new obfuscation or analysis-evasion tool

to develop malware that is capable of evading existing static/dy-

namic anti-virus software. The enclave developers provide to the

SGX platform hostile SGX programs including enclaves and their

host applications [4, 34, 44] or only malicious enclaves that can

be integrated as third-party libraries in SGX programs [43]. These

SGX programs are executed on SGX platforms of benign users or

clouds, targeting other co-located applications [41, 44, 51] or system

software [34]. We do not differentiate these scenarios in this paper.

We assume the enclave code is hidden from the platform owner.

The rest of the application code, however, is visible to the provider

and has been manually reviewed or inspected by automated code

analysis tools like [31]. We assume the goal of the malicious en-

clave is to breach the confidentiality and/or integrity of the hosting

platform. We do not consider denial-of-service (DoS) attacks from

malicious enclaves, such as SGX-Bomb [30] and memory bus lock-

ing [57]. DoS attacks slow down or even hang the entire system,

which are by definition easy to spot. We also do not consider the

TSX-based attacks inside the enclave, as Intel has recently disabled

TSX in the SGX by a microcode patch [12], which has been vali-

dated by us on multiple SGX CPUs (i5-8500, i7-7700, and i7-8700).

This paper does not focus on detecting attacks compromising host

systems via issuing syscalls, which can be captured by existing

dynamic syscall based detection tools [21] since these syscalls can

only be issued by the host applications of the enclaves.

We present a systematical analysis of all interaction interfaces

between the enclave and the outside (see Table 1), including cache-
memory hierarchy, host virtual memory, and enclave-mode transition.

3.1 Attacks via Cache-Memory Hierarchy
Although there are lots of shared hardware components in the

cache-memory hierarchy that have been exploited to launch side

channel attacks in the literature, not all of them can be successfully

mounted in our context. Hence, we first clarify what needs to be

addressed and then present attack vectors of malicious enclaves.

What attacks need to address. Side channel attacks on the cache-
memory hierarchy can be classified into single-core attacks and

cross-core attacks. Single-core attacks can be further classified

into HyperThreading (HT) based and Enclave Exit (EX) based. In

the HT-based single-core attacks, the attacker enclave shares the

same CPU core with the victim via HyperThreading [14, 46]. We

do not consider HT-based attacks because Foreshadow [48] and

MDS [42] attacks against SGX can only be prevented without HT

and it has become a common practice to run SGX applications with

HT disabled (which can be verified through remote attestation).

In the EX-based single-core attacks, malicious enclaves exploit

the shared cache-memory hierarchy after transitioning to the non-

enclave mode via Enclave Exits (e.g., AEX or EEXIT). Most of such

EX-based attacks do not need to be considered, either.

First, the microcode patch [9] that mitigates Foreshadow at-

tacks [48] automatically flushes the L1 data cache at enclave exit

and, therefore, side channel attacks against L1 data cache from the

malicious enclave cannot succeed. Second, an enclave cannot attack

the outside software via shared TLB [28] as the TLB is cleared in

enclave entries and exits. Third, as microcode patches for Spectre

attacks, such as IBRS, prevent branch poisoning from the outside,

side channel attacks on branch prediction units are infeasible from

malicious enclaves. Thus, branch shadowing attacks [32] from mali-

cious enclaves are also out of scope. As such, among all the known

single-core attacks, we only consider EX-based attacks via shared
L2 caches. Note attacks on L1 instruction cache attacks can work,

but these attacks also affect the inclusive L2 cache and thus do not

need to be considered separately.

For cross-core attacks, we consider attacks exploiting L3 caches

via Prime+Probe [33] and Flush+Reload/Flush [26, 55]. We also

consider cache-DRAM attacks [39, 51] that target fine-grained in-

formation leakage and require frequently cleansing L3 cache. We

do not, however, consider Prime+Abort [24] side channel attacks,

since they rely on TSX, which is not available in enclaves [12].

Also, since malicious enclaves cannot directly access page tables

or manipulate APIC, page fault based side channel attacks [50] or

APIC-based side channel attacks [32, 49] are out of scope.

Table 1: Summary of attack vectors

Interaction Interface Attack Vector Monitoring Module (MM) Detection Module (DM)

Cache-memory hierarchy

❶ L2 cache Prime+Probe attack L2Cache-MM L2Cache-DM

❷ L3 cache Prime+Probe attack L3Cache-MM L3Cache-DM

❸ Flush+Reload/Flush attack MemoryR-MM FRF-DM

❹ Cache-DRAM attack L3Cache-MM L3Cache-DM

Host virtual memory

❺ Memory disclosure attack MemoryR-MM MemoryR-DM

❻ Host control-flow manipulation MemoryW-MM MemoryW-DM

Enclave-mode transition ❼ EEXIT abuse EnclaveT-MM EnclaveT-DM

We summarize the considered attack vectors as follows.

Vector ❶. L2 cache Prime+Probe attack.
To infer victims’ activities via L2 cache, attackers rely on process

scheduling (or context switching). Specifically, they evict all cache

lines from some cache sets of L2 cache (prime operation), enable

executions of victims for a while on the same core, and then resched-

ule the attack program and re-access the corresponding memory

lines (probe operation). Although malicious enclaves running at

the user-level cannot actively schedule processes (for improving

attack accuracy), they can still obtain patterns from long-term data

collection via offline analysis removing noises [19, 33].

Key observation: It is inevitable to probe the whole or a large

portion of the L2 cache by Prime+Probing in such attacks. The

reasons are as follows: (i) the attacker does not know the virtual-

physical address mapping of the victim to precisely pinpoint the

targeted cache regions; and (ii) the attacker needs to filter out noise

generated by external activities during the side channel analysis.

Vector ❷. L3 cache Prime+Probe attack.
To steal sensitive information (like RSA keys) via L3 cache, at-

tackers can execute simultaneously with victims, since L3 cache

is shared among all cores of a chip. Meanwhile, to achieve fine-

resolution inference via L3 cache of several MiB, instead of directly

priming and probing the whole L3 cache, attackers scan L3 cache

and monitor one cache set at a time, until pinpointing the cache set

associated with victims’ activities [33]. Recently, Schwarz et al. [44]

have demonstrated a malicious enclave can extract RSA keys from

victim enclaves via L3 cache based side channel attacks, regard-

less of whether victims run inside other enclaves or are isolated in

Docker containers.

Key observation: Scanning (by Prime+Probing) the whole or a

large portion of the L3 cache in a set-by-set manner is inevitable

in such attacks, as the attacker needs to identify the cache sets of

interest and to eliminate noise due to background processes.

Vector ❸. Flush+Reload/Flush attack.Malicious enclaves mon-

itor specific memory lines belonging to its host application, as

it may share the same physical pages with other processes. The

root cause is that existing OSes and hypervisors implement content-

aware page sharing mechanisms (e.g., using shared libraries or page

deduplication) to reduce memory footprint. Basically, a malicious

enclave first flushes the target memory line of its host application

from the cache, waits for a time interval, then reloads the memory

line and measures the access time. A fast access means that the vic-

tim has accessed the target memory line. Instead of re-accessing the

memory, Flush+Flush attacks re-flush the memory line and observe

the timing differences to infer victims’ memory access patterns.

Similar user-level attacks have been launched to infer secrets of

other programs residing in the same platform via Flush+Reload [55]

or Flush+Flush [26].

Key observation: During memory flushes or reloads, some exe-

cutable pages in the host memory (which contain specific memory

lines in shared pages) are accessed frequently by malicious enclaves.

Vector ❹. Cache-DRAM attack.
This attack exploits the shared row buffer of the same DRAM

bank to detect contention on DRAM banks and thereby to infer the

memory access patterns of victims [51]. Specifically, a malicious

enclave allocates two memory blocks (denoted as p and q) that
are mapped to the same DRAM bank but different rows. p and the

sensitive data (denoted as v) are on the same row. Then, the enclave

accesses the memory block q, waits a while for victim operations,

accesses the block p and measures the access time. A faster access

indicates that the victimmay have accessed the data v. To guarantee
that the victim fetches v from DRAM, the attacker will prime some

cache sets of L3 cache that would store v. This attack can only

target other enclaves as the rows are not shared between PRM and

non-PRM regions.

Key observation: Several L3 cache sets are repeatedly and fre-

quently primed by a malicious enclave during the attack to guaran-

tee subsequent DRAM accesses.

3.2 Attacks via Host Virtual Memory
An enclave and its host application reside in the same virtual mem-

ory space. The enclave is allowed to access the entire user-space

memory space of the host application. It enables enclaves to use

the following two attack vectors to attack the host application.

Vector ❺. Memory disclosure attack.
Amalicious enclave conducts abnormal memory read operations,

e.g., to find usable code gadgets outside the enclave. Generally, it

needs to scan the host memory. This is because the enclave does

not know what the outside code is and where it is. Even when the

outside code is developed by the same developer (due to ASLR).

Key observation: During enclave execution, an enclave performs

abnormal memory read, e.g., scanning executable memory pages.

Vector ❻. Host control-flow manipulation.
With identified code gadgets, the enclave can divert the execu-

tion to them by deliberately writing host memory. SGX-ROP [43]

practically demonstrated that malicious enclaves can construct con-

trol flow hijacking attacks against the memory safety of the host

application. Also, it can modify other values saved in stack, e.g.,

OCall_Table passed by ECall functions and can look up addresses

of OCalls according to index. By constructing a fake OCall_Table,

Monitoring Module (MM)

Result:SGX App

SGX-
Rule

Result

Enclave
transition-

related MM

Memory-
related MM

Cache-
related MM

Detection Module (DM)

Enclave
transition-
related DM

Memory-
related DM

Cache-
related DM

Figure 1: The overview of the SGX-Bouncer framework

the host application would execute arbitrary code once an OCall is

called by the enclave.

Key observation: The key unusual behavior is that some contents

of the host memory (e.g., saved RBPs and RIPs of stack frames) are

manipulated by hostile enclaves.

3.3 Attacks via Enclave-mode Transition
SGX provides new instructions (i.e., EENTER, ERESUME and EEXIT)
for CPUs to enter and exit the enclave mode. When entering the

enclave and exiting the enclave, the register values are set to achieve

enclave-mode transitions.

Vector ❼. EEXIT abuse.
A malicious enclave may manipulate register values related to

control flows when executing EEXIT. For example, it can exit to a

specific yet non-standard point (where the execution of the host

application should start) by setting the RBX register [8].

Key observation: Enclave malware abuse EEXIT with abnormally

crafted register values.

4 SGX-BOUNCER: DETECTING ENCLAVE
MALWARE

SGX-Bouncer detects malicious enclaves by monitoring their run-

time behaviors observed from the outside of enclaves. As shown in

Fig. 1, it consists of two types of modules. The monitoring modules

(MMs) are responsible for inspecting enclave runtime behaviors.

There are five monitoring modules: two cache related MMs, two

memory related MMs, and one enclave-transition related MM (see

Table 1). The detection modules (DMs) are designed to detect each

attack vector by analyzing data collected from the corresponding

MM and uncovering abnormal behaviors incurred by the attack

vector. As a framework, SGX-Bouncer allows new monitoring/de-

tection modules to be added and specific modules to be enabled. It

also allows users to provide detection rules (dubbed SGX-Rules) to
capture new features of attack vectors.

4.1 Monitoring Modules
There are five monitoring modules: L2Cache-MM and L3Cache-

MM that monitor L2 and L3 cache access behaviors of an enclave,

respectively, MemoryR-MM and MemoryW-MM that capture en-

clave read/write to specific area of host memory, respectively, and

EnclaveT-MM that monitors enclave entries/exits and triggers the

other four MMs.

4.1.1 L2Cache-MM. To monitor L2 cache access behaviors of en-

claves, we devise a side channel based method, called Probe+Check.

Slice 0 Slice 1

Set 0 Set 1 Set n-1 Set 0 Set 1 Set n-1

Huge Pages
Construct eviction sets

Construct probe set

Access probe set

Figure 2: The construction of probe set for L3 cache.

The insight behind this design is that, attackers need to constantly

fill the cache sets to perform L2 cache Prime+Probe attacks. Hence,

we construct a probe set where each memory line is exactly indexed

to one cache set of L2/L3 caches. Wemonitor cache access behaviors

by consecutively probing these memory lines and checking cache

hits/misses. A cache miss illustrates that the corresponding cache

set has been filled and possibly abused by attackers.

To construct a probe set, we use 2MB huge pages that use the

lower 21 bits of the virtual address to express the page offset. In

this way, we can directly get cache set indices of L2 caches without

the need to figure out the virtual-physical address mapping, as it is

indexed by physical address bits 6-15. Meanwhile, we use several

huge pages rather than only one page (4 pages in our experiment).

Because, though one huge page is large enough to construct a probe

set for L2 cache (256KB in our experiment), using multiple huge

pages guarantees that memory lines in the probe set would not be

prefetched and prevents introduced noises.

To monitor L2 cache, we access all memory lines in the probe set

before enclave entries (i.e., the probe step) and check whether these
data are evicted after enclave exits (i.e., the check step). Particularly,

since L2 cache is small and can be filled by normal operations of

the enclave, we have to probe/check the set frequently, so as to

reduce false positives. Thus, we also check thesememory lineswhen

AEXs occur, which are frequently triggered by I/O events or timer

interrupts. Note that we use PMC to examine cache hits/misses,

as measuring timing difference would be less reliable. Finally, we

obtain an L2 cache monitoring array where each element (denoted

as 𝑁𝑙2𝑚) represents the number of L2 cache misses in one check

step. We demonstrate in Section 5 that our fine-grained L2 cache

monitoring incurs low false positive even for memory-intensive

applications (e.g., neural network training).

4.1.2 L3Cache-MM. The Probe+Check is also used to monitor L3

cache access behaviors. Unlike L2 cachewhich is exclusively used by

each core, L3 cache is shared among all cores of one CPU processor

and divided into per-core slices. That is, a cache set in L3 cache

is determined by both a slice id and a set index. The set index is

retrieved from the virtual address of the huge page (i.e., bits 6 − 16)

directly, but the slice id is hard to be obtained as it is calculated by

CPU using an undocumented hash function over physical addresses.

To construct a probe set, we first follow the methodology proposed

by Liu et al. [33], i.e., we create eviction sets that exactly fill up

all cache sets, which is applied to create eviction sets for different

CPU models. Then, we pick one arbitrary memory line from each

eviction set to constitute the probe set, as shown in Fig. 2. The

probe set will not be changed once it is constructed.

To monitor the entire L3 cache, we continuously access all mem-

ory lines in the probe set and record cache hits/misses by analyzing

whether the access time is larger than a pre-defined threshold. A

slow access means this memory line has been evicted from the

cache set and the cache set is possibly filled by the malicious en-

clave. For efficiency, we can access memory lines in parallel using

multi-threads and each thread only monitors part of the L3 cache

sets. The outcome of the monitoring process is an L3 cache moni-
toring matrix where each row represents cache usage of all cache

sets in one check step. Each element is 1 or 0, where 1 means the

corresponding cache set is filled and 0 is the opposite.

4.1.3 MemoryR-MM. We monitor host memory read of enclaves

via side channels. Our key observation is that both flushing and

accessing memory lines update Accessed [50, 51] flags of corre-

sponding pages’ Page Table Entries (PTEs). Thus, we inspect host

memory read behaviors by checking PTEs’ Accessed flags of specific

pages of host memory. In SGX-Bouncer, we enable users to define

which type of pages enclaves are allowed to access, as described

in Sec. 4.2.1. Here, we focus on host executable pages by default,

which should not be accessed during enclave executions.

Before enclave entries, we clear Accessed flags of specific host

pages (e.g., host executable pages) and remove related records in the

TLB. Once the enclave exits, we check whether these flags are up-

dated. To get fine-grained memory access behaviors (e.g., attacker’s

access frequency), we repeatedly perform three operations before

enclave exits: 1) checking Accessed flags of these pages, 2) setting

these flags as 0, 3) flushing corresponding records in the TLB. Fi-

nally, we build a memory monitoring matrix where each column

denotes one page and each row records whether the corresponding

host memory page has been read in one scanning step.

To analyze multi-threaded SGX programs, we need to perform

additional operations. When there are two threads, one running

inside the enclave and the other running outside, simply starting

memory read monitor from enclave entries suffers from high false

positive, since the outside thread also updates Accessed flags of

host executable pages (which is not a malicious behavior) . To

address this problem, we can limit multi-threaded SGX applications

running on a single CPU core and only allow one thread working

at any moment by restricting the OS scheduling mechanism.

4.1.4 MemoryW-MM. In order to monitor if enclaves perform

write operations on specific contents of host memory, we copy

the specified data to tracer before enclave entries and then check

the data consistency after enclave exits. Compared with the method

of monitoring Dirty bit of PTE, it can obtain the malicious payload

for analysis. Similar to MemoryR-MM, users are allowed to define

which type of pages enclaves can write to. In the paper, we focus

on checking if enclaves manipulate the control flow of the host

application.

Standard
enclave entries TCS Page Fault Handler

Legal
context? Set TF flag

 Enclave

Save and clear TF flag

Standard
enclave exits

Abnormal
enclave exitsTF Handler

Legal
context?

Abnormal
enclave entries

Restore TF flag

Yes

No

No
Yes

Detected

Detected

Figure 3: The workflow of EnclaveT-MM.

We monitor the RBP/RIP pairs in the stack. Any modification

to them during the execution of the enclave is considered as ma-

licious [43]. Specifically, we use a chain of RBP and RIP pairs in

stack frames to represent the control flow, where RBP is the stack

pointer and RIP is the instruction pointer of the calling instruction

in the previous stack frame. Specifically, we get the value of current

RBP register. It is used to construct RBP and RIP chain of the whole

control flow, since the value of RIP is stored in the address adjacent

to the RBP and the frame pointer of the previous frame can be

traced by accessing the content pointed by the current RBP. Finally,

we produce a pair of RBP-RIP chains for each pair of enclave entries

and exits.

4.1.5 EnclaveT-MM. EnclaveT-MM monitors enclave entry/exit

behaviors and their contexts. Here, we directly monitor all occur-

rences of EENTER/EEXIT instructions, since enclave entries and

exits can be implemented via attacker-crafted enclave transition

functions, which will be missed by hooking the standard uRTS of

the SGX development framework.

Unfortunately, it is difficult to monitor EENTER/EEXIT instruc-

tions. Since EENTER and EEXIT are user-level instructions and their

execution will not incur the CPU privilege switching from ring3

to ring0, we cannot trace them in the kernel. Besides, if we track

them by single-stepping every instruction of host applications, it

incurs significant performance slowdown and increases detection

time due to frequent exceptions. To address this issue, we design

a page-fault based method to efficiently identify enclave entries.

The key insight is that the Thread Control Structure (TCS) pages

will be indirectly and inevitably accessed by EENTER. To capture all

enclave exits, we leverage a key feature of SGX where enclave logic

cannot be debugged. Thus, after handling page-fault exceptions,

we single-step SGX applications and utilize debugging exceptions

to capture all enclave exits. We describe details of how to monitor

all enclave entries and exits below. We omit asynchronous enclave

entries and exits (i.e., AEX and ERESUME), since their correctness

is guaranteed by the benign OS.

Enclave Entry Monitoring.We capture enclave entry behaviors by

monitoring whether enclave TCS pages are accessed. There are two

key observations: 1) The TCS is the first memory page that would

be accessed when executing EENTER. 2) One TCS identifying one

executing threads in the enclave is stored as a 4KB enclave page.

TCS pages are added to the enclave memory via the privileged

instruction EADD during the enclave initialization. According to

these insights, we monitor enclave entries in a side channel manner.

Table 2: Summary of rule options

Keyword Parameter format Description
C-PPL2 0/1, [Threshold] (Default: 1, [0.05]) Detect malicious L2 cache access behaviors (vector ❶) using the threshold.

C-PPL3 0/1, [Threshold] (Default: 1, [0.04]) Detect malicious L3 cache access behaviors (vectors ❷ and ❹) using the threshold.

M-FRF 0/1, [Threshold] (Default: 1, [1]) Detect Flush+Reload/Flush attacks (vector ❸) using declared threshold.

M-Read
0/1, [(ExePage/StackP/(Content), R/NR

/W/NW)] (Default: 1, [ExePage, R])

Detect abnormal memory read (vector ❺). It allows users to define pa-

ges with a certain page property (or specific area) and limit their access

permissions. ExePage is executable pages, StackP is saved pointers (i.e.,

RBPs and RIPs) of the stack, (Content) specifies pages containing the
contents. Access permissions are Readable (R), Non-Readable (NR),

Writable (W), and Non-Writable (NW).

M-Write
0/1, [(ExePage/StackP/(Content),

R/W/NW)] (Default: 1, [StackP, NW])

Detect abnormal memory write (vector ❻). Parameter definitions are

described above.

E-EntryEx
0/1, [(Entry/Exit)##(RegName),

(=/!=/</>), (Immediate/Entry/Exit)##

(RegName)] (Default: 1)

Detect EEXIT abuse and enable users to input conditional statements

(vector ❼). We detect whether enclave exit addresses are those specified

in the standard uRTS (e.g., Intel SGX SDK’s) by default.

More precisely, we first get addresses of all TCS pages when the

SGX driver adds them into the enclave. Once the enclave has been

initialized (i.e., via EINIT), we clear the Present flags of PTEs of the
TCS pages and remove the corresponding TLB entries. Meanwhile,

we hook the page-fault handler. If a page-fault exception on the TCS

page arises, an enclave entry occurs. We also record the context of

the exception (the values of registers) which are used to identify

abnormal enclave entries later.

Enclave Exit Monitoring.We capture events of enclave exits by

leveraging the SGX anti-debugging feature in the release mode.

Concretely, when switching to the enclave mode, the Trap Flag (TF)

of the FLAGS register is cleared. Before that, the TF value would be

saved in a register called CR_SAVE_TF (which is invisible to enclave

software [8]). When the CPU exits the enclave mode, the TF flag

can be restored and CPU will raise a TF exception when fetching

the next instruction. Thus, we set the debugging flags before each

enclave entry and capture TF exceptions to discover enclave exits.

In detail, we launch one process called tracer to track the execu-

tion of the SGX application, e.g., using the syscall ptrace. We set

the TF flag before the CPU switch to enclave mode so as to capture

enclave exits. However, the flag cannot be set when handling the

TCS page fault exception (for capturing enclave entries). Therefore,

we produce a software interrupt via the INT 3 instruction (placed in

the front of EENTER in the standard uRTS). It enables the tracer to

set the TF flag for the SGX application. After executing the enclave

code which looks like a giant instruction, the host application is

stopped and the enclave exit is captured.

4.2 Detection Modules
We first define a rule description language that allows users to

customize SGX-Rules in SGX-Bouncer. Then, we present how the

detection modules detect malicious enclaves according to the rules.

As shown in Table 1, there are 6 detectionmodules: L2Cache-DMun-

covering L2 cache Prime+Probe attacks (attack vector ❶); L3Cache-

DM detecting L3 cache Prime+Probe attacks and cache-DRAM at-

tacks (attack vectors❷ and❹); FRF-DMdetecting Flush+Reload/Flush

attacks (attack vector ❸); MemoryR-DM identifying host memory

disclosure attacks (attack vector ❺); MemoryW-DM uncovering

host control-flowmanipulation (attack vector❻); and EnclaveT-DM

defending against EEXIT abuse (attack vector ❼).

4.2.1 Rule Description Language. One SGX-Rule consists of two
parts: a rule action and rule options. The rule actions indicate

SGX-Bouncer how to act when it discovers that the SGX applica-

tion’s behaviors match the rule criteria specified by rule options. A

rule option contains one keyword and multiple arguments which

are separated by a colon. Multiple rule options in one SGX-Rule,
separated by &, form a logical AND statement. To detect malicious

enclaves, the client can submit a rule file containing multiple SGX-

Rules. These rules, separated by semicolons, form a logical OR state-
ment. In addition, the client can specify detection time in the first

line of the rule file using the keyword DetectionTime.
Rule action. SGX-Bouncer supports two rule actions, Alert and
Terminate. Alert means if the rule criteria is matched, SGX-Bouncer

produces an alert with a log specifying which item in rule options

is violated (without terminating the application). Terminate denotes
that SGX-Bouncer immediately terminates the SGX application and

send a log to the client.

Rule option. Table 2 lists 6 rule options and name them in the for-

mat “C/M/E-Name”, where C/M/E denotes if cache/memory/enclave-

mode-transition based monitoring module’s data is used in the de-

tection and Name states the detection content. In addition, if there

are many arguments for one rule option, they should be enclosed

in square brackets and separated by commas. ## is a concatenation

operator in rule options. Consider I-EntryEx-S as an example. “E-
EntryEx: [EntryRDX, !=, ExitRDX], [ExitRBX, !=, 0x410000]” finds
abnormal enclave exits, if RDX values of enclave entries do not

equal to corresponding RDX values of enclave exits and RBX values

of enclave exits are not 0x410000.

4.2.2 L2Cache-DM. To detect L2 cache Prime+Probe attack (vector

❶), we analyze the L2 cache monitoring array of the size of 𝑋

generated by L2Cache-MM. We use a counter 𝑁𝑙2𝑐 to denote the

number of abnormal L2 cache access behaviors in 𝑋 check steps.

That is, if the element𝑁𝑙2𝑚 of the array is greater than a pre-defined

threshold 𝑇𝑙2𝑚 , we add 𝑁𝑙2𝑐 by one. Finally, if the ratio of unusual

Figure 4: The number of L2 cache misses 𝑁𝑙2𝑚 in one check
step for benign and malicious PPL2 applications.

elements 𝛾𝑙2 (i.e., 𝛾𝑙2 =
𝑁𝑙2𝑐

𝑋
) is larger than a pre-defined threshold

𝑇𝑙2, it is considered as launching an L2 cache Prime+Probe attack.

4.2.3 L3Cache-DM. To detect L3 cache Prime+Probe attacks (at-

tack vector ❷) and Cache-DRAM attack (attack vector ❹), we use

a window of the size of 𝑚 × 𝑛 to scan the L3 cache monitoring

matrix produced by L3Cache-MM. Note that𝑚 denotes the number

of rows and 𝑛 is the total number of cache sets. We also maintain

a counter (denoted as 𝑁𝑤) to record the number of unusual win-

dows. Concretely, in each window, if the number of cache misses

corresponding to some cache sets is larger than 𝛾𝑙3𝑚 ×𝑚 (where

𝛾𝑙3𝑚 denotes the ratio of permitted cache misses in the window),

we regard the window as an unusual window and add 1 to counter.

Finally, if the ratio of unusual windows𝛾𝑙3 (i.e.,𝛾𝑙3 =
𝑁𝑤𝑚
𝑀

) exceeds

the detection threshold 𝑇𝑙3, we identify there exist abnormal L3

cache access behaviors caused by Prime+Probes. We validate the

effectiveness and efficiency of this detection method in Section 5.

4.2.4 FRF-DM. To detect Flush+Reload/Flush attacks (attack vec-

tor ❸), we analyze the memory monitoring matrix generated by

MemoryR-MM checking executable pages of the host memory. If

some elements in the matrix are 1s, it means that some executable

pages are accessed by the enclave. We also count the number of

accesses to each executable page. Since Flush+Reload/Flush attacks

exhibit frequent accesses to several pages, we use the maximum

number of page accesses among all pages in the detection. If the

maximum value exceeds a threshold𝑇𝑓 𝑟 𝑓 (which can be defined by

users), it indicates a Flush+Reload/Flush attack occurs. We demon-

strate the detection performance later.

4.2.5 MemoryR-DM. To uncover the memory disclosure attacks

(attack vector ❺), we analyze the matrix generated by MemoryR-

MM. In SGX-Bouncer, we check whether executable pages of the

host memory are scanned by an enclave by default. Thus, we calcu-

late the ratio of the number of executable pages that are accessed

by the enclave among the total number of executable pages. The

attacks are identified by a threshold 𝛾𝑚𝑒𝑚𝑟 .

4.2.6 MemoryW-DM. To detect host control-flow manipulations

(attack vector ❻), we verify that specific contents of the host mem-

ory (which can be defined by users as Table 2 shows) are same

before enclave entries and after enclave exits. In the default setting,

we inspect whether RBPs and RIPs of stack frames are manipulated

by an enclave (vector ❻). Any inconsistency says the enclave has

hijacked the control flow of the host application.

Figure 5: The ratio of unusual elements 𝛾𝑙2 for benign and
malicious PPL2 applications.

4.2.7 EnclaveT-DM. To detect abused EEXIT (vector ❼), we com-

pare contexts of enclave exits with those specified in the rule. The

standard exit points are different in various SGX development

frameworks. Take the Intel SGX SDK as an example, it has only

one exit point following EENTER, and it will not change after lib-
sgx_urts.so is loaded into memory. Here, we forbid malicious en-

claves to modify libsgx_urts.so after we load it.

5 EVALUATION
We implement a prototype of SGX-Bouncer in C/C++. It is built

atop Intel SGX Platform Software (PSW) and Intel SGX driver. Our

testbed is built on Dell OptiPlex 3060 equipped with 8GB RAM

and six-core, 3.00Ghz Intel i5-8500 Coffee Lake CPU. The processor

has 256KB L2 cache with 1024 cache sets, as well as 9MB L3 cache

with 6 slices and 12288 cache sets. The OS of the testbed is Ubuntu

16.04 (Linux Kernel 4.8.0) LTS and SGX applications are developed

with Intel SGX SDK (commit 34421657). Also, we disable the C-

States, Intel SpeedStep and TurboBoost to make the timer stable

for accurate identification of cache hits and misses.

5.1 Detection Effectiveness
We evaluate detection effectiveness of six DMs as follows.

5.1.1 L2Cache-DM. We evaluate the detection effectiveness of

L2Cache-DM against L2 cache Prime+Probe attack (attack vector

❶, dubbed PPL2). We first determine parameters in L2 cache mis-

behavior detection, which are the array size 𝑋 , the threshold 𝑇𝑙2𝑚
for determining abnormal elements in the array, and the threshold

𝑇𝑙2 for identifying L2 cache based attacks. With well-determined

parameters, we consider the cache misbehavior detection as a bi-

nary classification problem and estimate the true positive rate and

false positive rate. To evaluate its detection effectiveness, we select

three benign and three malicious applications, i.e., SGX-nbench1,
SGX-SQLite

2
, SGX-Vgg16 (an convolutional neural network model

inside enclave), and PPL21, PPL22, PPL23. The latter three are L2
cache Prime+Probe attacks that scan the half, three quarters, and

entire of L2 cache, respectively.

We set the size of L2 cache monitoring array 𝑋 as 50. We collect

600 arrays for each application, each runs for about one minute.

1
https://github.com/utds3lab/sgx-nbench.git

2
https://github.com/yerzhan7/SGX_SQLite.git

Figure 6: The ratio of unusual windows 𝛾𝑤 under different PPL3 applications and different window settings.

Figure 7: The ratio of unusual windows 𝛾𝑙3 for benign and
malicious (PPL3) applications.

Figure 4 shows the distribution of 𝑁𝑙2𝑚 for different SGX applica-

tions. We can see that 𝑁𝑙2𝑚 for benign applications and attacks

are differentiated. According to the results, we set the threshold

𝑇𝑙2𝑚 as 480. Then, we evaluate the ratio of unusual elements 𝛾𝑙2 for

different SGX applications. From Fig. 5, we can see that when 𝑇𝑙2
is 0.05, the true positive rate is much greater than 99.9% and false

positive rate is less than 0.01%. The number of false positives/false

negatives also depends on the number of real-world SGX programs,

which is expected to increase along with the wide deployment of

SGX.

5.1.2 L3Cache-DM. We evaluate the detection effectiveness of

L3Cache-DM against L3 cache Prime+Probe attacks (dubbed PPL3,

attack vector❷) and Cache-DRAMattacks (attack vector❹). Similar

to the detection of L2 cache misbehaviors, we require to determine

parameters for detecting L3 cache Prime+Probe attacks. They are

the scanning window size (𝑚 × 𝑛), the ratio of permitted cache

misses𝛾𝑙3𝑚 , the size of one cachemonitoringmatrix (𝑀×𝑛), and the
threshold𝑇𝑙3 for detection, where 𝑛 means the number of cache sets

(i.e., 12288). Then, we estimate whether L3Cache-DM can accurately

detect PPL3 under different attack settings without incurring high

false positive. In particular, we compare its effectiveness with one

existing PMC-based detectionmethod (HexPADS [38]), using public

L3 cache Prime+Probe attack applications [2].

We clarify two attack parameters: 1) attack_slot is the CPU cy-

cles taken for one attack round; 2) attack_num is how many attack

rounds that would be taken for one cache set. Here, we implement

four attacks with different attack_slots and attack_nums in the

evaluation: PPL31 with attack_slot = 5000 and attack_num = 1000;

PPL32 with attack_slot = 7500 and attack_num = 1000; PPL33 with
attack_slot = 5000 and attack_num = 3000; PPL34 with attack_slot

Figure 8: The number of memory accesses captured by
MemoryR-MM during 2500 Flush+Reload/Flush attacks.

= 7500 and attack_num = 3000. Also, we select various benign ap-

plications some with large memory footprints for comparison. They

are Pure_env only running L3Cache-MM on the testbed; Commands
executing 40 common Linux commands and utilities [36]; KMeans
performing K-Means algorithm with 2.4G memory; CNN running

ResNet-50 with 1.2G memory; 4kvideo_play playing 478.4MB 2160p

video with Totem v3.18.1; Redis-server fetching random values with

redis-benchmark; MySQL running random SQL statements with

mysqlslap. Note that different from the evaluation of PPL2 detec-

tion that uses benign SGX applications, we use benign applications

without SGX to assess detection effectiveness of L3Cache-DM. This

is because that L3 cache is shared among all cores on one chip and

our detection design can be applied to any Prime+Probe attacks

regardless of whether they are mounted inside the enclave or not.

We study the effect of the window size𝑚 and the ratio 𝛾𝑐 . For

simplicity, we set the size of the L3 cache monitoring matrix as

10, 000 × 𝑛 (𝑀 = 10, 000), which is large enough to cover one PPL3

attack even if it scans all L3 cache sets. Figure 6 shows the ratio of

unusual windows 𝛾𝑙3 for different SGX applications under different

window settings. All results are averaged over 200 measurements.

Note that 𝛾𝑙3 for the benign application is the maximum value

among all results of benign applications. We can find that all attacks

can be obliviously differentiated from benign applications under

different window sizes𝑚. We set𝑚 as 20 and 𝛾𝑙3𝑚 as 90%.

We explore the true positive and false positive of L3Cache-DM.

We run each program for 45 minutes and produce about 900 𝛾𝑙3
per application, all shown in Fig. 7. With the detection threshold

𝑇𝑙3 of 0.04, we can differentiate benign and malicious applications.

The true positive rate is near 100% and false positive rate is 0. In

addition, we also test 109 benign programs generated by Graphene-

SGX [13]. The results show that the ratio of unusual windows for

these benign applications is consistently low as the 7 benign apps

in Fig. 7.

Table 3: Runtime overhead of SGX-Bouncer for SGX-Vgg16

Runtime overhead L2Cache-MM L3Cache-MM MemoryR-MM MemoryW-MM EnclaveT-MM SGX-Bouncer
Forward propagation ×3.27 ×1.01 ×1.17 ×1 ×1.03 ×3.89
Back propagation ×2.66 ×1.02 ×1.22 ×1 ×1.01 ×3.26

Since our detectionmethod is not limited to discover Prime+Probe

attacks inside the enclave, we compare it with one of the existing

PMC-based detection methods called HexPADS [38], using the

above benign applications and public L3 cache-based attacks (L3-
capture, L3-capturecount and L3-scan) in Mastik suite [2]. We find

that even if we run these attacks only once, SGX-Bouncer can effec-

tively discover these attacks but not HexPADS. The ratios of unusual

windows 𝛾𝑙3 of them are 0.082, 0.092 and 0.052, which all exceed

the threshold 𝑇𝑙3 (i.e., 0.04). Meanwhile, HexPADS misidentifies

KMeans and CNN as attacks. Therefore, L3Cache-DM outperforms

HexPADS. The root cause is that, it can obtain cache access behav-

iors of each cache set, rather than cache misses of the entire L3

cache.

5.1.3 FRF-DM. We evaluate the detection effectiveness of FRF-

DM against Flush+Reload/Flush attacks (dubbed FRF, attack vec-

tor ❸). We implement these attacks targeting an RSA-based cryp-

tographic algorithm using the square-and-multiply algorithm in

GnuPG (v1.4.12). We locate the addresses of the algorithm at run-

time and pass the location to the enclave. The enclave launches

Flush+Reload/Flush attacks by repeatedly flushing memory lines

of the Square function, idle looping, and reloading/flushing them.

We measure how many memory accesses to some specific pages

(denoted as 𝑁𝑎𝑐𝑐) are captured by MemoryR-MM, using two pa-

rameters, i.e., the time interval (CPU cycles) between Flush and

Reload/Flush operations 𝐼𝑓 𝑟 𝑓 and the number of executable pages

of host memory as 𝑁𝑝𝑎𝑔𝑒 . We perform 2500 Flush+Reload and

Flush+Flush attacks, respectively.

The results show only one page is accessed and its access number

captured by MemoryR-MM increases linearly as the attack interval

becomes larger (see Fig. 8). In an extreme case where FRF has

finished before MemoryR-MM first checks the corresponding pages,

we can only detect one memory access. In SGX-Bouncer, we set

the detection threshold𝑇𝑓 𝑟 𝑓 as 1 to tolerate strong FRF attacks that

succeed with a small number of Flush+Reload/Flush operations. In

addition, we also assess the false positive rate with three benign SGX

applications used above, and no host memory access is captured.

5.1.4 MemoryR-DM. We evaluate the detection effectiveness of

MemoryR-DM against memory disclosure attacks (attack vector ❺).

To detect abnormal memory read, we measure how many accessed

executable pages are captured by MemoryR-MM. Here, we build

an enclave that scans the host memory. We set 𝑁𝑝𝑎𝑔𝑒 as 1700 and

enable the enclave to linearly scans 300 executable pages of the

host memory. The experimental result shows that MemoryR-MM

captures all 300 accessed executable pages when the enclave exits.

We set the default threshold 𝛾𝑚𝑒𝑚𝑟 as 10%, which means if 10%

executable pages are accessed by an enclave, it is scanning the host

memory, e.g., for the purpose of finding usable code gadgets.

5.1.5 MemoryW-DM. We evaluate the detection effectiveness of

MemoryW-DM against host control-flow manipulation (attack vec-

tor ❻). We implement an enclave that modifies the stack pointers

Figure 9: Runtime overhead for micro-benchmark suite

and injects a fake stack frame as described in [43]. When running

the enclave, MemoryW-DM can discover the RBP-RIP chain since

the enclave entry is not the same as that after the enclave exit.

5.1.6 EnclaveT-DM. We evaluate the detection effectiveness of

EnclaveT-DM against EEXIT abuse (attack vector ❼). We construct

an SGX application that performs EENTER and EEXIT without re-

lying on implementations of the uRTS. These behaviors are all

captured by the page-fault handler and TF handler. We inspect the

register values that represent the contexts of enclave entry/exit

events, and the entry and exit positions different from the standard

positions of uRTS in Intel SGX SDK are uncovered.

5.2 Efficiency Evaluation
We assess the efficiency of SGX-Bouncer monitoring modules on

benchmark suites. The micro-benchmark and macro-benchmark

suite are SGX-nbench and SGX-Vgg16 respectively.
Micro-benchmark suite. SGX-nbench consists of 10 algorithms

that call ECall/OCalls from 1, 000 to 300, 000 times respectively.

The normalized overhead is shown in Fig. 9. We can see that the

overhead of MemoryR-MM dominates the overall overhead and

L2Cache-MM also leads to slowdown. The reason is that MemoryR-

MM has to clear the A bit before entering the enclave and check

it before exiting the enclave, thus delaying the execution of the

program. L2Cache-MM requires to finish accessing all memory

lines in the probe sets, once the enclave exits via EEXIT and AEX.

Macro-benchmark suite.Different from SGX-nbench, SGX-Vgg16

produces a large memory footprint (1.2G) with sparse ECalls and
OCalls (about one call per 3 seconds). The runtime overhead of

SGX-Bouncer is shown in Table 3. Of all MMs, L2Cache-MM intro-

duces the most overhead, since a large number of AEXs occur and

trigger L2Cache-MM accordingly.

Note that runtime overhead of SGX-Bouncer is positively related

to the number of L2 cache sets, the number of executable pages of

the host memory, and the number of enclave exits and AEXs. In

addition, we discuss in more details how the slowdown of execution

may be used by the malware to evade detection in Sec. 7.

SGX APP

1. Creating
instances with

OpenAPI

SGX Bouncer
image file

Bare-metal Cloud

2. SGX APP Detection 3. Destroying
instances with

OpenAPIMalware
Detected

Figure 10: Real-world deployment on an Iaas cloud.

6 REAL-WORLD DEPLOYMENT
We present the real-world deployment of SGX-Bouncer in a com-

mercial IaaS Cloud and an example configuration rule that can be

used to detect real SGX malware in the cloud.

6.1 Deployment in Real Cloud
We have deployed SGX-Bouncer in one of the largest public IaaS

clouds as a security service (see Figure 10), which is similar to

Google-Bouncer that detects malicious Android apps on the official

Android app store (i.e.,Google Play). Particularly, instead of running
it in VMs, we run it on a bare-metal cloud, since the patches to

support SGX virtualization for both KVM and Xen are not mature

for production use [7]. Note the cloud provides extensible multi-

tenant bare-metal cloud services and hosts up to 16 bare-metal

instances in a single physical server, which allows the cloud to

serve tens of thousands of users each day.

To flexibly start up an SGX-Bouncer, we craft an SGX-Bouncer

image by installing the relevant SGX run-times and SGX-Bouncer

program. Meanwhile, we also install automatic artifact genera-

tion systems, e.g., UBER [25], in the platform, which makes the

state and configuration of the platform realistic in the view of SGX

programs and prevents enclave malware from evading detection.

When an enclave detection request arrives, the service launches

an SGX-Bouncer instance created from the SGX-Bouncer image,

which takes as input an SGX program and a detection rule file

provided by the user. Similar to Google-Bouncer, SGX-Bouncer

examines a submitted SGX program for five minutes (the default

value) and then outputs the detection result.

6.2 Case Study
We give an example of using a rule file to detect a real SGX malware

called SGX-ROP [43], which constructs a control flow hijacking

attack. The rule file consists of three SGX-Rules, as shown in Fig. 11.

1: Alert M-Read: 1;
2: Terminate M-Write: 1;
3: Terminate E-EntryEx: 1;

Figure 11: A sample file of detection rules.

A malicious enclave launches SGX-ROP [43] to hijack the host’s

control flow by finding code gadgets from the host memory and

exiting enclave to them. Since the application available online
3

cannot run in our testbed (due to disabled TSX), we reimplement it

without using TSX. Moreover, to help the enclave code to find the

3
https://github.com/IAIK/sgxrop

required gadgets without crashing the application, the code outside

the enclave passes the application memory layout to enclave. Note

such changes do not contribute to the detection of the malware.

1: mov aep, %rcx

2: mov abnormal_exit_point, %rbx
3: mov $4, %rax

4: enclu

Figure 12:Manipulating the target execution address outside
the enclave via RBX when invoking EEXIT.

To divert the execution to the crafted ROP chain, we develop two

types of implementations: 1) SGX-ROP1 injects a fake stack frame

and modifies the RBP/RIP values in the stack as described in [43];

2) SGX-ROP2 directly executes the code gadget by specifying the

exit address (i.e., RBX) via EEXIT, as shown in Fig. 12.

Detection results. From the detection logs generated by SGX-

Bouncer, both SGX-ROP1 and SGX-ROP2 are terminated. SGX-Bouncer

terminated SGX-ROP1 after the enclave exit, as the pair of RBP-RIP
chains does not match. SGX-Bouncer terminated SGX-ROP2, be-
cause the enclave exit address is not the standard exit location as

implemented by the uRTS of Intel SGX SDK.

7 MALWARE EVASION TECHNIQUES AND
COUNTERMEASURES

Enclave malware that is aware of the SGX-Bouncer may alter its

runtime behavior to evade detection. There are two methods that

may be leveraged by enclave malware to determine the presence of

SGX-Bouncer: First, the enclave malware can heuristically analyze

whether the state and configuration of a platform are realistic, like

observing an abnormally small number of process [3] or inspect-

ing the platform’s wear-and-tear characteristics [35]. Second, the

enclave malware may exploit the timing difference between run-

ning on a normal platform and on our detection platform, since

SGX-Bouncer leads to performance slowdown for SGX applica-

tions, for example, via cache contention, frequent interruption, PTE

manipulation, and code instrumentation.

Countermeasures to traditional malware evasion techniques

have been studied in the literature [35], which can be integrated

into SGX-Bouncer to address the first evasion method. To address

the second, SGX-Bouncer can leverage the lack of trusted clocks

inside enclaves to obscure their true execution time.

Specifically, existing methods of getting a trusted clock inside

enclave so far are either unreliable or coarse-grained. First, RDTSC/
RDTSCP instructions are not allowed in the enclave mode in SGXv1.

Even if they are supported in SGXv2, the return values can be mod-

ified by the untrusted software. Second, software timer created by

a counting thread [44] can be manipulated by changing the CPU

frequency or cleansing cache [27], which is difficult to achieve high

accuracy. Third, the Converged Security and Management Engine

(CSME) of Intel SGX SDK only provides trusted time service in the

order of seconds [22], which is too coarse-grained. Moreover, such

a service is unreliable, as requests to the service and responses from

it can be arbitrarily delayed and dropped by the untrusted soft-

ware. Similarly, remote timing sources (e.g., wall clock of another

server) are not reliable as the network communication is subject

to manipulation, too. We anticipate the method with which the

enclave malware may detect the presence of SGX-Bouncer is by

itself a research topic that we hope our study can inspire.

8 RELATEDWORK
8.1 Enclave Malware
SGX has been exploited by attackers to conceal malware inside

enclaves [34, 41, 43, 44, 51]. For example, enclave malware have

been developed to break the restriction of enclave and hijack control

flows of its host application [43], steal sensitive data from a co-

located process [41, 44, 51], or restrict access to vital information

(i.e., SGX-based ransomware) [34].

In particular, SGX allows attackers to generate stealthy malware

that can evade state-of-the-art anti-virus software. For example,

enclave malware can defeat static code analysis [29, 31], since en-

clave code may stay encrypted before being loaded into the enclave.

Moreover, memory isolation and the suppressed debugging feature

inside the enclave make traditional memory forensics and debug-

ger tools [23] invalid. Although enclave malware infecting the host

system via issuing syscalls can be detected by existing dynamic

syscall-based detection tools like [21], in this paper we still identify

seven serious attack vectors of enclave malware that can evade

detection. Thus, it is critically important to detect such enclave mal-

ware since they more stealthy and incur more significant damages,

particularly when the enclave cannot be controlled by Intel and the

platform owners.

8.2 SGX Defense and Analysis Tools
Prio arts inspect properties of SGX applications developed with

Intel SGX SDK. However, all of these tools only focus on part of

properties and cannot systematically detect malicious enclaves. For

example, SGX-Perf [53] analyzes the performance of SGX programs

by capturing ECall/OCall, yet does not define malicious enclave

interface behaviors. SGX-Step [49] enables single-stepping enclaves

by raising interrupt to CPU with Advanced Programmable Inter-

rupt Controller (APIC) timer, yet lacks deep analysis for malware

detection. SGX-Fun [16] only shows how to extract enclave meta-

data from SGX binaries. EnGarde [37] introduces a static analysis

framework in the tRTS, to examine both static enclave code and

the dynamically loaded code. However, it only checks some sim-

ple violations like whether the program links old-version libraries

and does not handle sophisticated attacks like side channel attacks.

SGX-Jail [54] intends to defeat SGX-based third-party libraries that

may subvert control flow of host applications. It isolates host and

enclave memory by executing the suspicious enclave as a separate

sandbox process. The sandbox process is confined by Seccomp and

communicates with host application via Inter-Process Communica-

tion (IPC). However, it requires developers to make big changes to

eliminate pointers marked by user_check which is very common in

some SGX programs and cannot defeat side channel attacks.

8.3 Defenses against Side channel Attacks
Traditional cache side channel detection can be classified into two

categories, i.e., code analysis and performance monitoring counters

based detection. The first type of methods analyze static code with

reverse engineering tools, e.g., investigating the number of specific

instructions such as CLFLUSH and RDTSC [29]. Also, dynamic

binary instrumentation can be leveraged to detect attacks [40].

However, these methods cannot be applied to detect encrypted

enclave code or dynamically loaded code. The second type of meth-

ods detect attacks by collecting performance events and adopting

signature based or anomaly based [56] methods. Unfortunately, pro-

duction enclaves set the Anti Side Channel Interference (ASCI) bit to

suppress the performance monitoring activities [8], and thus PMCs

cannot monitor cache misses/hits events of malicious enclaves.

In this paper, SGX-Bouncer detects malicious cache behaviors by

capturing side channel information directly which achieves high

detection accuracy.

9 CONCLUSION
In this paper, we perform the first systematic study on malicious

enclaves and summarize seven concrete attack vectors by analyzing

all interaction interfaces between enclaves and the outside software.

We develop SGX-Bouncer, a detection framework that inspects side

channel information and utilizes SGX-specific features to detect ma-

licious enclaves exploiting the attack vectors above. We prototype

SGX-Bouncer and demonstrate its effectiveness.

ACKNOWLEDGMENTS
The work was supported in part by the National Key R&D Pro-

gram of China under Grant 2018YFB1800304, NSFC under Grant

61572278, NSF under Grant CNS-1815650, CNS-1750809 and CNS-

1718084, and ARL under Grant W56KGU-20-C-0008. Qi Li is the

corresponding author.

REFERENCES
[1] 2012. Android and Security. https://googlemobile.blogspot.com/2012/02/android-

and-security.html.

[2] 2016. Mastik: A micro-architectural side-channel toolkit. https://cs.adelaide.edu.

au/~yval/Mastik/.

[3] 2016. Ursnif Banking Trojan Campaign Ups the Ante with New Sandbox Evasion

Techniques. https://www.proofpoint.com/us/threat-insight/post/ursnif-bankin

g-trojan-campaign-sandbox-evasion-techniques.

[4] 2017. Intel and NeuLion Bring Secure, 4K UHD Sports Streaming to Computers.

https://newsroom.intel.com/news/intel-neulion-bring-secure-4k-uhd-sports-

streaming-computers/.

[5] 2017. Ledger Bitcoin Wallet Partners With Tech Giant Intel. https://news.bitco

in.com/ledger-wallet-partners-tech-giant-intel/.

[6] 2017. Password manager Dashlane now integrates with Intel SGX for hardware

security. https://www.digitaltrends.com/computing/dashlane-intel-sgx/.

[7] 2017. SGX Virtualization. https://01.org/zh/node/4486?langredirect=1.

[8] 2018. Intel Software Guard Extensions Programming Reference. https://softwa

re.intel.com/sites/default/files/managed/48/88/329298-002.pdf.

[9] 2018. Q3 2018 Intel Speculative Execution Side Channel Update. https://www.in

tel.com/content/www/us/en/security-center/advisory/intel-sa-00161.html.

[10] 2019. Azure confidential computing. https://azure.microsoft.com/en-us/solutio

ns/confidential-compute/.

[11] 2019. ECS Bare Metal Instance. https://www.alibabacloud.com/product/ebm.

[12] 2019. TSX broken again. https://erik.science/intel/tsx/2019/05/26/new-tsx-

bugs.html.

[13] 2020. Graphene-SGX. https://github.com/oscarlab/graphene/.

[14] Onur Aciiçmez, Billy Bob Brumley, and Philipp Grabher. 2010. New results on

instruction cache attacks. In Proc. of CHES. 110–124.
[15] Fritz Alder, N Asokan, Arseny Kurnikov, Andrew Paverd, and Michael Steiner.

2019. S-faas: Trustworthy and accountable function-as-a-service using intel SGX.

In Proc. of ACM CCS Workshop. 185–199.
[16] J Aumasson and Luis Merino. 2016. SGX Secure Enclaves in Practice: Security

and Crypto Review. Black Hat (2016).
[17] Andrea Biondo, Mauro Conti, Lucas Davi, Tommaso Frassetto, and Ahmad-Reza

Sadeghi. 2018. The Guard’s Dilemma: Efficient Code-Reuse Attacks Against Intel

SGX. In Proc. of USENIX Security. 1213–1227.
[18] Marcus Brandenburger and Christian Cachin. 2018. Challenges for Combining

Smart Contracts with Trusted Computing. In Proc. ofWorkshop on System Software

https://googlemobile.blogspot.com/2012/02/android-and-security.html
https://googlemobile.blogspot.com/2012/02/android-and-security.html
https://cs.adelaide.edu.au/~yval/Mastik/
https://cs.adelaide.edu.au/~yval/Mastik/
https://www.proofpoint.com/us/threat-insight/post/ursnif-banking-trojan-campaign-sandbox-evasion-techniques
https://www.proofpoint.com/us/threat-insight/post/ursnif-banking-trojan-campaign-sandbox-evasion-techniques
https://newsroom.intel.com/news/intel-neulion-bring-secure-4k-uhd-sports-streaming-computers/
https://newsroom.intel.com/news/intel-neulion-bring-secure-4k-uhd-sports-streaming-computers/
https://news.bitcoin.com/ledger-wallet-partners-tech-giant-intel/
https://news.bitcoin.com/ledger-wallet-partners-tech-giant-intel/
https://www.digitaltrends.com/computing/dashlane-intel-sgx/
https://01.org/zh/node/4486?langredirect=1
https://software.intel.com/sites/default/files/managed/48/88/329298-002.pdf
https://software.intel.com/sites/default/files/managed/48/88/329298-002.pdf
https://www.intel.com/content/www/us/en/security-center/advisory/intel-sa-00161.html
https://www.intel.com/content/www/us/en/security-center/advisory/intel-sa-00161.html
https://azure.microsoft.com/en-us/solutions/confidential-compute/
https://azure.microsoft.com/en-us/solutions/confidential-compute/
https://www.alibabacloud.com/product/ebm
https://erik.science/intel/tsx/2019/05/26/new-tsx-bugs.html
https://erik.science/intel/tsx/2019/05/26/new-tsx-bugs.html
https://github.com/oscarlab/graphene/

for Trusted Execution. ACM.

[19] Ferdinand Brasser, Urs Müller, Alexandra Dmitrienko, Kari Kostiainen, Srdjan

Capkun, and Ahmad-Reza Sadeghi. 2017. Software grand exposure:SGX cache

attacks are practical. In USENIX Workshop on Offensive Technologies.
[20] Stefan Brenner, Tobias Hundt, Giovanni Mazzeo, and Rüdiger Kapitza. 2017.

Secure cloud micro services using Intel SGX. In Proc. of Springer DAIS. 177–191.
[21] Davide Canali, Andrea Lanzi, Davide Balzarotti, Christopher Kruegel, Mihai

Christodorescu, and Engin Kirda. 2012. A Quantitative Study of Accuracy in

System Call-based Malware Detection. In Proc. of ACM ISSTA. 122–132.
[22] Shanwei Cen and Bo Zhang. 2017. Trusted Time and Monotonic Counters with

Intel® Software Guard Extensions Platform Services. https://software.intel.com

/sites/default/files/managed/1b/a2/Intel-SGX-Platform-Services.pdf.

[23] Emanuele Cozzi, Mariano Graziano, Yanick Fratantonio, and Davide Balzarotti.

2018. Understanding linux malware. In Proc. of IEEE S&P. 161–175.
[24] Craig Disselkoen, David Kohlbrenner, Leo Porter, and Dean Tullsen. 2017.

Prime+Abort: A Timer-Free High-Precision L3 Cache Attack using Intel TSX. In

Proc. of USENIX Security. 51–67.
[25] Pengbin Feng, Jianhua Sun, Songsong Liu, and Kun Sun. 2019. UBER: Combating

Sandbox Evasion via User Behavior Emulators. In Proc. of Springer ICICS.
[26] Daniel Gruss, Clémentine Maurice, Klaus Wagner, and Stefan Mangard. 2016.

Flush+Flush: a fast and stealthy cache attack. In Proc. of Springer DIMVA. 279–299.
[27] Wei Huang and Yueqiang Cheng. 2019. Aion Attacks: Exposing SGX Software

Timers. Blue Hat (2019).
[28] Ralf Hund, Carsten Willems, and Thorsten Holz. 2013. Practical timing side

channel attacks against kernel space ASLR. In Proc. of IEEE S&P.
[29] Gorka Irazoqui, Thomas Eisenbarth, and Berk Sunar. 2016. MASCAT: Stopping

Microarchitectural Attacks Before Execution. IACR Cryptology ePrint Archive
2016 (2016), 1196.

[30] Yeongjin Jang, Jaehyuk Lee, Sangho Lee, and Taesoo Kim. 2017. SGX-Bomb:

Locking down the processor via Rowhammer attack. In Proc. of ACM SysTEX. 5.
[31] Clemens Kolbitsch, Paolo Milani Comparetti, Christopher Kruegel, Engin Kirda,

Xiao-yong Zhou, and XiaoFeng Wang. 2009. Effective and Efficient Malware

Detection at the End Host.. In Proc. of USENIX Security, Vol. 4. 351–366.
[32] Sangho Lee, Ming-Wei Shih, Prasun Gera, Taesoo Kim, Hyesoon Kim, and Marcus

Peinado. 2017. Inferring fine-grained control flow inside SGX enclaves with

branch shadowing. In Proc. of USENIX Security. 16–18.
[33] Fangfei Liu, Yuval Yarom, QianGe, Gernot Heiser, and Ruby B Lee. 2015. Last-level

cache side-channel attacks are practical. In Proc. of IEEE S&P. IEEE, 605–622.
[34] M Marschalek. 2018. The Wolf In SGX Clothing. Blue Hat (2018).
[35] Najmeh Miramirkhani, Mahathi Priya Appini, Nick Nikiforakis, and Michalis

Polychronakis. 2017. Spotless sandboxes: Evading malware analysis systems

using wear-and-tear artifacts. In Proc. of IEEE S&P.
[36] R. Natarajan. 2010. 50 most frequently used unix/linux commands (with exam-

ples). https://www.thegeekstuff.com/2010/11/50-linux-commands/?utm_%2520s

ource=feedburner.

[37] Hai Nguyen and Vinod Ganapathy. 2017. EnGarde: Mutually-Trusted Inspection

of SGX Enclaves. In Proc. of IEEE ICDCS.
[38] Mathias Payer. 2016. HexPADS: a platform to detect “stealth” attacks. In Proc. of

Springer ESSoS. 138–154.

[39] Peter Pessl, Daniel Gruss, Clémentine Maurice, Michael Schwarz, and Stefan

Mangard. 2016. DRAMA: Exploiting DRAM Addressing for Cross-CPU Attacks.

In Proc. of USENIX Security. 565–581.
[40] Majid Sabbagh, Yunsi Fei, Thomas Wahl, and A Adam Ding. 2018. SCADET:

A Side-Channel Attack Detection Tool for Tracking Prime-Probe. In Proc. of
IEEE/ACM ICCAD. 1–8.

[41] Michael Schwarz and Moritz Lipp. 2018. When Good Turns Evil: Using Intel SGX

to Stealthily Steal Bitcoins. Black Hat Asia (2018).
[42] Michael Schwarz, Moritz Lipp, Daniel Moghimi, Jo Van Bulck, Julian Stecklina,

Thomas Prescher, andDaniel Gruss. 2019. ZombieLoad: Cross-privilege-boundary

data sampling. In Proc. of ACM CCS.
[43] Michael Schwarz, Samuel Weiser, and Daniel Gruss. 2019. Practical enclave

malware with Intel SGX. In Proc. of Springer DIMVA. 177–196.
[44] Michael Schwarz, Samuel Weiser, Daniel Gruss, Clémentine Maurice, and Stefan

Mangard. 2017. Malware guard extension: Using SGX to conceal cache attacks.

In Proc. of Springer DIMVA. 3–24.
[45] Asaf Shabtai, Uri Kanonov, Yuval Elovici, Chanan Glezer, and Yael Weiss. 2012.

"Andromaly": a behavioral malware detection framework for android devices.

Journal of Intelligent Information Systems 38, 1 (2012), 161–190.
[46] Eran Tromer, Dag Arne Osvik, and Adi Shamir. 2010. Efficient cache attacks on

AES, and countermeasures. Journal of Cryptology 23, 1 (2010), 37–71.

[47] Chia-Che Tsai, Donald E Porter, and Mona Vij. 2017. Graphene-SGX: A Practical

Library OS for Unmodified Applications on SGX. In Proc. of USENIX ATC.
[48] Jo Van Bulck, Marina Minkin, Ofir Weisse, Daniel Genkin, Baris Kasikci, Frank

Piessens, Mark Silberstein, Thomas F Wenisch, Yuval Yarom, and Raoul Strackx.

2018. Foreshadow: Extracting the keys to the Intel SGX kingdom with transient

out-of-order execution. In Proc. of USENIX Security. 991–1008.
[49] Jo Van Bulck, Frank Piessens, and Raoul Strackx. 2017. SGX-Step: A practical

attack framework for precise enclave execution control. In Proc. of ACM SysTEX.
[50] Jo Van Bulck, Nico Weichbrodt, Rüdiger Kapitza, Frank Piessens, and Raoul

Strackx. 2017. Telling your secrets without page faults: Stealthy page table-based

attacks on enclaved execution. In Proc. of USENIX Security. 1041–1056.
[51] Wenhao Wang, Guoxing Chen, Xiaorui Pan, Yinqian Zhang, XiaoFeng Wang,

Vincent Bindschaedler, Haixu Tang, and Carl A Gunter. 2017. Leaky cauldron on

the dark land: Understanding memory side-channel hazards in SGX. In Proc. of
ACM CCS. 2421–2434.

[52] Filip Wecherowski. 2009. A real smm rootkit: Reversing and hooking bios smi

handlers. Phrack Magazine 13, 66 (2009).
[53] Nico Weichbrodt, Pierre-Louis Aublin, and Rüdiger Kapitza. 2018. sgx-perf: A

Performance Analysis Tool for Intel SGX Enclaves. In Proc. of ACMMIDDLEWARE.
201–213.

[54] Samuel Weiser, Luca Mayr, Michael Schwarz, and Daniel Gruss. 2019. SGXJail:

Defeating Enclave Malware via Confinement. In Proc. of RAID. 353–366.
[55] Yuval Yarom and Katrina Falkner. 2014. FLUSH+RELOAD: a high resolution, low

noise, L3 cache side-channel attack. In Proc. of USENIX Security. 719–732.
[56] Tianwei Zhang, Yinqian Zhang, and Ruby B Lee. 2016. Cloudradar: A real-time

side-channel attack detection system in clouds. In Proc. of RAID. 118–140.
[57] Tianwei Zhang, Yinqian Zhang, and Ruby B Lee. 2017. Dos attacks on your

memory in cloud. In Proc. of ACM AsiaCCS. 253–265.

https://software.intel.com/sites/default/files/managed/1b/a2/Intel-SGX-Platform-Services.pdf
https://software.intel.com/sites/default/files/managed/1b/a2/Intel-SGX-Platform-Services.pdf
https://www.thegeekstuff.com/2010/11/50-linux-commands/?utm_%2520source=feedburner
https://www.thegeekstuff.com/2010/11/50-linux-commands/?utm_%2520source=feedburner

	Abstract
	1 Introduction
	2 Background
	3 Threat Analysis
	3.1 Attacks via Cache-Memory Hierarchy
	3.2 Attacks via Host Virtual Memory
	3.3 Attacks via Enclave-mode Transition

	4 SGX-Bouncer: Detecting Enclave Malware
	4.1 Monitoring Modules
	4.2 Detection Modules

	5 Evaluation
	5.1 Detection Effectiveness
	5.2 Efficiency Evaluation

	6 Real-world Deployment
	6.1 Deployment in Real Cloud
	6.2 Case Study

	7 Malware Evasion Techniques and Countermeasures
	8 Related Work
	8.1 Enclave Malware
	8.2 SGX Defense and Analysis Tools
	8.3 Defenses against Side channel Attacks

	9 Conclusion
	References

