
Cape: Compiler-Aided ProgramTransformation
for HTM-Based Cache Side-Channel Defense

Rui Zhang
Ohio State University

USA

Michael D. Bond
Ohio State University

USA

Yinqian Zhang
Southern University of
Science and Technology

China

Abstract
Cache side-channel attacks pose real threats to computer sys-
tem security. Prior work called Cloak leverages commodity
hardware transactional memory (HTM) to protect sensitive
data and code from cache side-channel attacks. However,
Cloak requires tedious and error-prone manual modifica-
tions to vulnerable software by programmers. This paper
presents Cape, a compiler analysis and transformation that
soundly and automatically protects programs from cache
side-channel attacks using Cloak’s defense. An evaluation
shows that Cape provides protection that is as strong as
Cloak’s, while performing competitively with Cloak.

CCS Concepts: • Security and privacy → Systems secu-
rity; • Software and its engineering→ Compilers.

Keywords: cache side-channel defense, compiler analysis
and transformation, hardware transactional memory
ACMReference Format:
RuiZhang,MichaelD.Bond,andYinqianZhang.2022.Cape:Compiler-
AidedProgramTransformation forHTM-BasedCache Side-Channel
Defense. In Proceedings of the 31st ACM SIGPLAN International Con-
ference on Compiler Construction (CC ’22), April 02–03, 2022, Seoul,
South Korea.ACM, New York, NY, USA, 13 pages. https://doi.org/10.
1145/3497776.3517778

1 Introduction
In today’s computing infrastructures, physical computing
resources such as memory and processor caches are shared
among multiple programs that run in parallel on the same
physical machine. This situation enables side-channel attacks
in which malicious users exploit implementation-specific
hardware features to spy on other users’ executions and
infer sensitive information. One of these exploits is cache
side-channel attacks [6, 23, 30, 35–37, 50], which exploit cache
behavior to acquire sensitive information.

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies
are not made or distributed for profit or commercial advantage and that
copies bear this notice and the full citation on the first page. Copyrights
for components of this work owned by others than the author(s) must
be honored. Abstracting with credit is permitted. To copy otherwise, or
republish, to post on servers or to redistribute to lists, requires prior specific
permission and/or a fee. Request permissions from permissions@acm.org.
CC ’22, April 02–03, 2022, Seoul, South Korea
© 2022 Copyright held by the owner/author(s). Publication rights licensed
to ACM.
ACM ISBN 978-1-4503-9183-2/22/04. . . $15.00
https://doi.org/10.1145/3497776.3517778

Cache side-channel attacks may take place when the at-
tacker program shares the same processor cache, or more
specifically, the same cache sets (in Prime+Probe attacks [36])
or the same cache lines (in Flush+Reload attacks [50]), with
the victim program. By repeatedly manipulating the states
of the shared cache sets or cache lines, the attacker program
forces the victim to leave measurable execution traces in the
cache. As a result, the attacker can observe secret-dependent
memory access patterns of the victim, which leads to com-
plete or partial leakage of the victim’s secrets.
Prior work performs program analysis on application

source code or binaries, to identify and mitigate side-channel
vulnerabilities [17, 18, 38]. Recent work transforms programs
to execute the same instructions for both outcomes of every
secret-dependent condition [12, 41, 47]. Although tools like
Constantine [12] can protect programs containing indirect
memory accesses, provided that enough static information
is available to the compiler, that is not always the case.

Cloak [22] is a software-only solution that leverages com-
modity hardware transactional memory (HTM) [24, 26], such
as Intel’s TSX [51], to mitigate cache side-channel attacks.
Cloak exploits the fact that transaction read andwrite sets are
implemented in caches; it executes secret-sensitive code in
transactions and deterministically preloads memory accesses
at transaction start that might reveal secrets. An attacker
program cannot observe secret-dependent memory accesses
later in the transaction because evictions of accessed lines
will abort the transaction.

HTM thus enables a generic and effective means of pro-
tecting software against cache side-channel attacks. It is
generic, because tools like Cloak can be applied to any pro-
gram, and it is effective as it invalidates the fundamental
assumption of known cache side-channel attacks. While
Cloak’s HTM-based defense is promising, it requires hu-
man effort to modify programs to protect sensitive data and
code in transactions, which is tedious and error prone for
complex programs. Therefore, to practically apply Cloak and
other HTM-based side-channel protection [15, 40], compiler-
assisted tools must be developed to automate the modifica-
tion of software programs so that sensitive data and code
are protected by transactions.
To address this problem, this paper proposes novel com-

piler support for automated cache side-channel protection,
called Cape. (Cape is an acronym for Compiler analysis for
protecting executions.) Cape consists of program analysis
and instrumentation techniques that identify sensitive data
and code, delimit transactions, and insert code to preload

181

https://doi.org/10.1145/3497776.3517778
https://doi.org/10.1145/3497776.3517778
https://doi.org/10.1145/3497776.3517778

CC ’22, April 02–03, 2022, Seoul, South Korea Rui Zhang, Michael D. Bond, and Yinqian Zhang

sensitive data and code at the beginning of a transaction.
We evaluate Cape and Cloak on programs that have known
side-channel vulnerabilities. A simulation-based evaluation
shows that Cape provides protection that is as strong as
Cloak’s. An evaluation on real hardware shows that Cape
incurs slowdowns that are usually comparable to Cloak’s.
Both Cape and Cloak add transactions that are too large
to succeed on current hardware, motivating future HTM
implementations that provide larger transaction capacity.
Cape’s efficient and effective automation of Cloak’s defense
represents an improvement in the state of the art.

2 Background and RelatedWork
This section overviews existing cache side-channel attacks
and defenses, as well as transactional memory.

2.1 Cache Side-Channel Attacks
Cache side-channel attacks exploit the timing channels cre-
ated in processor caches to steal sensitive information. A
category of cache side-channel attacks of particular interest
is so-called access-driven attacks, where the attacker program
and the victim program run on the same physical machine
and hence share the same processor. This type of cache side
channel is a critical attack vector between programs sharing
desktop computers, mobile phones, or cloud servers.
In order to leak information from a shared cache, the at-

tacker program repeatedly prepares the shared cache into
a known state and then waits for the victim program to ex-
ecute a piece of code such that its execution will alter the
states of the shared cache. The attacker program can then
measure the altered states of the cache using timing chan-
nels, and thereby infer the memory access patterns of the
victim program. There are two categories of techniques for
the attacker program to manipulate the cache states:
• Flush+Reload [8, 10, 23, 49, 50, 53]: When physical memory
is shared between the two programs (e.g., pages of a shared
library), the attacker program can prepare the cache states
by using the unprivileged clflush instruction to evict a
specific line out of the shared cache, and later measure the
access latency of the same line to determine if it has been
fetched back to the cache by the victim program. Shorter
latency suggests the line has been fetched into the cache.

• Prime+Probe [5, 28, 31, 35–37, 42, 52]: When the attacker
and victim programs do not share physical memory, they
still share the same cache sets. Therefore, to prepare the
cache states, the attacker program fills a specific cache set
(or multiple cache sets) by reading applicable cache lines.
To measure the altered cache states, the attacker program
reloads the same previously read cache lines and measures
the access latency. Longer access latency implies that one
or more lines of the cache set were evicted by the victim.

2.2 Cache Side-Channel Defenses
Attempts to defeat cache side-channel attacks have been con-
sidered at the hardware, system, and software levels. As Cape
is a compiler-based approach that transforms code, most

relevant to our work are software-level defenses. Raccoon
partially closes cache side channels by introducing decoy
execution paths and dummy data fetches [38]. Crane et al.
propose to defeat cache side-channel attacks by diversifying
program memory layout at load time [18].

Early approaches transform programs to eliminate secret-
dependent control and data flow [17, 33]. More recently, SC-
Eliminator, Lif, and Constantine automatically transform
programs to eliminate timing channels, by transforming
code that executes conditionally on a secret to execute the
same instructions for both sides of the condition [12, 41, 47].
The transformation that these approaches perform is called
linearization, which ensures that every program execution
accesses a secret-independent sequence of addresses. (The
program analyses that enable linearization are related to our
secret dependence analysis, but our transformations that
add transactions and preloading are novel to the best of our
knowledge.) However, linearization cannot handle two kinds
of secret dependencies: (1) indirect accesses and array ac-
cesses in which the accessed address depends on a secret
and (2) loops in which the termination condition depends on
a secret. In contrast, our approach can handle these cases;
Section 7 compares our approach empirically with Lif.

2.3 Cloak andHardware Transactional Memory
Cloak leverages hardware transactional memory (HTM) to
hide secret-dependent memory accesses from attackers [22].

Hardware Transactional Memory. HTM enables atomic
execution of a sequence of memory reads and writes on
shared data [24, 26]. Intel Transactional Synchronization
Extensions (TSX) is an implementation of HTM on Intel
processors [51]. TSX implements speculation-based atomic
execution by maintaining a read set and a write set for each
transaction. The read set is implemented by adding one bit
to each entry of the LLC (approximated with a Bloom fil-
ter [11]), so that a memory read loads the corresponding
cache line in the read set. The write set is implemented in a
core’s private data cache by setting a write bit for cache lines
written by an executing transaction [15]. When cache lines
in the read set or the write set are evicted, the transaction
aborts: Memory stores in the write set are discarded without
committing tomemory, and all read andwrite bits are cleared.
As such, execution inside a transaction can be rolled back
without making any architecturally observable changes.

Although TSX was not designed as a security defense,
the special software–hardware contract enabled by TSX has
been exploited in several security research projects. Most
relevant to ours is Cloak, which utilizes TSX to prevent cache
side-channel attacks [22] (Section 2.2). Analogously, T-SGX
uses TSX to prevent controlled-channel attacks on SGX [40].
TSX provides several instructions for managing transac-

tions. XBEGIN starts a transaction, and XEND commits a
transaction. If a transaction aborts for any reason, the hard-
ware rolls back all effects of the transaction, and control
returns to a program-defined abort handler specified as a pa-
rameter to XBEGIN. An abort handler can choose to retry the

182

Cape: Compiler-Aided Program Transformation for HTM-Based Cache Side-Channel Defense CC ’22, April 02–03, 2022, Seoul, South Korea

transaction or to execute some other fallback. TSX provides
XTEST to check whether the current thread is executing a
transaction, and XABORT to abort a transaction explicitly.

How Cloak’s HTM-Based Defense Works. Cloak’s de-
fense executes secret-dependent memory accesses inside
of transactions. Just after a transaction starts, inserted code
preloads all secret-dependent data and instruction addresses
that might be accessed in the transaction. Subsequent secret-
dependent accesses are effectively invisible to the attacker.
If the transaction aborts due to eviction of an accessed line—
caused by an active attack or a capacity overflow—the core
rolls back the transaction immediately by invalidating dirty
lines written by the transaction, leaving the cache in a state
independent of secret values. If the transaction succeeds, the
cache (which retains all data accessed in the transaction) is
likewise in a state that is independent of secret values.
Cloak requires programmers to manually identify code

regions to be encapsulated in transactions and to insert de-
terministic preloading operations at transaction start.

3 Overview
The goal of this research is to provide a compiler-based ap-
proach to transform a program so that its memory access
trace is insensitive to secret values, by using HTM to enforce
secret-oblivious memory access traces.

ThreatModel. Our threat model follows that of Cloak [22].
Specifically, we consider an adversary that is able to run an
attacker program on the same physical machine as the victim
program. This could happen in the case of multi-user work-
stations or cloud data centers, where programs or virtual
machines belonging to different users can run side-by-side.
Attacks against programs running inside of a trusted ex-
ecution environment (TEE), such as Intel Software Guard
Extensions (SGX), are also under consideration, though in
such cases the adversary controls the entire operating system
rather than an individual program.

The commonality of these considered scenarios is that the
victim programs targeted by cache side-channel attacks are
immune to direct memory inspection and modification. To
breach the confidentiality of the victim program, the attacker
program can only perform Prime+Probe or Flush+Reload
cache side-channel attacks (or their variants) to learn the
memory access patterns of the victim’s execution and then
infer secrets indirectly. As such, we only consider access-
driven cache attacks, which are the primary concern in prior
work [17–19, 33, 38, 43, 46, 48].

Requirements of Effective Defenses. As in Cloak [22],
the transformed program must satisfy the following require-
ments. The memory access trace (i.e., the list of accessed
cache line addresses) must be secret oblivious, i.e., not de-
pendent on secret values. Importantly, in a memory access
trace that uses hardware transactions, repeated accesses to
a cache line in a transaction are effectively invisible to an
attacker program. Thus, if a transaction preloads all cache

⟨seq⟩ ::= ⟨stmt⟩ ⟨seq⟩ | ⟨stmt⟩
⟨stmt⟩ ::= var := ⟨expr⟩;

| * ⟨expr⟩ := ⟨expr⟩;
| if (⟨expr⟩) { ⟨seq⟩ } else { ⟨seq⟩ }
| while (⟨expr⟩) { ⟨seq⟩ }
| break;

⟨expr⟩ ::= const

| var

| getSecret()

| malloc(⟨expr⟩)
| * ⟨expr⟩
| ⟨expr⟩ ⊕ ⟨expr⟩

Figure 1. Context-free grammar for a simple language that
we use to define secret dependence analysis.

lines that it might access irrespective of secret values, the
memory access trace will be secret oblivious. As a result, a
defense should add transactions and preloading such that (1)
every secret-dependent memory access is in a transaction,
and (2) a transaction must not be secret control dependent.

While Cape is an automatic approach, a programmer must
identify secret values (e.g., cryptographic keys) for Cape.

4 Cape’s Secret Dependence Analysis
This section introduces Cape’s secret dependence analysis,
which identifies memory accesses and other instructions that
are dependent on secret values and thus need to be protected.
Definitions of control-flow graph, dominator, and depen-

dence graph are from the literature [7, 20].

4.1 A Simple Language
To define secret dependence analysis clearly, we define a sim-
ple language with memory accesses and control statements.
Figure 1 shows the grammar for the language.
A program is a sequence of statements: assignments to

a variable, memory accesses, and control flow. Statements
operate on expressions; an expression can be a constant, a
local variable, a secret input (represented by getSecret()), an
allocation that returns an address, a load from a memory
address, or an arbitrary pure function (e.g., arithmetic or
bitwise operation) on two subexpressions.
A single word type is used for all values including ad-

dresses. The value of every variable and memory location
is undefined until it is written to.

4.2 The Control-FlowGraph
A control-flow graph (CFG) is a directed graph in which each
node represents an instruction. An instruction is any of the
production alternatives for ⟨stmt⟩ in Section 4.1—except that
if statements and while loops are split into multiple instruc-
tions: one for the condition and one for each statement in
its body. All instructions of a legal program are bijectively
mapped to nodes of the program’s CFG, so the rest of the
paper uses the term “instruction” to refer to a CFG node.

183

CC ’22, April 02–03, 2022, Seoul, South Korea Rui Zhang, Michael D. Bond, and Yinqian Zhang

Each edge in a CFG represents possible flow of control
from one instruction to another. In addition, a condition or
loop header instruction has an outgoing edge to the instruc-
tion immediately following the last instruction of its body;
the last instruction in a loop has only a single outgoing edge
to the loop header; and a break has an outgoing edge to the
instruction immediately following the last instruction of the
innermost loop body that contains the break.
A CFG has two special nodes, ENTRY and EXIT, which

are the entry and exit points of the CFG, respectively. Every
CFG node is on a path from ENTRY to EXIT.

4.3 Dominators and Post-dominators
Dominators. In a CFG, a node 𝑑 dominates a node 𝑛 (i.e., 𝑑
is a dominator of 𝑛) if every directed path from ENTRY to
𝑛 (not including 𝑛) contains 𝑑 . The immediate dominator of
a node 𝑛, i.e., iDom(𝑛), is the unique node that dominates 𝑛
but does not dominate any other node that dominates 𝑛.

The dominator tree of a CFG is a tree with root ENTRY such
that a node𝑚 is a child of a node 𝑛 if and only if 𝑛= iDom(𝑚).

Post-dominators. A node 𝑝 post-dominates a node 𝑛 if ev-
ery directed path from 𝑛 to EXIT (not including 𝑛) contains
𝑝 . The immediate post-dominator of a node 𝑛, i.e., iPdom(𝑛),
is the unique node that post-dominates 𝑛 but does not post-
dominate any other node that post-dominates 𝑛.

A CFG’s post-dominator tree is a tree with root EXIT such
that a node𝑚 is child of a node 𝑛 if and only if 𝑛= iPdom(𝑚).

4.4 The Dependence Graph
A dependence graph (DG) is a directed graph in which each
node is a CFG node (i.e., a program instruction), and each
edge represents a dependence relation between a pair of
instructions [20, 27].

Each DG edge has one of two types, control dependency and
data dependency, denoted

𝑐𝑑−−→ and
𝑑𝑑−−→. We denote a path from

inst1 to inst2 as inst1
{𝑑𝑑,𝑐𝑑 }+
−−−−−−−→ inst2, indicating that inst2 is

transitively dependent on inst1 through data and/or control
dependencies. If a path in the DG starts with an instruction
that contains an expr that includes getSecret(), we call the
path a secret dependency path, which is a critical concept in
Cape’s secret dependence analysis.

Data Dependency. Let inst1 and inst2 be nodes in a CFG.
Then inst1

𝑑𝑑−−→ inst2 if and only if inst1 stores a value (either
in a variable or memory location) that inst2 loads.

ControlDependency. Let inst1 and inst2 be nodes in a CFG.
Then inst1

𝑐𝑑−−→ inst2 if and only if

1. inst1 is not post-dominated by inst2; and
2. there exists a path 𝑝 from inst1 to inst2 such that any node

in 𝑝 (excluding inst1 and inst2) is post-dominated by inst2.

This definition does not handle so-called loop-carried depen-
dencies, in which an instruction in a loop is dependent on

1 s := getSecret () ;
2 while (∗a != 0) {
3 a := a + 1;
4 ... = ∗a;
5 if (i == s)
6 break;
7 i := i + 1;

}
Listing 1. Program with a loop-carried dependence. Using
our analysis, inst1

𝑑𝑑−−→ inst5
𝑐𝑑−−→{inst2,inst3, ..., inst7}, where

inst𝑘 is the instruction at line 𝑘 .

whether the loop exits from its body.1 Consider Listing 1,
in which the the outcome of inst5 (i.e., the instruction at
line 5) determines whether inst4 executes again—accessing
additional memory addresses. Therefore we should consider
inst4 to be control dependent on inst5.
We thus extend the definition of control dependency to

include loop-carried control dependencies: For instructions
inst1 and inst2 in a loop 𝐿, inst1

𝑐𝑑−−→ inst2 if

∃inst ′ : (inst ′ is a break∧ inst1
𝑐𝑑−−→ inst ′∧

𝐿 is innermost loop containing inst ′)

Accordingly, dependence analysis marks all instructions of
a loop as control dependent on a condition that is not the
loop header but controls whether the loop exits.

4.5 Address Dependency
Using data and control dependencies, an analysis can iden-
tify all instructions that are transitively dependent on secret
values. However, not all instructions that are data and con-
trol dependent on secret values need to be protected by Cape;
for example, consider instruction *addr := val; when only
val is secret dependent. Here we define a concept that helps
with defining whether a memory access needs protection.

A memory access is address dependent on an instruction
if the memory address used for the access is data dependent
on the instruction. That is, inst1

𝑎𝑑−−→ inst2 if

inst1
𝑑𝑑−−→ inst2 ∧ inst1 is var := ...∧

inst2 contains a *expr such that expr includes var

4.6 Secret Dependency
Memory stores (*⟨expr⟩:=...) and loads (any use of *⟨expr⟩)
may leak secrets due to revealing patterns of memory ac-
cesses for data. In contrast, we assume accesses to local
variables (reads and writes of var) do not leak secrets. Any
secret-dependent instruction may leak secrets by serving as
an instruction cache side channel.

1The stated definition of control dependency does not handle loop-carried
dependencies in our non-SSA program representation. However, if programs
are represented in SSA form, then the stated definition will handle
loop-carried dependencies implicitly (cf. [9, 16, 39]).

184

Cape: Compiler-Aided Program Transformation for HTM-Based Cache Side-Channel Defense CC ’22, April 02–03, 2022, Seoul, South Korea

1 s := getSecret () ;
2 p := ... // non−secret−dependent expression
3 if (s > 0)
4 c := 0;

else
5 c := 1;
6 if (c == 1)
7 ∗p := ...;
Listing 2. Example program with secret-dependent in-
structions. inst1

𝑑𝑑−−→ inst3
𝑐𝑑−−→ {inst4,inst5}

𝑑𝑑−−→ inst6
𝑐𝑑−−→ inst7.

Hence, inst4, inst5, and inst7 are secret dependent.

Thus, an instruction is secret dependent if it is address or
control dependent on either (1) a secret value directly or (2)
an instruction that is transitively dependent on a secret value.
That is, an instruction inst is secret dependent if and only if
there exists an instruction inst𝑠 that evaluates an expression
that includes getSecret() and

inst𝑠
{𝑎𝑑,𝑐𝑑 }
−−−−−−→ inst ∨ ∃inst ′ : inst𝑠

{𝑑𝑑,𝑐𝑑 }+
−−−−−−−→ inst ′

{𝑎𝑑,𝑐𝑑 }
−−−−−−→ inst

Example. Listing 2 shows a program in the simple language
that has secret-dependent instructions.

Types of Secret Dependencies. We can refine the above
definition. An instruction inst is secret address dependent if
and only if there exists an instruction inst𝑠 that evaluates an
expression that includes getSecret() and

inst𝑠
{𝑎𝑑 }
−−−−→ inst ∨ ∃inst ′ : inst𝑠

{𝑑𝑑,𝑐𝑑 }+
−−−−−−−→ inst ′

{𝑎𝑑 }
−−−−→ inst

An instruction inst is secret control dependent if and only if
there exists an instruction inst𝑠 that evaluates getSecret() and

inst𝑠
{𝑐𝑑 }
−−−→ inst ∨ ∃inst ′ : inst𝑠

{𝑑𝑑,𝑐𝑑 }+
−−−−−−−→ inst ′

{𝑐𝑑 }
−−−→ inst

Only memory access instructions can be secret address de-
pendent, but any instruction can be secret control dependent.

Secret-Dependent Loops. We note that, according to the
dependency definitions, all instructions of a loop are secret
dependent if its header is secret dependent or it is the inner-
most loop containing a secret-dependent break instruction.

5 Cape’s Compiler Instrumentation
This section presents Cape’s compiler transformation that
places transactions and adds preloading instructions.

Listing 3 shows a program with secret-control-dependent
accesses, after instrumentation by Cape. Instructions inst3
and inst4 are secret dependent because both instructions are
control dependent on inst2, which is data dependent on the
secret-loading instruction inst1. Cape automatically places
a transaction around the if statement, and it inserts code to
preload sensitive data and code accessed by inst3 and inst4.

5.1 Placing Transactions
To protect secret-dependent instructions from attacker pro-
grams, Cape must ensure that (1) all secret-dependent in-
structions are surrounded by transactions and (2) whether

1 s := getSecret () ;
_xbegin();
data preloading: all possible locations accessed by inst3 & inst4
code preloading: all locations where inst3 and inst4 reside

2 if (s > 0)
3 ∗p := ...;
4 else ∗q := ...;

if (_xtest()) {_xend();}

Listing 3. Instrumentation (in magenta and lacking line
numbers) added by Cape to a secret-dependent if statement.

a transaction executes is not dependent on the value of any
secret. More specifically, Cape adheres to the following rules
for transaction placement:
• A secret-dependent instruction must be in a transaction.
• A transaction start cannot be secret control dependent.
• The transaction start must dominate its end—unless the
end utilizes XTEST to end the transaction conditionally.
We abbreviate “if XTEST then XEND” as XEND_if_XTEST.

• A transaction end must post-dominate its start.
To help identify where to place transaction boundaries, we
define the head and tail of a secret-dependent instruction
as follows. If the instruction is in a secret-dependent loop,
then its head is the preheader of the loop and its tail is the
preheader’s closest post-dominator that is not in the loop;
otherwise, its head and tail are the instruction itself. Secret-
dependent loops require special handling for transaction
placement. As defined in Section 4.6, an entire loop is secret
dependent if its header is secret dependent or it is the inner-
most loop containing a secret-dependent break instruction.

Placing Transaction Boundaries. To ensure each secret-
dependent instruction is in exactly one transaction and and
no transaction is secret dependent, Cape places transactions
according to the following rules:
• Every static transaction has a unique pair of XBEGIN and
XEND_if_XTEST instructions.

• Every instruction executes in at most one transaction (no
nested transactions).

• Every path from XBEGIN to EXIT goes through exactly one
XEND_if_XTEST instruction with no intervening XBEGIN.

• For any instruction inst that is secret control dependent, if

there exist instructions inst ′, inst ′′ such that inst𝑠
{𝑑𝑑,𝑐𝑑 }∗
−−−−−−−→

inst ′
𝑑𝑑−−→ inst ′′

𝑐𝑑+
−−→ head (inst), XBEGIN is prepended to

inst ′′ and XEND_if_XTEST is prepended to iPdom(inst ′′).
• Otherwise (for a secret address dependency), XBEGIN is
prepended to head (inst) and XEND_if_XTEST is appended
to tail(inst).

• An XBEGIN (or XEND_if_XTEST) is added at most once
to a code location.

5.2 Preloading Data and Code
Cape modifies the compiler to insert code at the start of each
inserted transaction to preload secret-dependent data and
code into the transaction’s read set. Since TSX implements

185

CC ’22, April 02–03, 2022, Seoul, South Korea Rui Zhang, Michael D. Bond, and Yinqian Zhang

read sets for lines in the shared LLC, Cape provides protec-
tion with respect to the LLC, which satisfies our assumed at-
tack scenarios. It would be straightforward to extend Cape’s
protection to private caches by using both write and read
sets for preloading as presented by Cloak [22].
In Listing 3, since inst3 and inst4 are secret dependent,

Cape preloads both the data that the instructions may access
and the two instructions themselves.

6 Implementation
We implemented Cape in LLVM [29]. We have made Cape’s
source code publicly available.2 The implementation first
performs secret dependence analysis (Section 6.1) and then
uses the analysis results to transform LLVM bitcode with
transactions and preloading (Section 6.2).
Since the implementation deals with LLVM bitcode, in-

structions described in this section refer to those defined
for the LLVM IR, rather than those defined in our simple
language (Sections 4.1 and 4.2). Of particular importance
for our implementation are the LLVM memory access and
branch instructions: LOAD, STORE, and BR. Note that for
memory accesses, we only deal with LOAD and STORE in
this section for the sake of brevity, but other LLVM instruc-
tions and intrinsics that access memory, including memset
and memcpy, are also handled by the implementation.

6.1 Implementing Cape’s Analysis
We implemented Cape’s secret dependence analysis using
dg [2, 14], which builds program dependence graphs [20] and
performs static program slicing [45]. To compute data and
control dependencies, dg implements control dependence
analysis, pointer analysis, and reaching definition analysis.

Computing Secret Dependency Paths. Our Cape imple-
mentation uses dg to construct dependence graphs and per-
form forward slicing to mark all instructions in a dependence
graph that are reachable from any instruction inst𝑠 that loads
from a programmer-annotated secret variable. The reachable
instructions constitute secret dependency paths (Section 4.4).
Consequently, all instructions in the resulting secret depen-
dency paths are transitively dependent on inst𝑠 through one
or more data and control dependencies.

IdentifyingSecret-Dependent Instructions. For each in-
struction inst that is in any secret dependency path but not
in any secret-dependent loop, Cape checks if inst is secret
control dependent, i.e., if inst is control dependent on an
instruction that is in a secret dependency path. If so, inst is
control dependent on a secret. Otherwise, if inst is a LOAD or
STORE, Cape checks if inst is secret address dependent. The
check iterates over all instructions in the secret dependency
paths that inst is data dependent on, and determines inst is
secret address dependent if there exists an instruction inst ′

whose result is used as the address operand of inst.

2http://github.com/PLaSSticity/Cape-implementation

IdentifyingSecret-DependentLoops. By computing loop-
carried control dependencies, Cape identifies secret-depen-
dent loops. Cape first computes loops starting with any BR
instruction that is marked in the above step, using a classic
loop detection algorithm [7]. If a BR instruction belongs to a
loop and has one of its branches targeting a basic block out-
side the loop, then Cape identifies a secret-dependent loop
and marks all instructions in the loop as secret dependent.

6.2 Implementing Cape’s Transformation
After identifying secret-dependent instructions and loops,
Cape inserts code into the LLVM bitcode to start and end
transactions and preload sensitive data and code.

6.2.1 Placing Transactions. For a secret-dependent in-
struction inst that does not belong to any secret-dependent
loops, Cape finds all instructions that inst is (transitively)
secret control dependent on, by computing a backward transi-
tive closure of control dependencies along secret dependency
paths. Let insttop be the earliest instruction in the backward
closure, i.e., the instruction that all other instructions are
secret control dependent on. If insttop is a BR, Cape inserts a
transaction start immediately before insttop, and inserts the
matching transaction end immediately before iPdom(insttop).
Otherwise, inst must be a secret-address-dependent LOAD
or STORE, so Cape inserts a transaction start before insttop,
and inserts the matching end after insttop.

For a secret-dependent loop, Cape performs the same back-
ward transitive closure starting from the loop’s preheader. If
insttop is not a BR—so the secret-dependent loop is not se-
cret control dependent on any instruction outside the loop—
the implementation inserts a transaction start before insttop,
but inserts the matching transaction end immediately after
insttop’s closest post-dominator that is outside the loop.

6.2.2 Preloading. Once a secret-dependent loop or in-
struction is wrapped in a transaction, Cape inserts code at
transaction start to preload sensitive data and code.

Data Preloading. The actual address accessed by a secret-
dependent memory access is unknown at instrumentation
time, especially if the memory access is through a pointer.
Therefore, Cape uses dg’s pointer analysis to get points-to in-
formation for the address operand of each secret-dependent
access. More precisely, for the address operand of a secret-
dependent access inst, the pointer analysis generates a set
containing all LLVM instructions that allocate memory lo-
cations that may be accessed by inst.

LLVM uses three types of allocation: static, dynamic, and
automatic. Static allocations allocate static variables (such
as global variables) whose lifetime is the program’s lifetime.
Cape can preload these variables directly by inserting LOADs
of these always-live, globally visible variables.

A dynamic allocation represents a call tomalloc(), calloc(),
or realloc() to allocate space in heap memory at run time.
Since a dynamic allocation instruction can have multiple dy-
namic instances at run time, to support preloading data from
all possible locations allocated by the instruction, Cape saves

186

http://github.com/PLaSSticity/Cape-implementation

Cape: Compiler-Aided Program Transformation for HTM-Based Cache Side-Channel Defense CC ’22, April 02–03, 2022, Seoul, South Korea

Table 1. The evaluated programs.

Program Data size Description(in elements) (in bytes)
aes 256 2,048 AES T-table implementation in OpenSSL [1]
bsearch 10–10,000 40–40,000 Binary search implementation in the C standard library
dtree 10–5,000 240–120,000 Array-based decision tree classification from the Cloak paper [22]
mdtree 10–5,000 240–120,000 Pointer-based decision tree classification adapted by us from dtree
rsa n/a n/a RSA square-and-multiply textbook implementation from the Cloak paper [22]
signature n/a n/a A wolfSSL-provided wrapper that uses wolfSSL’s RSA implementation to sign binary data [4]

dynamic allocation information (i.e., addresses and sizes) in
a custom data structure that we call the allocation informa-
tion buffer (AIB). Each static allocation instruction has one
dedicated AIB. To preload data from dynamically allocated
sensitive locations, Cape inserts code at the transaction start
to load memory at the address ranges indicated by the in-
formation in the AIB. To avoid preloading freed addresses,
Cape instruments calls to free() to remove the address from
the AIB(s) corresponding to the dynamic allocation.

The last type of allocation is for local variables (ALLOCA
instructions in LLVM IR), which are stored in stack locations
and CPU registers in the generated machine code. If we ap-
plied our LLVM transformation to local variables, then all
local variables would be stored in stack locations, harming
performance significantly. Instead, for ease of implementa-
tion, both Cape and Cloak do not protect local variables—
which is unsafe since secret-dependent stack accesses are a
potential cache side-channel attack vector. With engineering
effort, Cape could protect secret-dependent local variables
without inadvertently forcing all secret-dependent local vari-
ables to be stored in stack locations.

CodePreloading. A simple approach for preloading secret-
dependent code addresses would identify secret-dependent
basic blocks in the analyzed LLVMbitcode, and generate code
to touch addresses corresponding to the basic blocks. How-
ever, downstream LLVM optimizations reorder the linear or-
der of basic blocks in memory and also make other changes
such as merging, splitting, copying, and deleting basic blocks,
leading to incorrect code preloading instrumentation.
To support correct code preloading in the face of down-

stream optimizations, our implementation inserts instrumen-
tation that preloads an entire function’s code. Cape identifies
functions that include secret-dependent basic blocks, and it
generates code to preload the entire function at transaction
start. Cape obtains each function’s address range after com-
pilation, and the instrumented program loads and uses these
address ranges at run time.

7 Evaluation
This section evaluates Cape’s effectiveness at protecting
cache side channels and Cape’s impact on performance, com-
pared with a manual defense (Cloak [22]), another automatic
defense (Lif [41]), and a baseline that provides no protection.

7.1 EvaluationMethodology
To measure effectiveness, we compute whether memory
traces of vulnerable programs, collected using Pin [32], are
secret oblivious. To evaluate performance, we execute pro-
grams natively with Intel TSX.

Programs. Table 1 shows the evaluated programs, which
are known to be vulnerable to cache side-channel attacks.
Each program is either a real program (aes fromOpenSSL [1],
bsearch from glibc, and signature from wolfSSL [4]), was
evaluated by Cloak [22] (rsa and dtree), or was derived by
us from dtree (mdtree).
We obtained aes (which uses the vulnerable AES T-table

implementation from OpenSSL [1]) and rsa (which provides
a textbook implementation of the RSA square-and-multiply
algorithm) from the Cloak authors. We removed cache side-
channel attacks that these programs’ harnesses performed.
The code for dtree is listed in the Cloak paper [22]. The
most complex program we evaluate is signature, which signs
binary data using a realistic implementation of the RSA al-
gorithm provided by the wolfSSL library [4]. We compiled
each program with LLVM’s -O3 optimizations.
Our experiments run some programs with multiple data

sizes, which are the sizes of the data structure used in the pro-
gram, as shown in Table 1. Large data sizes stress transaction
cache capacity limits.3 For aes, the data size is fixed to the
size of the T-table: 256 table elements, which take up 2,048
bytes. The experiments run on data sizes of 10–10,000 ele-
ments (40–40,000 bytes) for bsearch and 10–5,000 elements
(240–120,000 bytes) for dtree and mdtree. rsa and signature
have no secret-dependent data accesses—only secret-control-
dependent instructions.
We harness each program to generate and use a random

secret value as input each time it runs.

Evaluating Cape. Listings 4–6 show code for aes, mdtree,
and rsa, with instrumentation added by Cape for transactions
and preloading. For space and simplicity we omit dtree and
bsearch, which have code structure similar tomdtree; and sig-
nature, which, like rsa, has secret control-dependent instruc-
tions, but signature’s secret-dependent code is much larger
than rsa’s. For aes (Listing 4), inst7–inst10 and inst13 are se-
cret address dependent, so Cape wraps them in transactions
and preloads all data that might be accessed by them. No code

3Preloading sizes are limited by a transaction’s read set, which is often tied
to the L1 size and is bounded by the LLC size (cf. [13, 25]).

187

CC ’22, April 02–03, 2022, Seoul, South Korea Rui Zhang, Michael D. Bond, and Yinqian Zhang

1 in := ...; // non−secret−dependent plain text
2 iterations := ...; // number of iterations
3 i := 0;
4 s := getSecret () ;
5 s0 := (in ^ s) ;
6 while (i < iterations) {

_xbegin();
data preloading: read all locations accessed by inst7–inst10

7 t := ∗(te0 + (s0 & 0xff)) ;
8 t := (t ^ ∗(te1 + ((s0 >> 8) & 0xff))) ;
9 t := (t ^ ∗(te2 + ((s0 >> 16) & 0xff))) ;
10 t := (t ^ ∗(te3 + ((s0 >> 24) & 0xff))) ;

if (_xtest()) {_xend();}
11 s0 := t ;
12 i := (i + 1) ;

}
_xbegin();
data preloading: read all locations accessed by inst13

13 out := ((∗(te2 + (s0 & 0xff)) & 0x000000ffU) ^ s) ;
if (_xtest()) {_xend();}

Listing 4. The aes program in our simple language, with
Cape’s instrumentation in magenta and w/o line numbers.

preloading is required since the instructions themselves are
guaranteed to be executed independent of the secret value.
The T-table in aes is allocated as a global variable when the
program starts (omitted in Listing 4), so Cape preloads data
in the T-table directly without the need to save any allocation
information in AIBs. For mdtree (Listing 5), since there are
instructions that are secret control dependent, Cape inserts
code to preload both data accessed by the instructions and
the instructions themselves. To facilitate its data preloading,
Cape inserts code immediately after the allocation instruc-
tions (inst3 and inst7) to save allocation information in AIBs.
For rsa (Listing 6), Cape inserts code to preload inst8 since
the instruction is secret control dependent.

EvaluatingCloak. We evaluate (prior work) Cloak by man-
ually instrumenting the programs’ source to wrap security-
sensitive code in transactions and perform preloading op-
erations, based on the relevant descriptions in the Cloak
paper [22] and the code obtained from the Cloak authors.
The resulting code puts a single transaction around the

entire AES computation for aes, around each iteration of the
loop of the square-and-multiply algorithm for rsa, around
the entire search for bsearch, and around the entire tree tra-
versal for dtree andmdtree. The inserted code performs data
preloading of aes’s T-table, bsearch and dtree’s arrays, and
mdtree’s linked-list-based tree; and instruction preloading
of functions that include secret-dependent code.

Given the complexity of signature, our understanding of
its instrumentation needs was admittedly aided by referring
to the results of Cape’s instrumentation and of our Pintool-
based dynamic analysis (Section 7.1). Like Cape, our manual
Cloak instrumentation adds a single transaction that encom-
passes virtually the entire executed program, since nearly

1 node_num := ...; // number of nodes
2 left_off := 4; right_off := 8;

/∗ construct a decision tree (details omitted) ∗/
3 root := malloc (12) ;

save allocation information for data preloading
4 ∗ root := ...; // write value to the root node
5 parent := root ;
6 while (...) { // loop until construction completes
7 cur := malloc (12) ;

save allocation information for data preloading
8 ∗cur := ...; // write value to the current node

/∗ omitted : connect the current node to its parent ∗/
}
// traverse the tree

9 s := getSecret () ;
10 cur := root ; // start with the root node

_xbegin();
data preloading: read all locations accessed by inst12-inst14
code preloading: read all locations where inst11-inst19 reside

11 while (cur != undefined) {
12 val := ∗cur ;
13 left := ∗(node + left_off) ;
14 right := ∗(node + right_off) ;
15 if (left == undefined) {
16 res := cur ;
17 break;

}
18 if (val <= s) { cur := left ; }
19 else { cur := right ; }

}
if (_xtest()) {_xend();}

Listing 5. The mdtree program in our simple language,
with instrumentation added by Cape shown in magenta.

all instructions are secret control dependent. While Cape
adds both data and code preloading at transaction start, our
manual Cloak instrumentation adds only code preloading
because we determined that data preloading is unnecessary,
and is only added by Cape as a result of analysis imprecision.

Evaluating Lif. The Lif authors used Lif to transform the
evaluated programs. (Lif [41] is publicly available, but the
Lif authors offered to run Lif for us to save time.) For rsa, the
Lif authors sent us Lif-transformed LLVM bitcode. For the
other five programs, the Lif authors reported that the code
uses secret-dependent access patterns that Lif’s linearization
approach cannot defend against (Section 2.2).

Configurations. We evaluate four main configurations:
• Base — the unmodified, vulnerable program
• Cloak — the program modified by manual instrumentation
based on prior work’s approach [22]

• Cape — the program modified by this paper’s approach to
execute transactions and perform preloading

• Lif — the program modified by Lif [41]
In addition, we break down the costs of Cape by evaluating
two partial (unsecure) Cape configurations:

188

Cape: Compiler-Aided Program Transformation for HTM-Based Cache Side-Channel Defense CC ’22, April 02–03, 2022, Seoul, South Korea

1 s := getSecret () ;
2 res := 1; // computation result
3 x = 3;
4 i := 63;
5 while (i >= 0) {
6 res := (res ∗ res) ;

_xbegin();
code preloading: read all locations where inst8 resides

7 if (((s >> i) & 1) == 1)
8 res := (res ∗ x) ;

if (_xtest()) {_xend();}
9 i := (i − 1) ;

}
Listing 6. The rsa program in our simple language, with
instrumentation added by Cape shown in magenta.

• Cape txn only — executes transactions; no preloading
• Cape preld only — performs preloading; no transactions

Methodology for Evaluating Effectiveness. To evaluate
whether Cape-instrumented programs produce memory ad-
dress traces that are insensitive to secret values, we wrote
a Pintool [32] that records and processes traces of events,
which are memory accesses or transaction boundaries, for
executing programs. To avoid aborts, these experiments do
not actually execute hardware transactions: The Pintool in-
tercepts XBEGIN and XEND instructions and generates cor-
responding events but skips executing the instructions.

For each memory access outside a transaction, the Pintool
logs the accessed cache line’s address. For each memory ac-
cess inside a transaction, the Pintool logs the accessed line’s
address only on the transaction’s first access to the line. This
behavior captures the fact that repeat accesses to a cache line
in a transaction must be cache hits and are invisible to at-
tacker programs. (The Pintool does not need to model cache
capacities because a transaction whose working set size is
too large to fit in caches will abort by design, preventing any
information leakage through cache side channels.)
We detect secret-sensitive accesses by comparing the ad-

dress traces from two executions using different secret inputs.
Note that this methodology of comparing address sequences
checks a strong, cache-model-oblivious security guarantee.
For a given program and data size, we execute 10 trials

of the Cape-instrumented program using the Pintool to gen-
erate and compare address traces. Each trial independently
generates a random secret input. If all 10 address traces are
identical, then this result provides evidence that the pro-
gram’s memory access trace is insensitive to secret values.
Otherwise, the discrepancy indicates that the memory access
trace is sensitive to secret values.

Methodology for Evaluating Performance. The experi-
ments run on native TSX-enabled hardware. For all programs
except rsa, experiments run on an Intel Xeon Gold 5218 16-
core processor running Linux. For rsa, experiments run on
an Intel Xeon E5-2683 14-core processor running Linux. We
used the second machine for rsa to add results for Lif.

To account for startup time and noise, we harness each pro-
gram to execute the program’s code 5,000,000 times in a loop.
For example, bsearch performs 5,000,000 binary searches
(each using a new randomly generated key). As a result, each
program executes for at least 0.1 seconds and as much as
a few seconds. To account for run-to-run variation, every
reported result is the arithmetic mean from 10 trials.

For configurations that use transactions (Cloak, Cape, and
Cape preld only), a repeatedly aborting transaction retries
200 times before finally failing by terminating the program.

7.2 Results
7.2.1 Effectiveness. Our Pin-based experiments compare
memory access traces to determine if they are insensitive to
secret values. For unmodified programs (Base) across all data
sizes, the memory access traces are sensitive to secret values,
implying that the unmodified programs are vulnerable to
cache side-channel attacks. In contrast, for every program
and data size, Cloak and Cape each execute memory access
traces that are identical across different secret inputs, imply-
ing that the instrumented programs are not exploitable by
cache side-channel attacks.
For rsa, the Lif-transformed program executes memory

access traces that are insensitive to secret values. For the
other five programs, the Lif-transformed programs would ex-
ecute memory access traces that are sensitive to secret values
because the programs use secret-dependent access patterns
that Lif’s approach cannot defend against (Section 7.1).

7.2.2 Performance. Tables 2 and 3 present performance
results for Cape, compared with Base, Cloak, and Lif. Table 2
shows counts of memory accesses, obtained from Pin-based
experiments on compiled code. It breaks down Cape and
Cloak’s total memory accesses into those executed outside
transactions (Outside txn), due to preloading (Preloading),
and inside transactions but not for preloading (Inside txn).
For aes, Cape’s preloading operations incur many more

accesses than Cloak’s since Cape inserts transactions and
preloading operations inside a loop and thus incurs repeated
executions of the operations, while Cloak wraps the entire
loop in a single transaction and only preloads sensitive data
once. For the other programs, compared with Base, both
Cape and Cloak incur significant access overhead for data
preloading, especially with large data sizes. For rsa, Cape
and Cloak execute the same number of accesses, and signif-
icantly more than Lif. For bsearch and dtree, Cape incurs
comparable, but slightly more, accesses than Cloak. Cape’s
preloading operations incur more accesses due to fetching
allocation information from the AIBs.
The impact of data preloading is particularly significant

for mdtree since the program uses malloc to allocate discon-
tiguous memory space for its secret-sensitive data structure
(a pointer-based tree). Cape stores the allocation information
as separate elements in the AIBs. Iterating over these AIB
elements and preloading discontiguous locations are costly.
Cloak performs significantly more preloading accesses than
Cape formdtree. Our manual Cloak instrumentation initially

189

CC ’22, April 02–03, 2022, Seoul, South Korea Rui Zhang, Michael D. Bond, and Yinqian Zhang

Table 2.Memory accesses outside of transactions and inside of transactions, from preloading and the original program, for Base,
Cape, Cloak, and Lif (rsa only). Inside txn counts only non-preloading accesses inside transactions. Each count is the average
from 10 trials, rounded to the nearest integer. The “–” entries reflect that Base and Lif execute no transactions or preloading.

Data size = 10 Data size = 100 Data size = 1000 Data size = 5000 Data size = 10000
Base Cape Cloak Base Cape Cloak Base Cape Cloak Base Cape Cloak Base Cape Cloak

Outside txn 35 33 33 38 33 33 41 33 33 44 33 33 45 33 33
Preloading – 13 2 – 23 14 – 137 126 – 637 626 – 1,261 1,250
Inside txn – 8 8 – 11 11 – 14 14 – 17 17 – 18 18
Total 35 54 43 38 67 58 41 184 173 44 687 676 45 1,312 1,301

(a) bsearch
Data size = 10 Data size = 100 Data size = 1000 Data size = 5000 Data size = 10000

Base Cape Cloak Base Cape Cloak Base Cape Cloak Base Cape Cloak Base Cape Cloak
Outside txn 35 24 23 46 24 23 57 24 23 60 24 23 71 24 23
Preloading – 19 8 – 87 76 – 387 376 – 761 750 – 3,761 3,750
Inside txn – 17 18 – 28 29 – 39 39 – 42 42 – 53 53
Total 35 60 49 46 139 128 57 450 438 60 827 815 71 3,838 3,826

(b) dtree
Data size = 10 Data size = 100 Data size = 1000 Data size = 5000 Data size = 10000

Base Cape Cloak Base Cape Cloak Base Cape Cloak Base Cape Cloak Base Cape Cloak
Outside txn 34 23 21 46 23 21 55 23 21 59 23 21 69 23 21
Preloading – 42 103 – 402 1,003 – 2,002 5,003 – 4,002 10,003 – 20,002 50,003
Inside txn – 17 17 – 29 30 – 38 38 – 42 41 – 52 53
Total 34 82 141 46 454 1,054 55 2,063 5,062 59 4,067 10,065 69 20,077 50,077

(c)mdtree

Data size = 256
Base Cape Cloak

Outside txn 303 172 151
Preloading – 640 32
Inside txn – 307 228
Total 303 1,119 411

(d) aes

Data size = n/a
Base Cape Cloak Lif

Outside txn 292 392 328 458
Preloading – 256 256 –
Inside txn – 398 462 –
Total 292 1,046 1,046 458

(e) rsa

Data size = n/a
Base Cape Cloak

Outside txn 13,441K <1 K <1 K
Preloading – 123K 57K
Inside txn – 13,441K 13,442K
Total 13,441K 13,565K 13,499K

(f) signature

used a non-recursive depth- or breadth-first search to tra-
verse the tree, but we found that transactions consistently
aborted due to a compiler-generated instruction (XSAVEC)
that is unsupported in transactions. So we instead used a
recursive depth-first search, which allows transactions to
finish through data sizes of 1,000 (a data size of 5,000 con-
sistently causes Cloak to abort for cache capacity reasons).
For the most complex program, signature, preloading in-

curs modest overhead. Cape performs more preloading ac-
cesses than Cloak primarily because only Cape performs data
preloading (because of analysis imprecision; see Section 7.1).

Table 3 shows run time and other statistics from native ex-
ecution for all programs except signature (explained shortly).
Table 4(a) evaluates Cape’s impact on execution time com-
pared with Cloak and Lif (for rsa only); run times are wall-
clock times normalized to Base. The table breaks down pre-
loading and transaction costs with Cape txn only and Cape
preld only. Tables 4(b) and 4(c) help explain the HTM-related
aspects of performance results.
Cape slows aes by 8.76× because of repeated executions

of transactions and preloading. In contrast, Cloak slows aes
by only 1.86× because it adds only one transaction wrapping
the entire AES computation.

For rsa, Cape and Cloak incur modest 1.06–1.09× slow-
downs despite repeated executions of transactions and pre-
loading, because the original program provided by the Cloak
authors includes loops to slow its execution, hiding over-
head of transactions and preloading. In contrast, Lif slows
rsa by 1.82×, despite executing fewer instructions than Cape
and Cloak (Table 2(e)), for reasons that are unknown to us
but may be related to the Lif-transformed code’s potentially
heavy use of conditional moves.

For bsearch and dtree, Cape and Cloak incur comparable,
moderate slowdowns (2.06×–9.57×) for data sizes that are
not too large (<5,000 elements). Relatively high slowdowns
are incurred for the two programs with large data sizes and
for mdtree for most data sizes, mainly because of data and
code preloading. For these programs, as the data sizes in-
crease, Cape and Cloak preload more data in transactions
and incur higher abort rates, leading to higher slowdowns.
Formdtree, Cloak incurs much higher slowdowns than Cape,
presumably because Cloak uses recursive DFS to perform
Cloak’s data preloading operations.
We note that Cape adds overhead to all of the evaluated

programs because they have secret-dependent accesses. In
contrast, Cape would perform no transformations and thus

190

Cape: Compiler-Aided Program Transformation for HTM-Based Cache Side-Channel Defense CC ’22, April 02–03, 2022, Seoul, South Korea

Table 3.Native execution times and related statistics for all programs except signature. All of signature’s transactions abort
due to cache capacity limits.

aes rsa bsearch dtree mdtree
Data sizes −→ 256 n/a 10 100 1000 5000 10000 10 100 500 1000 5000 10 100 500 1000 5000
Cape txn only 7.08 1.05 4.41 1.92 1.36 1.11 1.17 5.95 2.86 2.40 1.92 1.70 7.13 3.16 1.58 1.50 1.41
Cape preld only 3.79 1.00 1.74 1.71 2.47 3.69 8.64 3.03 3.85 5.46 7.61 46.21 4.54 11.37 27.74 45.26 179.61
Cape 8.76 1.06 5.25 2.63 2.81 4.31 9.03 7.01 5.45 7.23 9.57 47.20 9.53 13.32 28.78 50.35 199.68
Lif — 1.82 — — — — — — — — — — — — — — —
Cloak 1.86 1.09 4.54 2.06 2.66 4.32 8.71 9.04 4.96 7.23 9.54 46.81 11.60 21.95 53.04 87.25 381.27

(a) Run time, normalized to Base

aes rsa bsearch dtree mdtree
Data sizes −→ 256 n/a 10 100 1000 5000 10000 10 100 500 1000 5000 10 100 500 1000 5000
Cape txn only 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00
Cape 0.00 0.00 0.00 0.00 0.00 0.01 0.03 0.00 0.00 0.00 0.01 0.27 0.00 0.00 0.02 0.07 0.64
Cloak 0.04 0.02 0.00 0.00 0.00 0.01 0.03 0.00 0.00 0.00 0.01 0.27 0.00 0.01 0.03 0.07 7.76

(b) Ratio of aborts to commits, as a percentage.

aes rsa bsearch dtree mdtree
Data sizes −→ 256 n/a 10 100 1000 5000 10000 10 100 500 1000 5000 10 100 500 1000 5000
Cape txn only 10 10 10 10 10 10 10 10 10 10 10 10 10 10 10 10 10
Cape 10 10 10 10 10 10 10 10 10 10 10 9 10 10 10 10 7
Cloak 10 10 10 10 10 10 10 10 10 10 10 9 10 10 10 7 1

(c) Successful trials, out of 10, for each experiment. Failed trials are caused by a transaction repeatedly aborting.

add no overhead to programs that have no secret-dependent
accesses, unless Cape’s conservative static analysis falsely
identified some memory accesses as secret dependent.
Table 3 lacks results for signature because the program

repeatedly aborts a transaction due to a cache capacity limita-
tion, whether the transaction is added by Cape or Cloak. The
transaction consistently aborts because of code in signature
that writes to two 64KB arrays, which exceed the 32KB L1
cache available for tracking transactionwrite sets. Prior work
reports that transaction write set sizes in existing implemen-
tations of TSX are bounded by the L1 cache size [13, 21, 22, 25,
34, 44, 51]. By using Intel’s Software Development Emulator
(SDE) [3] and modifying its default cache configuration, we
found that Cape-instrumented signature completes success-
fully using a 128KB L1 cache size. Thus the transactions could
commit successfully with modifications to future hardware
implementations. In particular, Cape-instrumented signature
would complete successfully if transaction write sets were
extended to private L2 caches (typically 256KB in contempo-
rary Intel processors). Alternatively or additionally, future
work could hybridize Cape with another software approach
such as Raccoon’s decoy paths [38] (Section 2), enabling
transactions with smaller working set sizes.

ValidatingCloakResults. For aes and rsa, Table 3’s perfor-
mance results for Cloak are inconsistent with those reported
in the Cloak paper [22]. To understand such discrepancies,
we evaluated the performance results for Cloak using the
instrumented AES and RSA square-and-multiply programs
provided by the Cloak authors (minus their attacks; Sec-
tion 7.1), but were unable to reproduce the results reported

in the Cloak paper in our environment. (We ran multiple tri-
als to verify that our results are repeatable.) The differences
are likely due to microarchitecture differences, especially dif-
ferent processors’ TSX implementations, but further effort
would be needed to verify this hypothesis.

8 Conclusion
Cape provides automatic HTM-based cache side-channel pro-
tection using novel compiler analyses and transformations.
An evaluation shows that Cape is as effective and generally
as efficient as an existing manual approach, but with minimal
human effort. This work opens up opportunities to apply
HTM-based cache side-channel protection more widely.

Acknowledgments
We thank the paper’s shepherd, Fernando Magno Quintão
Pereira, and the anonymous reviewers for insightful sug-
gestions that improved the paper. Thanks to Luigi Soares,
Michael Canesche, and Prof. Pereira for valuable help with
evaluating Lif on the evaluated programs. Thanks to Daniel
Gruss for sharing the programs evaluated in the Cloak paper.
This work was supported by NSF grants XPS-1629126,

CAREER-1253703, and CCF-1421612.

References
[1] 2019. OpenSSL. https://www.openssl.org/.
[2] 2021. DG. https://github.com/mchalupa/dg.
[3] 2021. Intel SDE. https://software.intel.com/content/www/us/en/

develop/articles/intel-software-development-emulator.html.
[4] 2021. wolfSSL. https://www.wolfssl.com/.
[5] Onur Aciiçmez. 2007. Yet another MicroArchitectural Attack:

exploiting I-Cache. In 2007 ACM workshop on Computer security

191

https://www.openssl.org/
https://github.com/mchalupa/dg
https://software.intel.com/content/www/us/en/develop/articles/intel-software-development-emulator.html
https://software.intel.com/content/www/us/en/develop/articles/intel-software-development-emulator.html
https://www.wolfssl.com/

CC ’22, April 02–03, 2022, Seoul, South Korea Rui Zhang, Michael D. Bond, and Yinqian Zhang

architecture. 11–18.
[6] Onur Aciiçmez, Billy Bob Brumley, and Philipp Grabher. 2010. New

results on instruction cache attacks. In 12th international conference
on Cryptographic hardware and embedded systems. 110–124.

[7] Alfred V. Aho, Monica S. Lam, Ravi Sethi, and Jeffrey D. Ullman.
2006. Compilers: Principles, Techniques, and Tools (2Nd Edition).
Addison-Wesley Longman Publishing Co., Inc., Boston, MA, USA.

[8] Gorka Irazoqui Apecechea, Mehmet Sinan Inci, Thomas Eisenbarth,
and Berk Sunar. 2014. Wait a minute! A fast, Cross-VM attack on AES.
In Cryptology ePrint Archive.

[9] Manuel Arenaz, Pedro Amoedo, and Juan Touriño. 2008. Effi-
ciently Building the Gated Single Assignment Form in Codes with
Pointers in Modern Optimizing Compilers. In Euro-Par. 360–369.
https://doi.org/10.1007/978-3-540-85451-7_39

[10] Naomi Benger, Joop van de Pol, Nigel P. Smart, and Yuval Yarom. 2014.
"Ooh Aah... Just a Little Bit": A small amount of side channel can go
a long way. In Cryptology ePrint Archive.

[11] Burton H. Bloom. 1970. Space/Time Trade-offs in Hash Cod-
ing with Allowable Errors. CACM 13 (1970), 422–426. Issue 7.
https://doi.org/10.1145/362686.362692

[12] Pietro Borrello, Daniele ConoD’Elia, LeonardoQuerzoni, and Cristiano
Giuffrida. 2021. Constantine: Automatic Side-Channel Resistance
Using Efficient Control and Data Flow Linearization. In CCS. 715–733.
https://doi.org/10.1145/3460120.3484583

[13] Zixian Cai, StephenM. Blackburn, andMichael D. Bond. 2021. Under-
standing and Utilizing Hardware Transactional Memory Capacity. In
ISMM. 1–14. https://doi.org/10.1145/3459898.3463901

[14] MarekChalupa. 2016. Slicing of LLVMBitcode. Master’s thesis.Masaryk
University, Faculty of Informatics, Brno.

[15] Sanchuan Chen, Fangfei Liu, Zeyu Mi, Yinqian Zhang, Ruby B. Lee,
Haibo Chen, and XiaoFengWang. 2018. Leveraging Hardware Trans-
actional Memory for Cache Side-Channel Defenses. In Proceedings of
the 2018 on Asia Conference on Computer and Communications Security.
601–608.

[16] Jong-Deok Choi, Ron Cytron, and Jeanne Ferrante. 1991. Automatic
Construction of Sparse Data Flow Evaluation Graphs. In POPL. 55–66.
https://doi.org/10.1145/99583.99594

[17] Bart Coppens, Ingrid Verbauwhede, Koen De Bosschere, and Bjorn De
Sutter. 2009. Practical Mitigations for Timing-Based Side-Channel
Attacks on Modern x86 Processors. In 30th IEEE Symposium on Security
and Privacy.

[18] Stephen Crane, Andrei Homescu, Stefan Brunthaler, Per Larsen, and
Michael Franz. 2015. Thwarting cache side-channel attacks through
dynamic software diversity. In ISOC Network and Distributed System
Security Symposium.

[19] Goran Doychev, Dominik Feld, Boris Kopf, Laurent Mauborgne, and
Jan Reineke. 2013. CacheAudit: A Tool for the Static Analysis of Cache
Side Channels. In 22nd USENIX Security Symposium (USENIX Security
13). USENIX.

[20] Jeanne Ferrante, Karl J. Ottenstein, and Joe D. Warren. 1987. The
Program Dependence Graph and Its Use in Optimization. TOPLAS 9,
3 (1987), 319–349. https://doi.org/10.1145/24039.24041

[21] B. Goel, R. Titos-Gil, A. Negi, S. A. McKee, and P. Stenstrom. 2014.
Performance and Energy Analysis of the Restricted Transactional
Memory Implementation on Haswell. In 2014 IEEE 28th Interna-
tional Parallel and Distributed Processing Symposium. 615–624.
https://doi.org/10.1109/IPDPS.2014.70

[22] Daniel Gruss, Julian Lettner, Felix Schuster, Olya Ohrimenko, Istvan
Haller, and Manuel Costa. 2017. Strong and Efficient Cache Side-
Channel Protection using Hardware Transactional Memory. InUSENIX
Security. 217–233.

[23] David Gullasch, Endre Bangerter, and Stephan Krenn. 2011. Cache
games – Bringing access-based cache attacks on AES to practice. In
32nd IEEE Symposium on Security and Privacy. 490–505.

[24] Tim Harris, James Larus, and Ravi Rajwar. 2010. Transactional Memory
(2nd ed.). Morgan and Claypool Publishers.

[25] William Hasenplaugh, Andrew Nguyen, and Nir Shavit. 2015. Quan-
tifying the Capacity Limitations of Hardware Transactional Memory.
In 7thWorkshop on the Theory of Transactional Memory (Donostia-San
Sebastián, Spain) (WTTM 2015).

[26] Maurice Herlihy and J. Eliot B. Moss. 1993. Transactional
Memory: Architectural Support for Lock-Free Data Struc-
tures. In ISCA (San Diego, California, United States). 289–300.
https://doi.org/10.1145/165123.165164

[27] S. Horwitz, T. Reps, and D. Binkley. 1988. Interprocedural Slicing Using
Dependence Graphs. In PLDI (Atlanta, Georgia, United States). 35–46.
https://doi.org/10.1145/53990.53994

[28] G. Irazoqui, T. Eisenbarth, and B. Sunar. 2015. S$A: A shared cache
attack that works across cores and defies VM sandboxing—and its
application to AES. In 36th IEEE Symposium on Security and Privacy.

[29] Chris Lattner and Vikram Adve. 2004. LLVM: A Compilation
Framework for Lifelong Program Analysis & Transformation. In CGO
(Palo Alto, California). 75–88.

[30] Fangfei Liu, Yuval Yarom, Qian Ge, Gernot Heiser, and Ruby B. Lee.
2015. Last-Level Cache Side-Channel Attacks are Practical. In IEEE
Symposium on Security and Privacy.

[31] F. Liu, Y. Yarom, Q. Ge, G. Heiser, and R. B. Lee. 2015. Last-level cache
side-channel attacks are practical. In 36th IEEE Symposium on Security
and Privacy.

[32] Chi-Keung Luk, Robert Cohn, Robert Muth, Harish Patil, Artur
Klauser, Geoff Lowney, StevenWallace, Vijay Janapa Reddi, and Kim
Hazelwood. 2005. Pin: Building Customized Program Analysis Tools
with Dynamic Instrumentation. In PLDI (Chicago, IL, USA). 190–200.
https://doi.org/10.1145/1065010.1065034

[33] DavidMolnar,Matt Piotrowski, David Schultz, andDavidWagner. 2005.
The program counter security model: automatic detection and removal
of control-flow side channel attacks. In 8th international conference on
Information Security and Cryptology.

[34] Takuya Nakaike, Rei Odaira, Matthew Gaudet, Maged M. Michael,
and Hisanobu Tomari. 2015. Quantitative Comparison of Hardware
Transactional Memory for Blue Gene/Q, ZEnterprise EC12, Intel
Core, and POWER8. In Proceedings of the 42nd Annual International
Symposium on Computer Architecture (Portland, Oregon) (ISCA ’15).
Association for Computing Machinery, New York, NY, USA, 144–157.
https://doi.org/10.1145/2749469.2750403

[35] Michael Neve and Jean-Pierre Seifert. 2007. Advances on access-driven
cache attacks on AES. In 13th international conference on Selected areas
in cryptography. 147–162.

[36] Dag Arne Osvik, Adi Shamir, and Eran Tromer. 2006. Cache attacks
and countermeasures: the case of AES. In 6th Cryptographers’ track
at the RSA conference on Topics in Cryptology. 1–20.

[37] Colin Percival. 2005. Cache missing for fun and profit. In 2005 BSDCan.
[38] Ashay Rane, Calvin Lin, and Mohit Tiwari. 2015. Raccoon: Closing

Digital Side-Channels through Obfuscated Execution. In 24th USENIX
Security Symposium.

[39] Bruno Rodrigues, Fernando Magno Quintão Pereira, and
Diego F. Aranha. 2016. Sparse Representation of Implicit Flows
with Applications to Side-Channel Detection. In CC. 110–120.
https://doi.org/10.1145/2892208.2892230

[40] Ming-Wei Shih, Sangho Lee, Taesoo Kim, and Marcus Peinado. 2017. T-
SGX: Eradicating controlled-channel attacks against enclave programs.
In Network and Distributed Systems Security (NDSS) Symposium.

[41] Luigi Soares and FernandoMagnoQuintão Pereira. 2021. Memory-Safe
Elimination of Side Channels. In CGO. 200–210.

[42] Eran Tromer, DagArneOsvik, andAdi Shamir. 2010. Efficient CacheAt-
tacks onAES, and Countermeasures. J. Cryptol. 23, 2 (Jan. 2010), 37–71.

[43] Shuai Wang, Pei Wang, Xiao Liu, Danfeng Zhang, and Dinghao
Wu. 2017. CacheD: Identifying Cache-Based Timing Channels in

192

https://doi.org/10.1007/978-3-540-85451-7_39
https://doi.org/10.1145/362686.362692
https://doi.org/10.1145/3460120.3484583
https://doi.org/10.1145/3459898.3463901
https://doi.org/10.1145/99583.99594
https://doi.org/10.1145/24039.24041
https://doi.org/10.1109/IPDPS.2014.70
https://doi.org/10.1145/165123.165164
https://doi.org/10.1145/53990.53994
https://doi.org/10.1145/1065010.1065034
https://doi.org/10.1145/2749469.2750403
https://doi.org/10.1145/2892208.2892230

Cape: Compiler-Aided Program Transformation for HTM-Based Cache Side-Channel Defense CC ’22, April 02–03, 2022, Seoul, South Korea

Production Software. In 26th USENIX Security Symposium (USENIX
Security 17). USENIX Association.

[44] ZhaoguoWang, Hao Qian, Jinyang Li, and Haibo Chen. 2014. Using
Restricted Transactional Memory to Build a Scalable In-Memory
Database. In Proceedings of the Ninth European Conference on Computer
Systems (Amsterdam, The Netherlands) (EuroSys ’14). Association
for Computing Machinery, New York, NY, USA, Article 26, 15 pages.
https://doi.org/10.1145/2592798.2592815

[45] Mark Weiser. 1981. Program Slicing. In ICSE (San Diego, California,
United States). 439–449.

[46] Jan Wichelmann, Ahmad Moghimi, Thomas Eisenbarth, and Berk
Sunar. [n. d.]. MicroWalk: A Framework for Finding Side Channels
in Binaries. In Proceedings of the 34th Annual Computer Security
Applications Conference. ACM, 161–173.

[47] MengWu, Shengjian Guo, Patrick Schaumont, and ChaoWang. 2018.
Eliminating Timing Side-Channel Leaks Using Program Repair. In
ISSTA. 15–26. https://doi.org/10.1145/3213846.3213851

[48] Yuan Xiao, Mengyuan Li, Sanchuan Chen, and Yinqian Zhang. 2017.
Stacco: Differentially Analyzing Side-Channel Traces for Detecting
SSL/TLS Vulnerabilities in Secure Enclaves. In Proceedings of the ACM

SIGSAC Conference on Computer and Communications Security (Dallas,
TX, USA) (CCS’17). ACM. https://doi.org/10.1145/3133956.3134016

[49] Yuval Yarom and Naomi Benger. 2014. Recovering OpenSSL ECDSA
Nonces Using the FLUSH+RELOAD Cache Side-channel Attack. In
Cryptology ePrint Archive.

[50] Yuval Yarom and Katrina E. Falkner. 2014. FLUSH+RELOAD: A high
resolution, low noise, L3 cache side-channel attack. In 23rd USENIX
Security Symposium. 719–732.

[51] Richard M. Yoo, Christopher J. Hughes, Konrad Lai, and Ravi Rajwar.
2013. Performance Evaluation of Intel Transactional Synchroniza-
tion Extensions for High-Performance Computing. In SC (Denver,
Colorado). 19:1–19:11. https://doi.org/10.1145/2503210.2503232

[52] Yinqian Zhang, Ari Juels, Michael K. Reiter, and Thomas Ristenpart.
2012. Cross-VM Side Channels and Their Use to Extract Private Keys.
In 19th ACM Conference on Computer and Communications Security.
305–316.

[53] Yinqian Zhang, Ari Juels, Michael K. Reiter, and Thomas Ristenpart.
2014. Cross-tenant side-channel attacks in PaaS clouds. In ACM
Conference on Computer & Communications Security. 990–1003.

193

https://doi.org/10.1145/2592798.2592815
https://doi.org/10.1145/3213846.3213851
https://doi.org/10.1145/3133956.3134016
https://doi.org/10.1145/2503210.2503232

	Abstract
	1 Introduction
	2 Background and Related Work
	2.1 Cache Side-Channel Attacks
	2.2 Cache Side-Channel Defenses
	2.3 Cloak and Hardware Transactional Memory

	3 Overview
	4 Cape's Secret Dependence Analysis
	4.1 A Simple Language
	4.2 The Control-Flow Graph
	4.3 Dominators and Post-dominators
	4.4 The Dependence Graph
	4.5 Address Dependency
	4.6 Secret Dependency

	5 Cape's Compiler Instrumentation
	5.1 Placing Transactions
	5.2 Preloading Data and Code

	6 Implementation
	6.1 Implementing Cape's Analysis
	6.2 Implementing Cape's Transformation

	7 Evaluation
	7.1 Evaluation Methodology
	7.2 Results

	8 Conclusion
	Acknowledgments
	References

