
Return-Oriented Flush-Reload Side Channels on ARM and
Their Implications for Android Devices

Xiaokuan Zhang Yuan Xiao Yinqian Zhang
Department of Computer Science and Engineering

The Ohio State University
{zhang.5840, xiao.465}@buckeyemail.osu.edu, yinqian@cse.ohio-state.edu

ABSTRACT
Cache side-channel attacks have been extensively studied
on x86 architectures, but much less so on ARM processors.
The technical challenges to conduct side-channel attacks on
ARM, presumably, stem from the poorly documented ARM
cache implementations, such as cache coherence protocols
and cache flush operations, and also the lack of understand-
ing of how different cache implementations will affect side-
channel attacks. This paper presents a systematic explo-
ration of vectors for Flush-Reload attacks on ARM pro-
cessors. Flush-Reload attacks are among the most well-
known cache side-channel attacks on x86. It has been shown
in previous work that they are capable of exfiltrating sensi-
tive information with high fidelity. We demonstrate in this
work a novel construction of flush-reload side channels on
last-level caches of ARM processors, which, particularly, ex-
ploits return-oriented programming techniques to reload in-
structions. We also demonstrate several attacks on Android
OS (e.g., detecting hardware events and tracing software ex-
ecution paths) to highlight the implications of such attacks
for Android devices.

Keywords
Cache side channels; flush-reload

1. INTRODUCTION
Cache side-channel attacks have been gaining attraction in

recent years, in part due to their noteworthy security impli-
cations in computing environment where processor caches
are shared among mutually distrustful software programs,
e.g., public multi-tenant clouds. Due to the popularity of
x86 processors in cloud data centers, most prior studies on
cache side-channel attacks focus on x86 architectures. In
contrast, much less research has been done on side-channel
attacks on ARM architectures. Although it is tempting to
presume similar attacks can be easily migrated from x86
to ARM processors, in fact due to significant differences
in the cache design and implementation, conclusions drawn

Permission to make digital or hard copies of all or part of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full citation
on the first page. Copyrights for components of this work owned by others than the
author(s) must be honored. Abstracting with credit is permitted. To copy otherwise, or
republish, to post on servers or to redistribute to lists, requires prior specific permission
and/or a fee. Request permissions from permissions@acm.org.

CCS’16, October 24 - 28, 2016, Vienna, Austria
© 2016 Copyright held by the owner/author(s). Publication rights licensed to ACM.
ISBN 978-1-4503-4139-4/16/10. . . $15.00

DOI: http://dx.doi.org/10.1145/2976749.2978360

on Intel processors about these hardware-dependent security
threats cannot be directly applied to ARM. To date, we have
not seen much work on the exploitability of ARM caches in
side-channel attacks. Such studies, however, are of growing
significance due to the increasing popularity of ARM pro-
cessors in mobile devices and even cloud servers [20].

In this paper, we present a systematic exploration of Flush-
Reload side-channel attacks on ARM caches. Flush-Reload
attacks have been extensively studied on x86 platforms and
are well known for their high accuracy and efficiency. The
adversary who has control of an application running on a
shared computer system can exploit the unprivileged clflush

instruction on x86 to Flush cache lines out of the entire
cache hierarchy, and then measure the time to Reload it
back. The key to the attack is that such flush operations,
though taking virtual addresses as input, work on physical
addresses of a cache line, so that cache lines shared with
a victim application will also be evicted in the procedure.
Therefore, the time to Reload the cache line back reveals
whether this line has been recently (after Flush and before
Reload) accessed, and thus loaded into the shared cache,
by the victim application (i.e., fast Reload) or not (i.e.,
slow Reload).

However, replicating the Flush-Reload attacks on ARM
is not as straightforward as one might imagine. The fol-
lowing research questions are yet to be explored: First,
what is ARM’s alternative for x86’s unprivileged clflush

instruction? Second, without a user-space accessible high-
precision clock, e.g., x86’s rdtsc, how does the adversary
measure time with high fidelity on ARM (to perform this
timing attack)? Third, how does ARM’s cache coherence
(e.g., point of coherency/unification [10], inclusiveness of
last-level caches) affect Flush-Reload attacks? Unfortu-
nately, none of these questions has been answered in prior
research. Many of these questions (e.g., the first one) are
even considered the fundamental obstacles for conducting
such attacks on ARM1 [50].

Our exploration of these questions is driven by Android
operating systems (OS) that run on ARM processors. An-
droid is arguably the most popular operating system in mo-
bile devices. We aim, in exploring these research questions,
to demonstrate practical cache side-channel attacks on com-
modity Android-based smartphones from zero-permission An-
droid apps. However, we stress the results might be ex-

1
It was asserted that “ARM architecture does not allow user pro-

cess to selectively evict memory lines and the Flush-Reload is not
applicable in this architecture” [50].

tended to iOS and other computing environments should
they be powered by ARM processors.

More specially, in this paper, we show a cross-core Flush-
Reload side-channel attack on ARM that operates in ways
that are similar to return-oriented programming (ROP) at-
tacks. The first notable novelty in this attack is the use
of a cache-flush interface that is available on ARM-based
operating systems. This interface is designed to support
self-modifying code (e.g., Just-in-Time compilation) due to
ARM’s lack of coherence between data caches and instruc-
tion caches—instruction caches must be flushed explicitly to
reflect changes made in data caches. The exact implemen-
tation of this interface, however, is processor-specific (see
Sec. 3.2). Particularly, on our testbed, a Samsung Galaxy S6
smartphone, we are constrained to conduct Flush-Reload
attacks using instruction Flushes and Reloads, which in
contrast to previously shown Flush-Reload attacks on data
caches, is a brand new attempt. However, efficient exploita-
tion of instruction Reloads is non-trivial. We show by clev-
erly leveraging gadgets in shared libraries, an adversary may
redirect the control flow of cache Reloads to instructions
in the libraries and return back from the gadgets immedi-
ately after loading the cache lines into the shared last-level
cache (LLC). This type of instruction-based Reloads ef-
fectively and efficiently replace the conventional data-based
Reloads. We call our new construction of Flush-Reload
attacks on ARM the return-oriented Flush-Reload attacks.

We further demonstrate two categories of attacks on An-
droid enabled by our presented Flush-Reload side chan-
nels: detecting hardware events and tracing software exe-
cution paths. We particularly show our attacks can detect
the occurrence of touchscreen interrupts with high fidelity,
therefore enabling the unlock pattern inference attack shown
in [21] even without procfs; detect the use of hardware com-
ponents, e.g., scanning credit cards using the camera from an
Uber app, thus facilitating other attack goals (such as those
in [19,31]); detect updates in the frame buffer of the smart-
phone display, hence monitoring the user’s private actions
on the device. We argue the applicability of the attacks is
beyond these examples, and we leave a thorough exploration
of attack spaces as future work.

Contributions. To summarize, we make the following con-
tributions in this paper.

• A systematic exploration of vectors for Flush-Reload
side-channel attacks on ARM in two aspects: cache flush
operations and last-level cache inclusiveness. Particu-
larly, we study the effects of the clearcache system call
on the caches of five different ARM processors. We also
design novel approaches to programmatically determine
the inclusiveness of ARM’s last-level caches.
• A novel construction of return-oriented Flush-Reload

cache side-channel attacks on ARM processors that work
on last-level caches. To our knowledge, our paper presents
the first attempt to implement Flush-Reload side chan-
nels on ARM. Conducting these attacks in return-oriented
manners by exploiting gadgets in shared libraries is also
innovative.
• A demonstration of the presented Flush-Reload at-

tacks in Android. We show these cache-based side chan-
nels have similar power as many procfs-based side chan-
nels, and therefore opening new, and hard to mitigate,
attack vectors once procfs side channels are eliminated.
We also show novel UI tracing attacks to illustrate the

new capabilities of our Flush-Reload attacks compared
to existing side-channel attacks in Android.

Roadmap. In the rest of the paper, we first provide the
background knowledge of ARM processors and cache side-
channel attacks in Sec. 2. A systematic exploration of ARM’s
cache flush operations and cache coherence implementation
is presented in Sec. 3. We then elaborate our construction of
the return-oriented Flush-Reload side channels on ARM
processors in Sec. 4. Next, we demonstrate two categories
of security attacks on Android that are enabled by our side
channels in Sec. 5. Countermeasures to our attacks are dis-
cussed in Sec. 6 and related work in Sec. 7. Finally, we con-
clude the paper in Sec. 8.

2. BACKGROUND

2.1 ARM Cache-Memory Hierarchy
Similar to x86 processors, ARM processors also adopt

a modified Harvard architecture, in which the upper-level
caches (e.g., L1) are split into instruction caches and data
caches so that the processors can access the data bus and
instruction bus simultaneously, while the lower-level caches
(e.g., L2) and the main memory are unified so instructions
can be manipulated as data.

Supporting self-modifying code. One difference be-
tween ARM and x86 processors is that ARM does not main-
tain coherence between the main memory and instruction
caches [10]. As such, memory writes to the code sections
will not be automatically reflected in the instruction cache,
causing the processors to execute staled code. This de-
sign feature affects the processors’ capability to execute self-
modifying code, which is common in Just-in-Time compi-
lation. Accordingly, operating systems, e.g., Android OS,
provide a system call (i.e., clearcache) to flush a range of
virtual addresses out of the caches. This system call in im-
plemented in the kernel by instructing the cp15 coprocessor.

Inclusive vs. exclusive LLCs. An inclusive LLC, in the
case of most ARM processors—the L2 cache, guarantees
that every cache line in the L1 cache also has a copy in
the L2 cache. In contrast, if the L2 cache is exclusive to
L1, only one copy of the same memory block is stored in ei-
ther the L1 cache or the L2 cache. A third option is usually
called non-inclusive cache [29], which behaves in between of
the other two—a cache line evicted out of the L2 cache is not
also evicted from the L1 cache. Processors may implement
different LLC inclusiveness. For example, older Intel proces-
sors (e.g., Core 2 processors) have non-inclusive L2 caches;
recent Intel processors all come with inclusive L3 caches; in
contrast, AMD processors usually have exclusive LLCs [27].
ARM’s L2 caches can be configured to be inclusive, exclusive
or non-inclusive to L1 instruction or data caches.

2.2 Cache Side-Channel Attacks
Sensitive information of a software program can be leaked

through CPU caches. Because the cache data cannot be
read by the adversary directly, such leakage is usually indi-
rect, through “side” information. Therefore, this type of at-
tacks is called cache side-channel attacks. Prior studies have
explored three types of cache side channels: time-driven,
access-driven and trace-driven. They differ in their threat
models. Time-driven attacks assume only the overall execu-
tion time of certain operation is observable by the adversary;

trace-driven attacks assume the adversary is able to observe
the power consumption traces of the execution; and access-
driven attacks assume the adversary has logical access to a
cache shared with the victim and infers the victim program’s
execution through its own use of the shared cache.

In this paper, we study access-driven cache side-channel
attacks on ARM. The other two types are less practical in
either their threat models (e.g., knowledge of power con-
sumption in trace-driven attacks) or their unrealistic as-
sumptions (e.g., assumptions of noise-free network commu-
nication in time-driven attacks). Access-driven attacks can
be performed in several ways. Here, we highlight two ap-
proaches that are widely studied in recent years: Prime-
Probe [37] and Flush-Reload [23]. We omit variations of
these attacks, such as Flush-Flush and Evict-Reload.

Prime-Probe attacks work on cache sets. By pre-loading
every cache line in the target cache set with his own memory
blocks, the adversary makes sure his future memory accesses
(to these blocks) will be served by the cache, unless some of
the cache lines are evicted by the victim program during
its execution. Therefore, his own cache misses will reveal
the victim’s cache usage in the target cache set. In Flush-
Reload attacks, the adversary shares some physical mem-
ory pages (e.g., through dynamic shared libraries) with the
victim. By issuing cache flush instructions (e.g., clflush

on x86) on certain virtual address range (mapped to the
shared pages), the adversary can flush the (physical) cache
lines that correspond to this address range out of the entire
cache hierarchy. Therefore future reading (i.e., Reload) of
the cache lines will be slower because they are loaded from
the memory, unless they have been accessed by the victim
(and thus have been fetched into the shared cache).

2.3 Threat Model
We assume the adversary is a regular Android app with no

additional permission than the default settings. Moreover,
we do not assume the device itself is rooted to facilitate the
attack (e.g., through kernel extensions). To differentiate our
attacks from prior work on procfs-based side channels (see
Sec. 7), we do not require this third-party app to have access
to procfs. As such, our attack will work even when these
side channels are eliminated. The only assumption we need
to make is that the malicious app is packaged together with
a native component that is compiled with Android NDK.
This configuration is very common on Android app markets.
According to a recent study published in 2016, at least 37%
Android apps execute native code [14].

3. DISSECTING ARM CACHES
Unlike their counterparts in x86 processors, caches in ARM

processors are much less understood in the context of side-
channel attacks. In order to exploit ARM caches for Flush-
Reload side-channel attacks, we need to understand how
ARM caches operate in both Flush and Reload operations.
More particularly, we aim to explore the follow aspects:

• Cache flush interfaces. The cache flush interfaces on
x86 is well documented: the entire cache hierarchy can
be invalidated together using the privileged WBINVD in-
struction, and individual cache lines can be flushed us-
ing the unprivileged clflush instruction. In contrast, no
userspace-accessible cache flush instruction is available
on ARM. We will study a less-known attack vector—

clearcache system call—on Android OS, and determine
its impact on all levels of caches.
• Cache inclusiveness. The cache coherence design, partic-

ularly inclusiveness of the last-level cache to upper-level
caches, is crucial to cross-core Flush-Reload attacks:
Whether the victim’s memory access on a different CPU
core will affect the adversary’s Reloads. However, such
information is seldom mentioned in ARM specification
or manufacturers’ documentation2. We aim to design
novel methods to empirically determine cache inclusive-
ness from Android apps.

In this section, we empirically evaluate these cache proper-
ties on three most popular Android smartphones, i.e., Sam-
sung Galaxy S5 and S6 and Google Nexus 6, and the five
processors they are equipped with. The Samsung Galaxy
S5 implements an octa-core architecture—one quad-core 1.9
GHz Cortex-A15 CPU and one quad-core 1.3 GHz Cortex-
A7 CPU—on the Exynos 5422 system-on-chip (SoC). The
Samsung Galaxy S6 is equipped with one quad-core 1.5 GHz
Cortex-A53 CPU and one quad-core 2.1 GHz Cortex-A57
CPU, on the Exynos Octa 7420 SoC. Google Nexus 6 comes
with single quad-core Krait 450 processors on the Snap-
dragon 805 SoC. Cortex-A53 and Cortex-A57 are based on
64-bit ARMv8, while other CPUs are 32-bit ARMv7-based.

Roadmap of the section. In Sec. 3.1, we study the la-
tency of several available clocks on Android to perform our
timing channel attacks. In Sec. 3.2, we explore the effects of
clearcache system call and in Sec. 3.3, we empirically de-
termine the LLC (i.e., L2) inclusiveness to both L1 caches
on these processors. We discuss our findings in Sec. 3.4.

3.1 Time Measurement Facilities
Android apps do not enjoy the unprivileged rdtsc instruc-

tion available to their x86 counterparts. However, accurate
and low-latency time measurement is critical to cache tim-
ing attacks on ARM. In this section, we examine the latency
of the POSIX clock_gettime system call, which is a fine-
grained time measurement facility that is accessible in all
Android versions.

We considered using clock_gettime() with three clocks:
CLOCK REALTIME, CLOCK MONOTONIC, and the
per-thread clock CLOCK THREAD CPUTIME ID. To se-
lect one clock with minimum latency, we conducted the fol-
lowing experiments: In an Android app compiled with NDK
on Samsung Galaxy S6, we used one of the three clocks to
measure the execution time of a loop that is expected to
consume (roughly) constant time. We show in Fig. 1 the
measurements of running 1, 2, · · · , 10 of such loops using the
three clocks, respectively. The results shown are mean val-
ues and one standard deviation of 20 runs. The latency of
each clock can be roughly estimated by the time measure-
ments of executing i loops subtracting the estimated exe-
cution time of i loops. From the figure, we can see that
CLOCK REALTIME and CLOCK MONOTONIC per-
forms much better in terms of measurement latency (i.e.,
roughly 130 ns) than CLOCK THREAD CPUTIME ID
(i.e., about 780 ns). In our paper, the monotonic clock was
chosen because the other may be unexpectedly adjusted by
Network Time Protocol (NTP) daemon.

2
Prior knowledge on cache inclusiveness of a particular processor im-

plementation is only available through anecdotes [42].

3.2 Cache Flushes

1 2 3 4 5
loops

0

200

400

600

800

1000

1200

1400

T
im

e
 (

n
s
)

CLOCK_REALTIME

CLOCK_MONOTONIC

CLOCK_THREAD_CPUTIME_ID

Figure 1: Time measurement
using three different clocks
(evaluated on A53 running at
highest frequency).

We empirically study
how the clearcache sys-
tem call can be used
in Flush-Reload at-
tacks. We focused,
however, only on its
effects on instruction
caches, because the ker-
nel source code that
implements the clearcache
system call only cleaned
the data caches but in-
validated the instruc-
tion caches3. Cache
cleaning means writing
dirty cache lines out
to the next level of
cache/memory hierarchy and then clear the dirty bits;
cache invalidation means clearing the valid bits of the cache
lines [2]. Therefore, it is only necessary to conduct exper-
iments to understand the behavior of clearcache on the
instruction cache—will the L1 instruction cache and the L2
cache both be flushed?

We developed an Android app with Android NDK and a
native shared library that exports a dummy library func-
tion (consisting of “mov x0, x0” in the 64-bit version, and
“mov r0,r0” in the 32-bit version), which, after compilation,
occupies exactly 1KB of memory space. To eliminate unex-
pected side-effects, we intentionally aligned the offset of the
beginning of the function to be a multiple of 4KB within the
shared library. Because of the coarse-grained address space
layout randomization (ASLR) in Linux, when the library is
loaded at runtime, the function will still be page-aligned.
The Android app dynamically linked this self-developed li-
brary into their address space using dlopen at runtime.
Then it split into two threads, which used sched_setaffinity

system call to pin themselves on two different cores sharing
the same L2 cache. In the following tests, all experiments
were repeated 1000 times (run at the maximum CPU fre-
quency) to measure the mean and standard deviation.

In the first experiment, thread A repeatedly executed the
function code while thread B stayed idle. The average time
to execute the entire function in this way was measured as
T1. Essentially, T1 measures the time to execute the function
from the L1 instruction cache (i.e., all L1 cache hits).

In the second experiment, while keeping thread B idle,
thread A called the clearcache system call before starting
to execute the function. The time of the function execution
itself was measured as T2. Hence T2 represents the effects
of the clearcache system call on the local instruction cache
and the unified L2 cache.

In the third experiment, while thread A executed the func-
tion in the same way as the first experiment, thread B re-
peatedly called the clearcache system call without any in-
terval to flush the entire function. The execution time of
the function by thread A is denoted as T3. Therefore, T3

reflects the effects of cross-core instruction cache flushing.
In the last experiment, we still kept thread B idle. Thread

A measured the time taken (T4) to execute the function

3
clearcache is implemented in the __flush_cache_user_range function

in mm/cache.S of the Android’s kernel source code (v3.10.9 on Galaxy
S5 and Nexus 6, v3.10.61 on Galaxy S6)

Krait 450 A15 A7 A57 A53
0

2000

4000

6000

8000

16000

20000

T1

T2

T3

T4

Figure 2: Effects of clearcache on instruction caches.

code with L2 cache misses. In order to achieve this effect,
thread A cleansed the entire L1 instruction cache and uni-
fied L2 cache in between of two function executions. The
method to do so with guarantees to cleanse the entire L1 and
L2 caches, however, is not straightforward. We developed
our own method as described in Appendix B. The results
for running the experiments on all three smartphones (five
CPUs) are shown in Fig. 2. We will discuss these results
shortly in Sec. 3.4.

3.3 Cache Inclusiveness
We design a method using only cache timing to determine

whether the L2 cache is inclusive, exclusive or non-inclusive
to L1 data cache and L1 instruction cache, respectively. To
do so, we first developed a shared native library which ex-
ports a dummy function (e.g., 1KB) in exactly the same way
as in Sec. 3.2. Then in the native component of an Android
app, the following test was conducted:

Detecting inclusive L2 caches. In the first experiment,
the function was loaded into the L1 data cache by reading
each cache line. The average time needed to load the entire
function once is denoted T1. Then in the second experiment,
the Android app completely cleansed the L2 cache without
polluting the L1 data cache—by executing instructions as
described in Appendix B—in between of two function code
readings. The time to read the function was measured as
T2. If T1 � T2, T2 reflects L1 data (and also L2) cache
misses. Therefore cleansing L2 cache from instruction cache
also cleanses the L1 data cache, and therefore the L2 cache
is inclusive to the L1 data cache. Otherwise it is either
exclusive or non-inclusive to the L1 data cache.

Because the same L2 cache may have different inclusive-
ness to the L1 data cache and the instruction cache, we have
to conducted a similar test for L1 instruction cache. Spe-
cially, the dummy function was executed and the time to
complete one execution was measured as T1. Then in the
second experiment, the L2 cache was cleansed completely
from the data-cache side so that the instruction cache was
not polluted (again, using method described in Appendix B)
in between of two function execution. The execution time
was measured as T2. If T1 � T2, T2 represents L1 instruction
(and L2) cache misses. Hence, cleansing L2 cache from the
data cache also cleanses the L1 instruction cache, and there-
fore the L2 cache is inclusive to the L1 instruction cache.
Otherwise it is either exclusive or non-inclusive to the L1
instruction cache.

Smartphone T1 T2 inclusiveness

Krait 450 (dcache) 1169 3700 inclusive
Krait 450 (icache) 1020 4350 inclusive

Cortex-A15 (dcache) 2600 6469 inclusive
Cortex-A15 (icache) 2484 5474 inclusive
Cortex-A7 (dcache) 3378 15460 inclusive
Cortex-A7 (icache) 3551 15822 inclusive

Cortex-A57 (dcache) 223 907 inclusive
Cortex-A57 (icache) 150 794 inclusive
Cortex-A53 (dcache) 325 1633 inclusive
Cortex-A53 (icache) 275 1287 inclusive

Table 1: L2 cache inclusiveness tests.

From Table 1 we can clearly see that on all the tested
processors the L2 caches are inclusive to both data caches
and instruction caches. Therefore, there is no need to con-
duct further experiments to distinguish exclusive and non-
inclusive L2 caches. However, we describe an algorithm in
Appendix C with which these two types of cache implemen-
tations can be programmatically differentiated. We hope it
can be helpful to other research on similar topics.

3.4 Discussion
Cache flushes. In order to perform Flush-Reload side-
channel attacks on the L2 cache, the flush operations must
evict the targeted memory block out of (1) the local L1
caches, (2) the shared L2 cache, (3) and the L1 caches of
other cores. If condition 1 is not met, Reload will only
observe L1 hits; if condition 2 is not met, Reload will
only observe L2 hits; if condition 3 is not met, the victim
can continue using its local copy, so its operation will not
make any changes to the shared L2 cache. We already know
data caches cannot be used Flush-Reload attacks because
clearcache only cleans but not flushes the L1 data cache—
condition 1 not met. Moreover, as is seen from Fig. 2, not
all instruction caches on these ARM processors satisfy these
requirements, either: T2 (local clearcache) and T3 (cross-
core clearcache) of Krait 450, Cortex A15 and Cortex A7
are merely larger than T1 (L1 hits) and are much smaller
than T4 (L2 misses). Therefore, clearcache does not flush
the L2 caches on these processors (condition 2 not satis-
fied). Cache flush operations on the instruction cache of
Cortex A53 and A57 meet all three requirements: T2 and
T3, though slightly less than T4, are significantly greater
than T1—both the local L1 instruction cache and the L1 in-
struction cache on other cores, and the shared L2 cache are
flushed by the cache invalidation operation.

The difference of cache flush implementation can be ex-
plained by the different implementation of point of coherency
(PoC) and point of unification (PoU) on ARM [10]. PoC
specifies the point at which all CPU cores are guaranteed
to observe the same copy of a memory block; PoU specifies
the point at which the data cache and the instruction cache
on the same core are guaranteed to see the same copy of a
memory block. However, ARM does not explicitly specify
the choice of PoU and PoC, leaving them highly implemen-
tation dependent. Our conjecture, therefore, is that on A53
and A57 the PoU is implemented to be the memory, while
on other processors the PoU is specified as the L2 cache.

Inclusiveness. Table 1 suggests all the L2 caches we eval-
uated are inclusive to both L1 data and instruction caches.
This is in line with the limited information available from
ARM official documentations: According to ARM specifica-
tions, Cortex-A57 and Cortex-A15 implement strict inclu-

sion property with L1 data caches [5, 6], but in all other
cases, these properties are not specified and therefore are
implementation dependent.

Conclusion. Because the clearcache system call on Cor-
tex A57 and A53 processors will flush instructions to the
main memory, and at the same time the L2 caches on these
processors are inclusive to the instruction cache, these two
ARMv8 processors satisfy all requirements for conducting
Flush-Reload attacks on shared instruction pages. As
they represent the latest processor generations on the mar-
ket, we anticipate future processors may have similar fea-
tures. In this paper, we demonstrate Flush-Reload at-
tacks on the instruction side of Samsung Galaxy S6.

4. RETURN-ORIENTED FLUSH-RELOAD
ATTACKS ON ARM

In Sec. 3, we have shown that on ARM Cortex A57 and
A53 processors we are constrained to use only instruction
caches in Flush and Reload operations. Hence in this
section, we first outline a basic construction of a Flush-
Reload side channel on these processors by Flushing and
Reloading instructions (Sec. 4.1). Then we detail our novel
design of return-oriented Flush-Reload side-channel at-
tacks (Sec. 4.2). We next empirically characterize the pre-
sented return-oriented side channels (Sec. 4.3) and discuss
practical considerations of exploiting such side channels on
Android (Sec. 4.4).

4.1 Basic Flush-Reload Side-Channel Attacks
We first describe a basic construction of a Flush-Reload

side-channel attack using the clearcache system call on An-
droid. The side channel works on shared LLCs (i.e., L2
caches). Therefore it can be exploited by an Android app
to attack another running on a different CPU core.

The attacker Android app from which side-channel attacks
are conducted is a zero-permission Android app packaged
together with a native library. The Java component of the
app interacts with the native C code through standard Java
Native Interface (JNI). To enable physical memory sharing
between the attacker and victim apps, the native code uses
the dlopen system call to dynamically link a certain shared
library (i.e., so file) used by the victim app into the attacker
app’s own address space. When the attack starts, the service
component inside the attacker app creates a new thread,
which calls into its native component to conduct Flush-
Reload operations in the background:

• Flush: The attacker app calls clearcache to flush a
function in the code section of this shared library.
• Flush-Reload interval: The attacker app waits for a

fixed time period (may be zero), during which the victim
app may execute the function.
• Reload: The attacker app executes the function and

measures the time of execution. Shorter execution time
indicates the function has been executed (thus fetched
into the L2 cache) by some other apps (possibly the vic-
tim app) during the Flush-Reload interval.

The primary difference between our work and previous
study [16,49,50,53] is that we exploit the instruction cache,
while prior studies use the data cache. Nevertheless, the
seemingly minor distinction imposes considerable technical
challenges to our attack. First, to call library functions, the

attacker app needs to re-construct the program semantics
(e.g., preparing parameters, global variables, etc.) before
calling, which is very tedious and does not work for some
functions. Second, the execution time of a function may
vary from one run to another, which makes differentiating
cache misses and cache hits very challenging in the Reload
phase. This is typically true if the function call also involves
system calls. Third, Flush and Reload take too much
time; many fast victim operations will be missed by such
slow Flush-Reload attacks. To address these challenges,
we next design a return-oriented Flush-Reload attack.

4.2 Return-Oriented Reloads
Instead of calling the entire function in the Reload phase,

we touch upon selected memory blocks of the function code
in a return-oriented manner. Particularly, much similar
to control-flow hijacking attacks using return-oriented pro-
gramming [18, 41], a number of small gadgets are collected
from the target function, and then in our attacker app, an
auxiliary function will be constructed to jump to these gad-
gets (and then jump back) one after another. The overall
execution time of these gadgets will be measured as the out-
come of the Reload phase. It is important to avoid having
more than one gadgets in the same 64-byte cache line, be-
cause only the execution of the first gadget will fetch the
memory block into the cache, and subsequent gadgets in the
same cache line merely introduce noise.

The set of ARM instructions that can lead to indirect
control flow transfers are listed in Table 2. On 32-bit ARM
v7 architectures, bx Rm sets the current PC value to be the
value of the register Rm (i.e., indirect jump); blx Rm also
sets the value of LR (i.e., R14) to be the address of the next
instruction before jumping to the address specified by Rm

(i.e., indirect call). Direct manipulation of PC is also allowed
by using mov or pop or ldm instructions4. On 64-bit ARM v8
architectures, in addition to the difference in the size of the
registers (64 bits), ret instructions are also available: ret

instruction changes the PC value to the value of LR; ret Xm

sets PC to the value stored in Xm rather than LR. However, the
PC register can no longer be manipulated directly on ARM
v8 architectures.

Architecture Instructions Effects

bx LR PC := LR
bx Rm PC := Rm

ARM v7 blx Rm
LR(R14) := next instr.

(32 bit)
PC := Rm

mov PC LR PC := LR
pop {pc} PC := top of stack
ldm {pc} load multiple regs
br Xm PC := Xm

ARM v8
blr Xm

LR(X30) := next instr.
(64 bit) PC := Xm

ret Xm PC := Xm
ret PC := LR(X30)

Table 2: Indirect control-flow transfer instructions on ARM.

The gadgets used in our attack will be easier to construct
compared to those in ROP attacks—our gadgets do not need
to complete any meaningful operations. We only need to
jump to one of these indirect control transfer instructions

4
There are four variations of ldm: ldmia, ldmib, ldmda, ldmdb. Their

usage can be found in [3].

(listed in Table 2) so that the memory block that holds the
instruction is loaded into the cache. The control flow will be
immediately transferred back to the auxiliary function after
the instruction is fetched and executed.

We illustrate the use of the 64-bit ret and blr Xm in-
structions to construct gadgets in Fig. 3. In particular, in
this example, the adversary hopes to Flush-Reload a func-
tion, clock_gettime, in libc.so. To exploit the blr X4 in-
struction as a gadget, the attacker app calculates the virtual
address of the instruction at runtime (i.e., the base address
of the library’s code section plus the offset of the instruction
within the library). Here, let’s assume the virtual address
is 0x246a0. This address is first loaded into register X19, so
that the control flow will be transferred to the gadget later
by br X19. The adversary then makes a copy of X30 to an-
other register, say X20, because it will be modified by the
gadget instruction blr X4. Then the adversary prepares the
value of X4, the target address of blr X4, so that the control
flow will be redirected back to the auxiliary function once
the gadget is executed. It is important to maintain the cor-
rectness of the subsequent execution by restoring the value
of X30 from register X20.

Exploiting ret is much easier. The adversary first stores
the address of the gadget in a register, say X19. Then the
control flow is transferred by blr X19, which sets the value
of X30 to be the address of the next instruction and then
changes the PC value to the address stored in X19. The
control flow will be transferred back to the address stored in
X30 by the ret instruction.

Figure 3: Examples of gadgets.

Availability of the reload gadgets. To investigate the
availability of the reload gadgets in Android shared libraries,
we used objdump to disassemble five widely-used shared li-
braries used on a 64-bit Android OS (Samsung Galaxy S6,
Android version 5.1.1). We then wrote a Python script to
count the number of indirect control transfer instructions
and the number of useful gadgets (those in separate cache
lines) in these libraries. The results are listed in Table 3.

Libraries code size branch instr. gadgets
libc.so 912 KB 2755 1547
libc++.so 1050 KB 3714 2174
libinput.so 186 KB 585 283
libcrypto.so 2065 KB 6897 4246
libandroid.so 92 KB 430 180

Table 3: Availability of the reload gadgets.

1 2 3 4 5 6 7 8
Gadget Number

0

500

1000

1500

T
im

e
 (

n
s
)

signal 0

signal 1

(a) Minimum gadgets.

1 2 3 4 5 6 7 8
Gadget Number

0

1000

2000

3000

4000

5000

T
im

e
 (

n
s
)

(b) Min. Flush-Reload cycles.

Figure 4: Characteristics of Flush-Reload side channels.

4.3 Characterizing ARM Flush-Reload Attacks
In this section, we evaluate two important characteris-

tics of the return-oriented Flush-Reload side-channel at-
tacks described above: (1) the minimum number of gadgets
needed to Flush-Reload at the same time in order to reli-
ably differentiate cache hits from cache misses, and (2) the
shortest Flush-Reload cycles (i.e., time to finish one round
of Flush and Reload with zero Flush-Reload interval)
for one gadget. The experiments were run on A53 with CPU
frequency set as 1.5GHz.

Minimum gadgets for successful attacks. In a success-
ful Flush-Reload side-channel attack, the adversary exfil-
trates one bit information pertaining to a target system-level
event—happen or not happen—during a certain time period.
Such information is learned by determining if Reloads lead
to cache hits or cache misses. To reliably detect the oc-
currence of the events, the adversary might need to Flush-
Reload more than one gadgets from the same function (e.g.,
Fig. 3), or from different functions that will be called sequen-
tially during the same event.

We evaluate the minimum number of gadgets that the
adversary needs in Flush-Reload attacks by testing the
strength of the signal of a Flush-Reload covert channel.
Specially, we chose 10 functions from the libc.so5, and con-
structed one gadget from each function, by using the last ret
instruction. Then two Android apps were developed: The
receiver repeatedly Flushed k gadgets one after another (k
ranges from 1 to 8), then after zero Flush-Reload inter-
val he Reloaded the gadgets in the same order; the sender
sent ‘0’ by running in an empty loop, and sent ‘1’ by calling
the corresponding functions repeatedly. We want to find out
the minimum number of gadgets that allows the adversary
to differentiate the signal ‘0’ from ‘1’. The results for run-
ning the experiment 100 times (with mean and one standard
deviation) are shown in Fig. 4a. The white bars show the
Reload time when the sender sent ‘0’ and the solid bars
show the Reload time when the sender sent ‘1’. We can
see the signal is clear even when only one gadget is used,
and becomes more reliable when more gadgets are used.

Shortest Flush-Reload cycles. The granularity of the
side channel is characterized by the shortest Flush-Reload
cycles—the time to finish one round of Flush and Reload
with zero Flush-Reload interval. The shortest cycle indi-
cates the highest frequency with which the Flush-Reload

5
The 10 functions are: atoi, fflush, free, getgid, getuid, isdigit,

isspace, malloc, strnlen, strtof.

attacks can be performed. To empirically determine this
property, we executed the same receiver app developed in
the paragraph above. It Flush-Reloads on k gadgets (k
ranges from 1 to 10) without Flush-Reload intervals. The
mean execution time of one Flush-Reload cycle and one
standard deviation are reported in Fig. 4b. We can see
that Flush-Reload cycles for one gadget on A53 is around
500ns, and that for more gadgets increases (roughly) lin-
early.

4.4 Practical Considerations
To make these attacks practical on Android, however, we

consider several factors that may constrain the attacks.

CPU frequency. Mobile devices dynamically scale up and
down the operation frequency of each CPU core indepen-
dently to reduce power consumption. The timing channel,
when executed on CPUs with varying frequency, may lead
to unstable results. In the practical attacks that we will
demonstrate in Sec. 5, fixing CPU frequency from the ker-
nel is not an option. Therefore, we evaluated to what extent
will the frequency vary during our Flush-Reload attacks.
To do so, we conducted an experiment in which we measured
the frequency of the CPU core on which the Flush-Reload
attack runs. This can be done by reading sysfs6 within the
attacker app itself, because no additional permission is re-
quired. We found in all cases after starting running our
Flush-Reload attacks from an otherwise idle CPU core,
the operation frequency would reach the maximum and stay
unchanged until the attacks finished. Therefore, CPU fre-
quency scaling will not impact our attack once the malicious
app warms up the CPU.

Thread scheduling and cgroups. To limit the resource
consumption of background threads, Android employs two
control groups (cgroups). The background apps and threads
are assigned to the background cgroups where up to 5% CPU
resources can be used when contending with other apps.
However, we found in our experiments that the attacks are
not affected by such mechanisms as long as the device is not
running computation-intensive apps that occupy all CPU
resources, in which case the CPU caches will be highly pol-
luted and cache attacks will hardly work anyway.

Dual CPU architectures. More recent smartphones (e.g.,
Samsung Galaxy S5 and S6) come with octa-core processors—
two processor packages with four cores each. For exam-
ple, recent Samsung Exynos processors usually have two
asymmetric processors, one with higher operation frequency
to support CPU-intensive applications and one with lower
frequency to save power when the demand is low. How-
ever, in our experiments, although the malicious app and
the victim app run on different CPUs, the return-oriented
Flush-Reload attacks can still successfully differentiate
whether the victim touched the shared library functions or
not (though the differences are slightly smaller). We pre-
sume this is because of the ARM Cache Coherent Inter-
connect [4]. Similar cross-core Flush-Reload side chan-
nels have been observed by Irazoqui et al. on AMD proces-
sors [27]. Therefore, we only run the malicious app on a core
of Cortex-A53 processor (using sched_setaffinity system
call that requires no additional permission) and the victim
app running on either of the CPUs can be targeted.

6
/sys/devices/system/cpu/cpu<n>/cpufreq/scaling_cur_freq.

64-bit vs. 32-bit devices and libraries. Our return-
oriented Flush-Reload attacks work differently on 64-bit
apps and 32-bit apps. On the 64-bit Samsung Galaxy S6,
both 64-bit and 32-bit apps can be executed. However, if the
attacker app is compiled as a 64-bit app, it cannot conduct a
return-oriented attacks on a shared 32-bit library. Similarly,
a 32-bit attacker app cannot exploit a shared 64-bit library,
either. Therefore, two versions of the malicious app were
developed to attack both types.

Background noise. Similar to prior work on cache side-
channel attacks, our return-oriented Flush-Reload side-
channel attacks are also subject to background noise. The
most notable noise comes from a third app that shares the
same library and calls the functions that are being Reloaded
by the attacker app. To address the problem, we Flush-
Reload multiple gadgets from different rarely-used func-
tions at the same time, so that the likelihood of these func-
tions being called together by another app is very low. Hence,
most background noise of this kind can be eliminated.

Power consumption. When the attacker app runs in the
background, one entire CPU core (i.e., 12% of all CPU re-
sources) is taken, and 1.5% battery was consumed every 20
minutes. The power consumption is probably on par with
(or slightly lower than) that reported in Diao et al. [21]. Be-
cause Flush-Reload attacks do not need to evict an entire
cache set (as is the case in Prime-Probe or Evict-Reload
attacks), we suspect our techniques may consume less power
than ARMageddon [32].

Vulnerability analysis. The following steps can be taken
to analyze the vulnerabilities of an app in an offline proce-
dure: First, all libraries linked in an app can be learned from
/proc/<pid>/maps at runtime. We could extract the sym-
bols for all exported functions of the library of interest using
objdump. Then, using a Python script, we can generate a
gdb initialization file, which contains breakpoint information
of all (or a subset) of the functions in the objdump result.
Next, by employing gdb debugger on Android [8], we attach
to the victim app remotely and insert all the breakpoints
by loading the initialization file. After that, we manually
act on the app and see if any breakpoint is triggered. This
will provide a coarse-grained call graphs for identifying the
most critical execution path of the program. Of course, this
approach is manual-intensive and error-prone. We leave a
fully automated analysis for future work.

5. CASE STUDIES ON ANDROID
In this section, we demonstrate a few real-world examples

to illustrate how the return-oriented Flush-Reload side-
channel attacks can be applied in practice. Specially, we
show two categories of attacks: detecting hardware events
and tracing software execution paths. The attacks were
all demonstrated on Samsung Galaxy S6 (SM-G920F), with
Android version 5.1.1 and Linux kernel version 3.10.

5.1 Detecting Hardware Events
Our return-oriented Flush-Reload attacks can be ex-

ploited to detect hardware events, such as occurrences of
hardware interrupts and software’s interactions with hard-
ware devices (e.g., GPS, microphones, cameras, etc.). To
demonstrate such capabilities in concrete contexts, we con-
duct two case studies: In the first case study, we exploit the
established side channel to accurately detect hardware inter-

rupts due to touchscreen events; in the second case study,
we show how an attacker can learn from the side channel
when the camera is used by the Uber app7 to scan credit
cards (using card.io libraries).

5.1.1 Touchscreen Interrupts
The Flush-Reload side channel does not detect inter-

rupt directly; it only detects these events by monitoring
system libraries that are triggered to dispatch these events
to user-space applications. Specially, in Linux’s multi-touch
protocol, the user’s interaction with the touchscreen gener-
ates a sequence of multi-touch transfers—each transfer may
include multiple event packets if the user has multiple con-
current contacts with the device. By the end of each multi-
touch transfer, a SYN_REPORT event is delivered to userspace
software [40]. In fact, each of these multi-touch transfer cor-
relates with one touch event [7]. It has been shown in a
recent study by Diao et al. [21] that side channels can be es-
tablished through procfs (i.e., /proc/interrupts) to infer
unlock pattern. Here in our paper, we show that our return-
oriented Flush-Reload side-channel attacks can be used to
replace this procfs side channel—should future Android OS
restricts unauthorized usage of procfs, the security threats
still exist.

The attack. To detect these SYN_REPORT events, the ma-
licious app Flush-Reloads three gadgets in three different
functions (i.e., TouchInputMapper::sync, CursorMotionAc-
cumulator::clearRelativeAxes, and MultiTouchMotionAc-

cumulator::finishSync in libinputflinger.so) that will
be called together when the driver calls the input_sync()

function to deliver SYN_REPORT events. We assign a fast
Reload a value ‘1’; a slow one a value ‘0’. To reduce
noise in measurements, we group every 20 consecutive data
points: If there are more than 10 ‘1’s within these 20 points,
we consider it the beginning of a SYN_REPORT event. Sim-
ilarly, within 20 consecutive data points, if all values are
‘0’s, we consider the event has finished. In practice, these
functions may sometimes take longer to finish so that two
consecutive SYN_REPORT events cannot be separated. To ad-
dress this problem, we first estimated the average interval
between every two consecutive SYN_REPORT events between a
pair of BTN_TOUCH_DOWN and BTN_TOUCH_UP events. An aver-
age value of 11.659ms was calculated from 500 pairs of con-
secutive SYN_REPORT events. Therefore we used such a value
as the threshold in our detection: If the same SYN_REPORT

event does not finish after 11.659ms, we artificially add an-
other event at this point.

Results. We first show that our Flush-Reload-based event
detection can be correlated with both SYN_REPORT events
and counter increments in /proc/interrupts. To do so,
we collected three sequences of events simultaneously while
touching the touchscreen: SYN_REPORT events (through the
getevent command in Android Debug Bridge), counter in-
crements of /proc/interrupts (on Samsung Galaxy S6, the
fts touch device), and our aggregated return-oriented Flush-
Reload detection (described in the above paragraph). These
values are synchronized using timestamps, and reported in
Fig. 5. It is clear the three events can be correlated with
one another (with occasional mismatches). Therefore the
Flush-Reload side channel can replace the procfs side
channels.

7
https://www.uber.com/

0 50 100
Time [ms]

SYN_REPORT

Flush-Reload

Interrupt

600 650 700

Figure 5: Correlations be-
tween events, from top to bot-
tom: SYN_REPORT events, Flush-
Reload, /proc/interrupts.

Unlike procfs side
channels, however, cache
side channels are sub-
ject to noise and may
have both false pos-
itives and false neg-
atives. We manu-
ally generated 10294
SYN_REPORT events and
here report our de-
tection accuracy in Table 4.
Each column represents
the maximal allowed la-
tency: only detection
within the allowed la-
tency (detection should happen after the SYN_REPORT event)
is counted as accurate detection. As such, a false positive
(FP) is defined as an event detection reported without an
corresponding SYN_REPORT event proceeding it; and a false
negative (FN) is counted as one SYN_REPORT event that is not
detected within the allowed latency. We see from the table
when the allowed latency is small (e.g., 400µs), the accuracy
is low. This is because the interrupt dispatcher functions are
called by the driver later than the actual events. But if the
allowed latency is larger (e.g., 1 or 2ms), the FP and FN
rates are much lower. For attacks in [21], latency of 1 or
2ms can be tolerated because the maximum frequency of
touchscreen IRQs is only 135Hz, which means touch events
will be dispatched every 7ms at most; the level of inaccu-
racy (less than 10%) should still permit the unlock pattern
inference attack in [21].

Latency
0.4 0.6 0.8 1.0 1.2 1.4 1.6 1.8 2.0

(ms)
FP(%) 52.8 25.6 9.6 4.5 3.3 3.0 2.7 2.5 2.5
FN(%) 59.2 32.0 16.0 11.0 9.7 9.4 9.1 8.9 8.9

Table 4: Detection accuracy.

5.1.2 Credit Card Scanning
Some Android apps, such as Uber and PayPal, use card.io

libraries developed by PayPal8 to scan credit card informa-
tion from their apps. Although card.io is a 32-bit third-party
library, we can still perform Flush-Reload side-channel at-
tacks on gadgets collected from it. We demonstrate that a
malicious app can accurately detect when the user scans her
credit card from the Uber app using Flush-Reload chan-
nels. Such capabilities, though not dangerous by itself, may
take the places of various procfs side channels [19, 31] and
facilitate other security attacks, such as taking pictures from
the background [19] at the right moment and taking screen-
shots when sensitive information is displayed [31]. Gad-
gets were collected from setScanCardNumberResult, setDe-
tectedCardImage, and scanner_add_frame_with_expiry in
libcardioRecognizer.so. By Flush-Reload these three
gadgets together, we could reliably detect when the user
scans her credit card using the app.

5.2 Tracing Software Execution Paths
It has been shown x86 Flush-Reload attacks can be used

to trace software execution paths [53] in clouds, here we

8
https://www.card.io

demonstrate our return-oriented Flush-Reload side chan-
nels have similar power in mobile devices. Specially, we illus-
trate an interesting attack against SurfaceFlinger, dubbed
the UI tracing attacks. SurfaceFlinger is an important An-
droid component that accepts graphic buffers from multiple
sources, composes the buffers together to resolve inconsis-
tency, and then, upon receiving a vsync signal, sends the
composed graphic buffer to the display (by calling Surface-

Flinger::postFramebuffer()) if there is an update in the
buffer. We show by conducting a Flush-Reload attack on
this function, the malicious app can (1) detect when a no-
tification appears and disappears in the status bar, and (2)
infer the number of characters that the user has typed in a
password field.

Detecting push notifications. An Android push notifi-
cation will be shown on the status bar temporarily once it
is received. Detecting the occurrence of push notifications
may reveal the user’s private action on the smartphone. By
Flush-Reloading the postFramebuffer function, one can
accurately pinpoint the time period that the notification is
listed on the status bar. This capability is shown in Fig. 6a.
In this figure, and also the other two figures in Fig. 6, the X-
axis shows real-time Flush-Reload events (roughly 250K
points per second), and the Y-axis shows the raw values of
Reloads: values higher than 240ns are considered 240ns.
All data points are connected with lines. Therefore a verti-
cal “bar” is actually several data points connected with lines.
From the figure, we can see that the notification showed up
at around 1s, and disappeared at 4s, which is consistent with
the ground truth.

Detecting display updates. Updates to the display can
be reflected by Flush-Reloading the postFramebuffer func-
tion. For instance, On a Discover banking app we down-
loaded from the Google Play Store, a password field in the
user login activity, when focused, will show a blinking cursor
at the frequency of 500ms [1]. As seen in Fig. 6b, The blink-
ing cursor can be detected with a sequence of fast Reloads
(i.e., about 170ns) of the postFramebuffer gadget every
500ms. Moreover, whenever the user types a password, the
display needs to be updated accordingly. Fig. 6c shows five
abnormal display update activities, corresponding to the five
characters typed in the password field. This capability can
leak inter-keystroke information that may lead to password
cracking.

6. COUNTERMEASURES
Disallow user-space cache flushes. By disabling the
system interfaces to flush the instruction caches, the Flush-
Reload side channels can be removed entirely from ARM-
based devices. However, because ARM does not maintain
cache coherence between data caches and instruction caches,
disallowing user-space cache flushes entirely also disables
self-modifying code. That means features like just-in-time
compilation (e.g., heavily used in Dalvik VM) will not work
on Android. An alternative solution is to only disable ex-
plicit cache flush system calls, e.g., clearcache, but allow
implicit cache flushes after mprotect. The feasibility and
security of such a design requires further investigation.

Restrict fine-grained time measurements. Removing
clock_gettime system call and other fine-grained timers
from Android will mitigate all timing side channels. How-

0 1 2 3 4 5
Time (s)

100

120

140

160

180

200

220

240

F
lu

s
h
-R

e
lo

a
d
 O

u
tp

u
t
(n

s
)

(a) Notification detection.

0 1 2 3 4 5
Time (s)

100

120

140

160

180

200

220

240

F
lu

s
h
-R

e
lo

a
d
 O

u
tp

u
t
(n

s
)

(b) Cursor blinking.

0 1 2 3 4 5
Time (s)

100

120

140

160

180

200

220

240

F
lu

s
h
-R

e
lo

a
d
 O

u
tp

u
t
(n

s
)

(c) Five characters entered.

Figure 6: UI tracing attacks.

ever, doing so will make many apps that rely on accurate
time measurement unusable. Moveover, we also note re-
moving these fine-grained timers alone does not guaran-
tee elimination of timing channels. It has been argued by
Wray [48] that reference clocks can be established using
other approaches, such as I/O or memory subsystems.

Prevent physical memory sharing. The return-oriented
Flush-Reload attack on ARM will be completely elimi-
nated if no memory sharing is allowed between apps. How-
ever, the expansion of the memory footprint because of this
method will stress the availability of the physical memory.
The copy-on-access mechanism proposed by Zhou et al. [55]
appears to be the only effective and efficient countermeasure
against Flush-Reload attacks. The method keeps a state
machine to track the sharing of each physical page between
security domains (e.g., containers). Accessing shared page
by any security domain will trigger a page copy thus pre-
venting Flush-Reload based attacks entirely. Given the
low performance overhead of the method, it is probable for
future Android OS or even mainstream Linux kernels to im-
plement such defense methods.

7. RELATED WORK
Cache side-channel attacks. Most prior studies on cache
side-channel attacks focused on caches in x86 architectures,
including data caches (and also per-core L2 unified caches) [23,
24,35,37,38,46], instruction caches [12,13,52], and inclusive
LLCs [16, 22, 25, 26, 28, 33, 36, 49, 50, 53]. ARM-based cache
side-channel attacks have also been studied, but most of
them were in the context of time-driven attacks [43, 45, 47]
(see Sec. 2). Access-driven cache side-channel attacks on
ARM have only been explored by two recent studies [32,44].
Particularly, the attacks presented by Spreitzer et al. [44]
required root privilege and kernel modules to facilitate the
attacks, which have been considered impractical. Most rel-
evant to our work is due to Lipp et al. [32], who explored
Evict-Reload and Prime-Probe attacks on ARM. The
major advantage of the Flush-Reload attacks presented
in our paper is that we do not require knowledge of virtual-
to-physical address translation, which is a necessity in [32].
On Android, such knowledge can only be learned by reading
/proc/<pid>/pagemaps, which is considered a vulnerability
and has already been restricted from mainstream Linux ker-
nels [9] and Android OS [11]9.

9
We noticed that [32] vaguely discussed a Flush-Reload attack ex-

ploiting an inadvertently unlocked flush instruction on Galaxy S6 only

Side channels on Android. Other types of side channels
have also been studied previously. These research are gener-
ally divided into two categories: procfs-based side chan-
nels [19, 21, 30, 31, 39, 51, 54] and sensor-based side chan-
nels [15,17,34]. Our Flush-Reload attacks, as a third type,
can enhance, or be enhanced by, these side-channel attacks.
For instance, Chen et al. [19] studied the use of procfs to de-
tect Android activity transition, which can facilitate our UI
tracing attacks (Sec. 5.2). Moreover, our attack can replace
many procfs-based side channels, if access to this pseudo
file system is restricted, and even achieve finer-grained ob-
servation than existing techniques, for instance, via tracing
software execution paths.

8. CONCLUSION
In this paper, we successfully demonstrated the feasibility

of conducting Flush-Reload side-channel attacks on ARM
last-level caches. Our contributions are at least three-fold:
First, we showed that Flush can be implemented on ARM
by leveraging the clearcache system call that are avail-
able on all ARM-based operating systems (e.g., Android)
for maintaining coherence between the data and instruction
caches. Second, we designed a novel return-oriented Reload
mechanism so that code segments in shared libraries can be
loaded into the instruction caches in units of gadgets, rather
than functions. Third, we studied how these side channels
can be exploited on Android-based mobile devices. We took
into consideration practical issues such as CPU frequency
scaling, thread scheduling, multi-CPU architecture, power
consumption, etc., and demonstrated two categories of at-
tacks on Android: detecting hardware events and tracing
software execution paths.

Acknowledgements
We would like to thank the National Science Foundation for
supporting our research through grant 1566444.

9. REFERENCES
[1] Android source code. https://android.googlesource.

com/platform/frameworks/base/+/master/core/java/
android/widget/Editor.java. Retrieved in May 2016.

[2] ARM architecture reference manual.
http://infocenter.arm.com/. ARMv8, for ARMv8-A
architecture profile, beta.

a few days before the deadline for the final version. We weren’t able
to confirm their result in our study.

[3] ARM architecture reference manual.
http://infocenter.arm.com/. ARMv7, for ARMv7-A
architecture profile.

[4] ARM CoreLink CCI-400 Cache Coherent Interconnect
Technical Reference Manual.
http://infocenter.arm.com/. Revision: r1p5.

[5] ARM Cortex-A15 MPCore Processor.
http://infocenter.arm.com/. Revision: r4p0.

[6] ARM Cortex-A57 MPCore Processor.
http://infocenter.arm.com/. Revision: r1p3.

[7] Event codes. https://www.kernel.org/doc/
Documentation/input/event-codes.txt. event codes -
The Linux Kernel Archives.

[8] GDB documentation.
http://www.gnu.org/software/gdb/documentation/.

[9] pagemap: do not leak physical addresses to
non-privileged userspace.
https://lwn.net/Articles/642074/. Retrieved in May
2016.

[10] Programmer’s Guide for ARMv8-A.
http://infocenter.arm.com/. Version 1.0.

[11] Upstream: pagemap: do not leak physical addresses to
non-privileged userspace. https:
//android-review.googlesource.com/#/c/182766/.
Retrieved in Aug. 2016.

[12] O. Aciiçmez. Yet another microarchitectural attack:
exploiting I-Cache. In 2007 ACM workshop on
Computer security architecture, 2007.

[13] O. Aciiçmez, B. B. Brumley, and P. Grabher. New
results on instruction cache attacks. In 12th
international conference on Cryptographic hardware
and embedded systems, 2010.

[14] V. Afonso, A. Bianchi, Y. Fratantonio, A. Doupe,
M. Polino, P. de Geus, C. Kruegel, and G. Vigna.
Going native: Using a large-scale analysis of android
apps to create a practical native-code sandboxing
policy. In 2016 ISOC Network and Distributed System
Security Symposium, 2016.

[15] A. J. Aviv, B. Sapp, M. Blaze, and J. M. Smith.
Practicality of accelerometer side channels on
smartphones. In 28th Annual Computer Security
Applications Conference, 2012.

[16] N. Benger, J. van de Pol, N. P. Smart, and Y. Yarom.
”Ooh Aah... Just a Little Bit”: A small amount of side
channel can go a long way. In 16th International
Workshop on Cryptographic Hardware and Embedded
Systems, 2014.

[17] L. Cai and H. Chen. Touchlogger: Inferring keystrokes
on touch screen from smartphone motion. In 6th
USENIX Conference on Hot Topics in Security, 2011.

[18] S. Checkoway, L. Davi, A. Dmitrienko, A.-R. Sadeghi,
H. Shacham, and M. Winandy. Return-oriented
programming without returns. In 17th ACM
Conference on Computer and Communications
Security, 2010.

[19] Q. A. Chen, Z. Qian, and Z. M. Mao. Peeking into
your app without actually seeing it: UI state inference
and novel Android attacks. In 23th USENIX Security
Symposium, 2014.

[20] R. Delgado. Arm-based servers: The next evolution of
the cloud?

http://www.cloudcomputing-news.net/news/2015/
apr/17/arm-based-servers-next-evolution-cloud/.

[21] W. Diao, X. Liu, Z. Li, and K. Zhang. No pardon for
the interruption: New inference attacks on android
through interrupt timing analysis. In 37th IEEE
Symposium on Security and Privacy, 2016.

[22] D. Gruss, R. Spreitzer, and S. Mangard. Cache
template attacks: Automating attacks on inclusive
last-level caches. In 24th USENIX Security
Symposium, 2015.

[23] D. Gullasch, E. Bangerter, and S. Krenn. Cache games
– bringing access-based cache attacks on AES to
practice. In 32nd IEEE Symposium on Security and
Privacy, 2011.

[24] R. Hund, C. Willems, and T. Holz. Practical timing
side channel attacks against kernel space ASLR. In
34th IEEE Symposium on Security and Privacy, 2013.

[25] M. S. Inci, B. Gulmezoglu, G. Irazoqui, T. Eisenbarth,
and B. Sunar. Seriously, get off my cloud! cross-vm
rsa key recovery in a public cloud. Cryptology ePrint
Archive, Report 2015/898, 2015.
http://eprint.iacr.org/.

[26] G. Irazoqui, T. Eisenbarth, and B. Sunar. S$A: A
shared cache attack that works across cores and defies
VM sandboxing—and its application to AES. In 36th
IEEE Symposium on Security and Privacy, 2015.

[27] G. Irazoqui, T. Eisenbarth, and B. Sunar. Cross
processor cache attacks. In 11th ACM Asia Conference
on Computer and Communications Security, 2016.

[28] G. Irazoqui, M. S. Inci, T. Eisenbarth, , and B. Sunar.
Wait a minute! a fast, cross-vm attack on AES. In
17th International Symposium Research in Attacks,
Intrusions and Defenses, 2014.

[29] A. Jaleel, E. Borch, M. Bhandaru, S. C. Steely Jr.,
and J. Emer. Achieving non-inclusive cache
performance with inclusive caches: Temporal locality
aware (tla) cache management policies. In 43rd
Annual IEEE/ACM International Symposium on
Microarchitecture.

[30] S. Jana and V. Shmatikov. Memento: Learning secrets
from process footprints. In 33rd IEEE Symposium on
Security and Privacy, 2012.

[31] C.-C. Lin, H. Li, X. Zhou, and X. Wang. Screenmilker:
How to milk your Android screen for secrets. In 21st
ISOC Network and Distributed System Security
Symposium, 2014.

[32] M. Lipp, D. Gruss, R. Spreitzer, C. Maurice, and
S. Mangard. ARMageddon: Cache attacks on mobile
devices. In 25th USENIX Security Symposium, 2016.

[33] F. Liu, Y. Yarom, Q. Ge, G. Heiser, and R. B. Lee.
Last-level cache side-channel attacks are practical. In
36th IEEE Symposium on Security and Privacy, 2015.

[34] Y. Michalevsky, D. Boneh, and G. Nakibly.
Gyrophone: Recognizing speech from gyroscope
signals. In 23rd USENIX Security Symposium, 2014.

[35] M. Neve and J.-P. Seifert. Advances on access-driven
cache attacks on AES. In 13th international
conference on selected areas in cryptography, 2007.

[36] Y. Oren, V. P. Kemerlis, S. Sethumadhavan, and
A. D. Keromytis. The spy in the sandbox: Practical
cache attacks in javascript and their implications. In

22nd ACM SIGSAC Conference on Computer and
Communications Security, 2015.

[37] D. A. Osvik, A. Shamir, and E. Tromer. Cache attacks
and countermeasures: the case of AES. In 6th
Cryptographers’ track at the RSA conference on
Topics in Cryptology, 2006.

[38] C. Percival. Cache missing for fun and profit. In 2005
BSDCan, 2005.

[39] Z. Qian, Z. M. Mao, and Y. Xie. Collaborative TCP
sequence number inference attack: How to crack
sequence number under a second. In 19th ACM
Conference on Computer and Communications
Security, 2012.

[40] H. Rydberg. Multi-touch (mt) protocol. Linux kernel
documentation. https://www.kernel.org/doc/
Documentation/input/multi-touch-protocol.txt.

[41] H. Shacham. The geometry of innocent flesh on the
bone: Return-into-libc without function calls (on the
x86). In 14th ACM Conference on Computer and
Communications Security, 2007.

[42] A. L. Shimpi. Answered by the experts: Arm’s cortex
a53 lead architect, peter greenhalgh.
http://www.anandtech.com/show/7591/
answered-by-the-experts-arms-cortex-a53-lead-architect
-peter-greenhalgh.

[43] R. Spreitzer and B. Gérard. Towards more practical
time-driven cache attacks. In 8th IFIP International
Workshop on Information Security Theory and
Practice, Securing the Internet of Things, 2014.

[44] R. Spreitzer and T. Plos. In 4th International
Workshop on Constructive Side-Channel Analysis and
Secure Design, 2013.

[45] R. Spreitzer and T. Plos. On the applicability of
time-driven cache attacks on mobile devices. In 7th
International Conference on Network and System
Security, 2013.

[46] E. Tromer, D. A. Osvik, and A. Shamir. Efficient
cache attacks on AES, and countermeasures. J.
Cryptol., 23(2):37–71, Jan. 2010.

[47] M. Weiß, B. Heinz, and F. Stumpf. A cache timing
attack on AES in virtualization environments. In 16th
International Conference on Financial Cryptography
and Data Security, 2012.

[48] J. C. Wray. An analysis of covert timing channels. In
1991 IEEE Computer Society Symposium on Research
in Security and Privacy, 1991.

[49] Y. Yarom and N. Benger. Recovering OpenSSL
ECDSA nonces using the FLUSH+RELOAD cache
side-channel attack. In Cryptology ePrint Archive,
2014.

[50] Y. Yarom and K. E. Falkner. FLUSH+RELOAD: A
high resolution, low noise, L3 cache side-channel
attack. In 23rd USENIX Security Symposium, 2014.

[51] N. Zhang, K. Yuan, M. Naveed, X. Zhou, and
X. Wang. Leave me alone: App-level protection
against runtime information gathering on android. In
36th IEEE Symposium on Security and Privacy, 2015.

[52] Y. Zhang, A. Juels, M. K. Reiter, and T. Ristenpart.
Cross-VM side channels and their use to extract
private keys. In 19th ACM Conference on Computer
and Communications Security, 2012.

[53] Y. Zhang, A. Juels, M. K. Reiter, and T. Ristenpart.
Cross-tenant side-channel attacks in PaaS clouds. In
21st ACM Conference on Computer and
Communications Security, 2014.

[54] X. Zhou, S. Demetriou, D. He, M. Naveed, X. Pan,
X. Wang, C. A. Gunter, and K. Nahrstedt. Identity,
location, disease and more: Inferring your secrets from
Android public resources. In 20th ACM Conference on
Computer and Communications Security, 2013.

[55] Z. Zhou, M. K. Reiter, and Y. Zhang. A software
approach to defeating side channels in last-level
caches. In 23rd ACM Conference on Computer and
Communications Security, 2016.

APPENDIX
A. DISSECTING CACHE DIMENSIONS

The ARM specification only specifies the size of cache
lines, leaving the number of cache ways and cache sets cho-
sen by the processor manufacturers. The ARM manufac-
turers, however, usually do not reveal such implementation
details. Moreover, unlike their x86 counterparts, ARM does
not provide unprivileged cpuid instructions to determine
cache dimensions at runtime. We develop methods to pro-
grammatically determine the cache dimensions, which are
useful information for Appendix B and Appendix C. Spe-
cially, a cache’s dimension can be uniquely characterized by
its cache line size L, the number of cache ways W and the
number of cache sets S . The total cache size C is given by
C = L×W × S .

We develop a technique to determine W and S of L1 data
cache, L1 instruction cache and the unified L2 cache by only
using timing information involved in memory accesses. Spe-
cially, our method is a series of hypothesis tests. The null
hypotheses are W = n, where n is some integer. In each test
for the L1 data cache and the L2 cache, we first allocate a
physically consecutive memory buffer that has twice the size
of the cache under testing, 2C . Then we access (by loading)
2n memory addresses m1 ,m2 ,m3 , · · · ,m2n , so that mi −
mi−1 = k, where k takes value from {L, 2L, 4L, · · · ,C/n, · · · }.
The tests for the L1 instruction cache are similar except that
by loading the memory we are executing a dummy function
that implements short instruction sequences starting at ad-
dresses mi which jumps to address mi+1 after execution.

We measure the total execution time of loading (or execut-
ing) the set of memory 1000 times (the memory is preloaded
to eliminate the impact of page faults and TLB misses). We
accept the null hypothesis for each value of n if the 1000
memory access latency is much higher when k = C/n than
others. Otherwise we reject the null hypothesis. This is be-
cause When W = n and k = C/n, mi − mi−1 = L × S .
Hence, the 2n memory accesses land in the same cache
set, and on average n cache miss will take place in each
loop. Therefore, the total execution time is longer because
of 1000n cache misses. In other cases, these memory ac-
cesses do not land in the same cache set, so no cache miss
will be observed. We calibrate the L1 data cache, L1 instruc-
tion and the L2 cache in separate tests. We repeated each
run 20 times for statistical significance. Fig. 7a, Fig. 7b and
Fig. 7c show the memory access latency in the tests where
we correctly guessed W . It is clear in such cases k = C/W
leads to high access latency.

256 512 1K 2K 4K 8K 16K

k

0

50000

100000

150000

200000

250000

T
im

e
 f
o

r
1

0
0

0
 l
o

o
p

s
 (

n
s
)

Nexus 6 (C=16K W=4)

S5-A15 (C=32K W=4)

S5-A7 (C=32K W=4)

S6-A57 (C=32K W=4)

S6-A53 (C=32K W=4)

(a) L1 data cache

256 512 1K 2K 4K 8K 16K

k

0

50000

100000

150000

200000

250000

300000

350000

T
im

e
 f
o

r
1

0
0

0
 l
o

o
p

s
 (

n
s
)

Nexus 6 (C=16K W=4)

S5-A15 (C=32K W=4)

S5-A7 (C=32K W=4)

S6-A57 (C=32K W=4)

S6-A53 (C=32K W=4)

(b) L1 instruction cache

512 1K 2K 4K 8K 16K 32K 64K 128K 256K

k

0

1000000

2000000

3000000

4000000

5000000

6000000

T
im

e
 f
o

r
1

0
0

0
 l
o

o
p

s
 (

n
s
)

Nexus 6 (C=2M W=8)

S5-A15 (C=2M W=16)

S5-A7 (C=512K W=8)

S6-A57 (C=2M W=16)

S6-A53 (C=256K W=16)

(c) L2 cache

Figure 7: Cache dimension test

B. CLEANSING CACHES
In this section, we describe techniques we developed to

completely clease L2 caches on ARM. These techniques are
used in Sec. 3.2, Sec. 3.3 and Appendix C.

Cleansing caches by fetching data. We start by allocat-
ing a memory buffer from which we select N cache-line-sized
memory blocks that all map to the same cache set. These N
memory blocks consist the eviction set. We then from the
same buffer select a disjunct set of 5 memory blocks that
also map to the same cache set. We call this set of 5 blocks
the test set. An eviction strategy defines the size of the evic-
tion set, N , and the order of accessing its memory blocks.
To test the effectiveness of each strategy in cleansing the L2
cache, we first access the eviction set using the underlying
strategy and then immediately afterwards load k (where k
ranges from 1 to 5) memory blocks from the test set. The
above process is repeated 1000 times and the average execu-
tion time of each loop is measured, denoted Tk. The cache
set is completely evicted using the tested eviction strategy
if Ti−Ti−1 are similar in magnitude for i = 2, 3, 4, 5 and are
comparable to the time required for a cache miss.

Cleansing caches by executing instructions. To cleanse
L2 cache by code execution, both the eviction set and the
test set need to be filled with binary code that will transfer
the control flows from one memory block to another, follow-
ing specific order. Successfully doing so requires some engi-
neering efforts. Particularly, we need to place the instruc-
tions in N discontinuous cache-line-aligned memory blocks
that map to the same cache set, and then in each memory
block calculate the virtual address of the next memory block
and jump to the target to fetch the instruction into the L2
cache and L1 instruction cache.

Finding the best cleansing strategies. Each eviction
strategy we explore can be uniquely identified by the size
of the eviction set, N , the shift offset between two mem-
ory access sequences, A, and the number of continuously
visited blocks in each memory access sequence, D (similar
to [32]). The total memory accesses in each eviction strategy
is its cost. Our goal is to find an eviction strategy that com-
pletely evicts a cache set but at the same time has the lowest
cost. In our experiments, we used a brute-force approach to
search the optimal eviction scheme10. The strategies listed
in Table 5, although not optimal, can already cleanse the
entire L2 cache with relatively low costs. We used these
strategies in Sec. 3.2, Sec. 3.3 and Appendix C.

10
Due to implementation complexity to arbitrarily adjust A and D,

we fix them both as 1 in the instruction-based L2 cleansing tests.

Smartphone
Cache d-Strategy i-Strategy
L2 N A D N A D

Nexus 6
2MB

10 1 3 16 1 1
8-way

Samsung S5 (A15)
2MB

17 2 3 24 1 1
16-way

Samsung S5 (A7)
512KB

10 1 2 16 1 1
8-way

Samsung S6 (A57)
2MB

17 2 5 24 1 1
16-way

Samsung S6 (A53)
256KB

20 2 4 24 1 1
16-way

Table 5: Cache cleansing strategy.

C. EXCLUSIVE VS. NON-INCLUSIVE
CACHES

Once the inclusiveness of the L2 cache has been precluded
using methods described in Sec. 3.3, one could conduct the
following experiments (using the same shared native library
and dummy function described in Sec. 3.2) to determine if
it is exclusive or non-inclusive to the L1 data cache.

First, the function code is read as data a few times to load
it into the L1 data cache. Then the same app executes the
function to measure its execution time, T1. The measure-
ment is compared with the results of the second experiment,
in which the L2 cache is cleansed from the instruction side
(see Appendix B) before executing it to ensure L2 cache
misses. The time to execute the function in this case is de-
noted as T2. If T1 � T2, T1 is measured with L2 cache
hits, which suggests reading the function code also brings
the function body into the L2 cache. In this case, the L2
cache is non-inclusive to L1 the data cache; otherwise it is
exclusive to the L1 data cache.

To run the same tests for the instruction cache, we first
execute function a few times to make sure it was loaded
into the L1 instruction cache. Then in the same program,
immediately afterwards, we read the function body as data
and measured the time for loading, denoted T1. In a second
test, the L2 cache is first cleansed from the data side (see
Appendix B) and then the time needed to read the same
function is measured as T2. Essentially, T2 reflects the time
needed to read the function with L2 misses. If T1 � T2, T1

is measured with L2 cache hits, which suggests executing the
function brings the function body into the L2 cache. In this
case, the L2 cache is non-inclusive to L1 instruction cache;
otherwise it is exclusive to L1 instruction cache.

