
PWRLEAK: Exploiting Power Reporting Interface for
Side-channel Attacks on AMD SEV

Wubing Wang1, Mengyuan Li1, Yinqian Zhang2, and Zhiqiang Lin1

1 The Ohio State University, Columbus OH 43210, USA
wang.11488, li.5733, lin.3021@osu.edu

2 Southern University of Science and Technology, Shenzhen, Guangdong, 518055, China
yinqianz@acm.org

Abstract. An increasing number of Trusted Execution Environment (TEE) is
adopting to a variety of commercial products for protecting data security on the
cloud. However, TEEs are still exposed to various side-channel vulnerabilities,
such as execution order-based, timing-based, and power-based vulnerabilities.
While recent hardware is applying various techniques to mitigate order-based
and timing-based side-channel vulnerabilities, power-based side-channel attacks
remain a concern of hardware security, especially for the confidential computing
settings where the server machines are beyond the control of cloud users. In this
paper, we present PWRLEAK, an attack framework that exploits AMD’s power
reporting interfaces to build power side-channel attacks against AMD Secure En-
crypted Virtualization (SEV)-protected VM. We design and implement the attack
framework with three general steps: (1) identify the instruction running inside
AMD SEV, (2) apply a power interpolator to amplify power consumption, in-
cluding an emulation-based interpolator for analyzing purposes and a more gen-
eral interrupt-based interpolator, and (3) infer secrets with various analysis ap-
proaches. A case study of using the emulation-based interpolator to infer the
whole JPEG images processed by libjpeg demonstrates its ability to help ana-
lyze power consumption inside SEV VM. Our end-to-end attacks against Intel’s
Integrated Performance Primitives (Intel IPP) library indicates that PWRLEAK

can be exploited to infer RSA private keys with over 80% accuracy using the
interrupt-based interpolator.

1 Introduction

Private data is becoming an important asset for our society and personal life. More and
more data-driven applications and technologies are introduced to release the value of
data to the greatest extent, which, however, can potentially put personal or technical data
at risk of leakage. Such concerns are especially perceptible in the cloud computing do-
main, where numerous cloud tenants rent cloud services from cloud service providers,
upload and process sensitive data on the cloud. Potential safety hazards can occur in
two ways: (1) malicious cloud tenants steal data from other cloud tenants, and (2) a
curious or malicious cloud service provider monitors or steals data from its cloud ten-
ants directly. Therefore, there is an urgent demand for the industries to come up with
techniques that can guarantee data security in the cloud computing environment.

Trusted Execution Environment (TEE) is one of those techniques that meets the
above requirement and has already been adopted in mainstream cloud service providers,
such as Google cloud [17], Microsoft Azure [37], and Amazon AWS [1]. With the
help of trustworthy hardware (e.g., CPU and memory encryption engine), TEE pro-
vides hardware-guaranteed isolation to protect cloud user’s data from other cloud users
or even the cloud service provider. When TEEs are enabled, even the highest privilege
software (e.g. operating system, hypervisor, etc.) cannot directly access cloud user’s
data. With such promising security guarantee, CPU vendors, such as Intel, AMD or
ARM, all released server-level processors that support TEE features to protect VMs
running on the cloud, including the current available AMD Secure Encrypted Virtu-
alization (SEV) [2], and the upcoming Intel Trust Domain Extensions (TDX) [4] and
ARM Confidential Computing Architecture (ARM CCA) [3].

However, recent research [27,24,31] showed that different types of side-channel at-
tacks could be exploited to steal TEE-protected secrets. Among different types of side-
channel attacks, the power side-channel attack plays a very important role, where the
untrusted cloud service provider can easily collect the power consumption of TEE and
steal secrets. Platypus [31] first examines the threat of software-based power-based side-
channel attacks in cloud-based TEEs. Using power consumption reporting interfaces,
Platypus successfully demonstrates that attackers can obtain power consumption with
instruction-level granularity through APIC interrupts [45], and can use fine-grained
power data to carry out a series of end-to-end attacks, including breaking KASLR and
breaking constant-time cryptographic implementations (AES-NI) used by Intel SGX.
The feasibility of power-based side-channel attacks in SEV was also discussed in [31].

Inspired by previous work, in this paper, we aim to explore the power-based side-
channel attacks in the AMD SEV environment. We introduce PWRLEAK, a software-
based power side-channel framework that analyzes power consumption in AMD SEV-
only VMs (excluding the newer SEV-ES [21] and SEV-SNP [6] versions). Specifically,
PWRLEAK uses the AMD power-reporting features to monitor the program execution
inside AMD SEV VMs, and then infers secrets from the VMs. We first analyze the
possibility of using power information to distinguish instructions in SEV. We show that
different instructions have different power consumption, and the same instruction with
various operands also has distinguishable power differences. Based on such observa-
tion, PWRLEAK makes use of page-table-based controlled channel [24] to intercept
VM’s execution in real-time and then infers the secret inside the SEV VM by inferring
executed instructions and their operands based on distinguishable power consumption.

We test two interpolators that could amplify and produce distinguishable power
consumption of a single instruction on the AMD platform: an emulation-based interpo-
lator and an interrupt-based interpolator. The emulation-based interpolator can acquire
higher-resolution power information by emulating the execution of instructions, which
acts as an ideal tool to compare power consumption for analysis purposes. The more
general interrupt-based interpolator ports an existing APIC-based amplifier introduced
by Platypus [31] to AMD platform and can amplify the power information with in-
terrupts by forcing the re-execution of instructions. To demonstrate the capability of
PWRLEAK, we showed that the emulation-based interpolator can be used to analyze
power consumption inside SEV VM and recover JPEG images processed by libjpeg

2

library. We further demonstrated that PWRLEAK could steal RSA private keys from
the Intel IPP library with over 80% accuracy using the interrupt-based interpolator. To
the best of our knowledge, PWRLEAK is the first power-based side-channel attack that
extracts secrets from AMD SEV-protected VMs. The prototype of PWRLEAK has been
made public available at github.com/OSUSecLab/PWRLEAK. The contributions
of the paper are summarized as follows:

– An instruction-level power consumption study inside SEV VM. We measure
the power-based information leakage towards AMD SEV VMs, and figure out that
the power information can be used to differentiate instructions and their operands
running inside AMD SEV VMs.

– Test power interpolators on AMD SEV. We test two power interpolators that take
advantage of the instruction emulation function or the advanced programmable in-
terrupt controller (APIC) to amplify the power consumption of a single instruction.
We show that these two interpolators are useful to amplify and analyze the energy
consumption of executed instructions in SEV VMs.

– A new attack on AMD SEV VM. We also propose PWRLEAK, a new power attack
framework on AMD SEV VMs, and successfully steal secrets from a VM protected
by the baseline SEV version. The feasibility and limitations of similar attacks but
in newer versions of SEV (SEV-ES and SEV-SNP) and the corresponding counter-
measures are also discussed in the paper.

Responsible disclosure. We disclosed the proposed findings and attacks to AMD in
April 2023. At the time of writing, AMD has acknowledged our findings and provided
a tracking ID for future communications. However, as discussed in Sec. 6, neither attack
method presented in this paper could be directly conducted against the newer versions
of SEV (e.g., SEV-ES and SEV-SNP). The emulation-based interpolator acts as an anal-
ysis tool and is not expected to work for SEV-ES or SEV-SNP. For the interrupt-based
interpolator, our paper makes use of it to demonstrate that power-based side-channel
attacks can work in SEV, but we did not conduct relevant experiments in SEV-ES or
SEV-SNP. We can foresee that there may be a lot of additional noise caused by ad-
ditional protections enabled by SEV-ES and SEV-SNP, such as register encryption or
ownership check, which prevents PWRLEAK from working directly. Therefore, VM
protected by SEV-ES or SEV-SNP will not be affected by PWRLEAK.

2 Background

2.1 AMD Secure Encrypted Virtualization (SEV)

AMD first introduced Secure Encrypted Virtualization (SEV) in 2016 [2], which is a
hardware-based technology designed to protect virtual machines (VMs) against both
privileged software attackers and physical attackers on a remote platform. To protect
the confidentiality of guest VMs’ code and data, SEV provides necessary isolations for
data (e.g., cache and TLB) within the CPU chip, and encrypts VM’s memory using
memory encryption [49]. AMD later introduced SEV-ES (Encrypted State, the second
generation of SEV [21]) to add additional protection towards VM’s unencrypted register

3

github.com/OSUSecLab/PWRLEAK

states during VM-hypervisor world switch. Lately, in order to add additional memory
integrity protection and defend against several controlled-channel attacks (page table
manipulation attacks [48]), AMD introduced the third generation of SEV on Zen 3
architecture, called SEV Secure Nested Paging (SEV-SNP [6]). Due to the strong secu-
rity guarantee and user-friendly mode provided, AMD SEV has already been adopted
by some public cloud service providers, including Google Cloud [17] and Microsoft
Azure [37].

2.2 Hardware Power Reporting Feature

The hardware power reporting interfaces provided by commodity processor vendors,
such as Intel and AMD, allow software to monitor and control CPU’s power consump-
tion. The reporting interfaces related to power consumption specified in the AMD man-
ual [53] include each CPU core’s effective frequency and power consumption:

The Effective Frequency, which monitors the real CPU frequency of each core with
the Max Performance Frequency Clock Count (MPERF) and Actual Performance Fre-
quency Clock Count (APERF) MSR registers. These two registers can be accessed in
kernel mode using rdmsr and wrmsr instructions. Users can calculate the effective
frequency of a core over a software-determined window of time.

Processor Core Power Consumption, which provides power consumption for a given
core over a software-determined time interval in MSR CORE ENERGY STATMSR. The
value of the register is the cumulative energy consumption of a given CPU core. The
sampling interval of MSR CORE ENERGY STAT is 1 ms. Compared to the power in-
terfaces in Intel Processors, which have a 50 µs sampling interval, AMD processors
sample power consumption in a much coarser granularity.

2.3 Power-based Side-channel Attacks

Power-based side-channel attacks exploit the collected power information to distinguish
victim’s behaviors or infer secret from the victim. The power-based side-channel attacks
can be further classified as hardware-based power attacks and software-based power
attacks.

Hardware-based Power Side-channel Attacks. The hardware-based power attacks
can usually acquire power consumption data with a higher granularity using an inde-
pendent device. Existing attacks showed that power consumption data collected in this
way could help an attacker identify the executed instruction [46,43,42] or infer the ex-
ecution trace of programs [16]. Lately, researchers showed that hardware-based power
side-channel attacks could successfully steal the RSA private key algorithm [20,54] or
AES private keys [38,13,41].

Software-based Power Side-channel attacks. Software-based power side-channel at-
tacks rely on software-based power reporting interfaces to collect power consumption
data. There are many efforts to explore software-based power side channels in smart-
phones [12,36], which could fingerprint application being used or identify user’s move-
ment. Recent work in the past few years has used software-based power side channels

4

to break isolation protections provided by modern desktop or server processors. The
two most relevant papers related to this article include Platypus [31], which focuses on
attacking Intel SGX, and another software-based power side-channel attack [30], which
focuses on AMD CPUs. On Intel CPUs, Platypus attacks [31] showed for the first time
that attackers could distinguish different executed instructions and their operands by
collecting power consumption information from the Intel Running Average Power Limit
(RAPL) interface. With the help of APIC-timer interrupt, the attacker could get execu-
tion control with instruction-level granularity. These side-channel information could
later be used to leak secret keys from the constant-time AES-NI implementation used
by Intel SGX, break KASLR, and establish a time-independent convert channel. The
power consumption of different instructions, but in AMD ’s Zen microarchitecture, and
the feasibility of power-based side-channel attacks in SEV was also studied or discussed
in the paper. Lipp et al. [30] later demonstrated the danger of power-based side-channel
attacks in modern AMD processors through several end-to-end attacks, which success-
fully broke KASLR, stole kernel secrets and established a covert channel from unprivi-
leged attackers. In their attacks, they combined power consumption with prefetch to
infer system states and steal secrets. Inspired by those existing papers, in our paper, we
focus on AMD’s Zen microarchitecture and explore the feasibility of stealing secrets
from AMD SEV-protected VMs using software-based power side-channel attacks.

2.4 Common Power Analysis Methods

Simple Power Analysis method and Cross Correlation Analysis method are two meth-
ods widely used in power-based side channel attacks. Simple Power Analysis (SPA)
is a technique that differentiates various operations by distinguishing individual power
patterns [52]. Based on the method used to recognize and distinguish power patterns,
the SPA attack can be further categorized into two types: the visual SPA attack [33]
and the template-based SPA attack [11]. The visual SPA attack manually inspects and
recognizes the difference in the power traces, and the template-based SPA attack uses
the extracted mathematical statistic template to analyze the power traces. Cross Corre-
lation Analysis (CCA) [34] uses the correlation coefficient to measure power traces to
differentiate two inputs. Specifically, if two inputs are similar, the correlation coefficient
value is high; otherwise, the correlation coefficient value is low.

Power consumption sampling with instruction-level granularity. To achieve a sam-
pling rate with instruction-level granularity, previous attacks [31,27] usually utilized
APIC timer interrupts to allow the target to execute a single or multiple instructions
before being halted. On Intel platforms, SGX-STEP [45] first showed that an attacker
could use APIC timer interrupts to execute zero-step or single-step SGX enclaves with
instruction-level granularity. Platypus [31] then first combined this timer interrupt-based
technique together with the power consumption interface to reveal the relationship be-
tween power consumption and different instructions. A similar methodology was also
studied on the AMD platform to monitor the states of SEV VMs. CipherLeaks at-
tack [27] used the APIC timer interrupt to step AMD SEV VM’s execution inside an
instruction page. In this paper, we collect the power consumption at the instruction level
by adopting the same APIC-based sampling method presented in Platypus [31].

5

3 Exploring Power Consumption Leakage

This section consists of several experiments that aim to exploit the ability of hardware
power reporting interfaces in AMD platform and collect the ground truth of the rela-
tionship between the power consumption with behaviors of a SEV-protected VM. All
the experiments were conducted on a blade server with an 8-Core AMD EPYC 7251
Processor. The host OS runs Ubuntu 64-bit 18.04 with kernel version 4.20.0. The guest
VMs run the same kernel version and are configured with 4 virtual CPUs, 4 GB mem-
ory, and 30 GB local disk as SEV official GitHub repository suggested [8].

3.1 Synchronous Power Measurement

To accurately measure power consumption, we first introduce a synchronous power
measurement method to collect the ground truth and explore the relationship between
instructions and the corresponding power consumption. More specifically, we first mod-
ified the CPUID handler in the KVM to act as an indicator of the start and end of a
power trace, so that we could accurately locate the measured behaviors inside the VM.
Then, for each instruction to be tested, we used two CPUID instructions to indicate the
start and end points. We executed each instruction 100, 000 times inside the VM, and
measured the overall power consumption on the CPU core. By dividing the total power
consumption by 100, 000, we could know the power consumption of that instruction.
Although the power consumption of CPUID is also included in the results, it is negligi-
ble compared to the power consumption caused by 100, 000 repeated instructions.

3.2 Instruction Power Consumption

Our experiment results showed that even under the protection of AMD SEV, different
instructions, different operands, and different loaded data all produce distinguishable
power consumption-based side-channel information.

Instruction Core Power Instruction Core Power
(104mW) (104mW)

aesdec xmm1, xmm2 4.266 inc r64 1.488
aesdeclast xmm1, xmm2 4.166 mov mem, r64 1.700
aesenc xmm1, xmm2 5.340 mov r64, r64 0.387
aesenclast xmm1, xmm2 5.251 clflush mem 69.600
aesimc xmm1, xmm2 1.123 xor r64, r64 1.444
pclmullqlqdq xmm1, xmm2 7.150 fscale 40.599
dec r64 1.511 nop 0.554
imul r64, r64 4.633 rdrand r64 29.540

Table 1: Energy consumption of instructions.
Distinguishing Instructions. With the synchronous power measurement approach, we
measure the power consumption of the instructions 100, 000 times and calculate the
median power consumption of each instruction. We choose instructions that are com-
monly used and related to cryptography for demonstration. The data are reported in
Table 1. There are four columns in this table; the first and the third column are the
instructions been tested, and the second and the fourth column are the core power con-
sumption for the given instruction. For instance, running instruction aesdec 100, 000
times consumes 4.266 x 104 milliwatts. The differences in power consumption among

6

the various instructions are noticeable. For instance, the aesdec instruction between
two registers has 4.26 x 104 core power consumption, while the aesenc instruction
between two registers has 5.34 x 104 core power consumption.

Distinguishing Operands. The power information can also be used to differentiate
operands of the same instruction. Furthermore, we collected and explored the power
difference caused by different operands of the same instruction. Our evaluation sug-
gests that the exact value of the operands is hard to be distinguished. However, operands
with different Hamming weights can be differentiated. We use the imul instruction to
demonstrate this result. For the operand (64-bit), we selected operands with Hamming
weights of 0, 32, and 64 bits. We measured each operand 100, 000 times and got the
maximum and minimum value of energy consumption. After dividing the energy inter-
val into five even groups, we counted the number of results for each interval. As shown
in Fig. 1(a), the x-axis is the group number, with the energy consumption of each group
sorted by ascending order; the y-axis is the percentage of the result that each group con-
tains. In summary, the energy difference in the operand with various Hamming weights
is observable; the operand with a lower Hamming weight has relatively less energy
consumption.

0 1 2 3 4
Groups (Ascending Order of Energy Consumption)

0

10

20

30

40

50

60

D
en

si
ty
 (
%
)

0
32
64

(a) imul

0 2 4 6 8
Hamming Weight of byte value accessed

0.0

0.5

1.0

1.5

2.0

2.5

3.0

3.5

4.0

En
er
gy

 (
x1

04
)

(b) movb

Fig. 1: Power difference because of operand’s hamming weights.

Distinguishing Loaded Data. Similarly, we measured the relationship between the data
loaded from the cache and their power consumption. We used the movb instruction to
demonstrate this experiment, which could read one byte of data from the cache line. We
generated 256 different pieces of data, which cover all possible values for a byte, and
categorized them into nine different groups based on the Hamming weight (e.g. 0, 1, 2,
. . . , 8). After measuring the power consumption that loads every data 100, 000 times,
we calculated the average power consumption of the data in each of the nine groups
and presented the result in Fig. 1(b). The x-axis is the Hamming weight of each group,
and the y-axis is the average power consumption of each group. The results suggest that
loading the data with larger Hamming weights could consume more energy, which is
distinguishable.

4 PWRLEAK Design

In this section, we present PWRLEAK, an attack framework to differentiate power con-
sumption caused by instructions running inside SEV-protected VMs, and steal secrets
from the victim VM.

7

4.1 Threat Model

In this paper, we consider the same threat model as AMD SEV’s threat model [2], where
the adversary is a privileged software attacker who does not know the data protected by
the SEV-enabled guest VM, and cannot control any program running inside the guest
VM. We further assume that the adversary has the pre-knowledge of the target pro-
gram’s binary running inside the VM (e.g., a specific cryptography library), including
detailed information such as control flow and function calls of the target program.

4.2 Overview of PWRLEAK

Even though our synchronous power measurement (discussed in Sec. 3) suggests that
different behaviors inside SEV VMs lead to different power consumption. There are
two main challenges left for a real world power-based side-channel attack. First, the
synchronous power measurement approach used to measure repeated instructions is
not practical. Second, the low power consumption sampling rate (1 ms) in AMD pro-
cessors also limits the practicality of a real attack. To overcome these two challenges,
we introduce PWRLEAK, whose general components are shown in Figure 2. Instruc-
tion Identification is a component used to locate some target instructions in a specific
program running inside VMs. Power Interpolator is a component that can amplify the
power consumption of target instructions, so that the amplified power data is sufficient
for PWRLEAK to distinguish different instructions via AMD’s coarse-grain hardware
power reporting interfaces. Power Attack is a component that can run offline, possibly
on a separate machine, and infers secrets by analyzing the collected power data.

Hypervisor

Instruction
Identification

Power
Interpolator

Power AttackSEV VMs

Power
Data

Fig. 2: PWRLEAK Overview.

Instruction Identification. To locate a specific instruction of the program running in-
side AMD SEV VMs, we use both the page-level memory access pattern [51] and the
APIC single-step [45]. We first locate the page of the target instruction with the page-
level memory access pattern, then use APIC single-step to further locate the target in-
struction inside this page. Need to note that the attacker can directly check the rip
register to get the number of executed instructions. For a newer version such as SEV-
ES or SEV-SNP, the attacker may need to check the ciphertext of the rip register to
distinguish a single-step from a zero-step.

Power Interpolator. After locating the instruction, we measure the power consump-
tion of these instructions by monitoring the core energy consumption MSR register
(MSR CORE ENERGY STAT). As the register is updated in a related low rate (e.g.,
1ms), it is hard to measure the power consumption of a small gadget of instructions

8

(i.e. one instruction). To solve this problem, in Sec. 4.4, we test two power interpolators
that can be used to amplify the power consumption of a single instruction.

Power Attack. Finally, the attackers conduct a power attack by analyzing the power
consumption. As we assume that the attacker has knowledge about the program binary
to be attacked, the secret about this program can be inferred by distinguishing different
operations in critical locations.

4.3 Instruction Identification

To perform the attack, the adversary first needs to pinpoint a specific location (e.g., an
instruction inside its instruction page) in the program. In this work, we use the page
sequence matching to pinpoint an instruction page, and use the SEV VM single-step to
step to an instruction.

Page Sequence Matching. Previous works [51] have proved that the page sequence
caused by page faults can be used by the adversary to successfully locate a certain
instruction page of a target program. Similarly, in the SEV environment, the adversary
collects the page fault sequence for the known target binary and uses this sequence to
identify the target instruction page.

To trigger and monitor the page-level access pattern, we first clear the present bit
in the page table entry for all pages mapped to the VM. Then we monitor the VMEXIT
event (e.g., the handle exit function in the kernel). When the VMEXIT is triggered
by a page fault, we collect the corresponding page address. Finally, PWRLEAK identi-
fies the specific instruction page using the pre-collected page access pattern.

Unlike the traditional page table walk, SEV adopts a nested page table to maintain
the address transmission between the guest virtual address (GVA) and the host physical
address (HPA). Specifically, the nested page table consists of a guest page table and
a host page table. The guest page table maintains the mapping between GVA and the
guest physical address (GPA), and is within the protection of SEV. The host page table
maintains the mapping between GPA and HPA and is under the hypervisor’s control.
Thus, the privileged adversary knows the mapping between GPA and HPA, but will not
directly know the relationship between GVA and GPA. Therefore, instead of directly
using the GPA to construct the page access pattern, PWRLEAK uses the address interval
between two consecutive pages. For instance, we let pi be the GPA of the ith page
access. Then, the page access pattern can be presented as the following: S = {p1 −
p0, p2 − p1, · · · , pi − pi−1, · · · }.
SEV VM Single-step. To further improve the attack, it is necessary to narrow down
the granularity of the attack to several instructions. PWRLEAK uses the APIC-based
single-step to identify the instruction in which we are interested. Similarly to the method
introduced in Platypus [31], SGX-Step [45] and Cipherleaks [27], we use the APIC
interrupt to force the VM to VMEXIT after a single instruction. By carefully setting the
APIC interrupt’s timer, the program running inside the SEV VM can be single-stepped.

In particular, as shown in Figure 3, the first APIC interrupt arrives when the SEV
VM is executing instruction 0, which raises a VMEXIT after instruction 0 is retired.
After the VMEXIT is handled properly by the hypervisor, the hypervisor will execute
the VMRUN instruction. After all guest states are restored, the next instruction 1 in the

9

Hypervisor

SEV VMs
Program Execution Sequence

Inst 0

APIC
Interrupt

Store Guest
State

VC

VMEXIT
Handler

Restore Guest
State

VMRUNVMEXIT

Inst 1

VC VC

------- Single Step
------- Interpolator

Fig. 3: APIC for the single-step and interpolator.
guest VM will be executed and the instruction pointer will be advanced. Meanwhile, the
attacker can set the APIC timer in the VMEXIT handler, so that the next APIC interrupt
arrives when instruction 1 is executing (shown in blue lines in Figure 3). Because of the
second interrupt, another exception will be raised after instruction 1 is retired, which
forces another VMEXIT and is trapped by attacker-controlled VMEXIT handler. In this
way, the attacker can single-step the SEV VM.

In SEV-ES and SEV-SNP, the instruction pointer to be interrupted is encrypted and
stored in an area called the VM Save Area (VMSA) during VMEXIT. Thus, the at-
tacker cannot directly trace the execution of instructions. However, the attacker could
still know whether the instruction pointer is advanced by monitoring the change of the
encrypted instruction pointer inside VMSA. With the knowledge about the program
context, the attacker knows the distance to the instruction in which the attacker is inter-
ested, therefore, allows the attacker to single-step the target instruction.

4.4 Power Interpolator

Limited by AMD’s coarse-grained power consumption interface, a power interpolator
is introduced to amplify the power consumption of the target instruction. PWRLEAK
tests two interpolators: emulation-based and the existing interrupt-based interpolators.
The emulation-based interpolator can be used to emulate a single instruction multiply
times to amplify its power consumption, which is used by as an analysis tool to collect
power consumption from a SEV VM. It’s important to note that the emulation-based
interpolator is only compatible with SEV VM and cannot be used with SEV-ES or
SEV-SNP VM whose register states are encrypted during VMEXIT. The interrupt-based
interpolator is a more general method that could be potentially applied to SEV-ES and
SEV-SNP but with lots of noise. More discussion of their pros and cons, as well as their
applicability in SEV-ES and SEV-SNP is covered in Sec. 6.

Emulation-based Interpolator. Emulation-based interpolator modifies the kernel in-
struction emulation function to amplify the power consumption. KVM emulates the
execution of the instruction that raises the exception in its handler using an emula-
tion function to ensure that the same exception doesn’t raise right after VMRUN. This
function (x86 emulate instruction) emulates the execution behavior of the in-
struction, for instance, accessing a specific memory location.

To deploy the emulation-based interpolator, PWRLEAK implements our own in-
struction emulation function by extending the x86 emulate instruction func-
tion. In its original implementation, only instructions that access memory are emulated.
We further extend the capability of the emulation function by emulating other instruc-
tions. Particularly, for those instructions that do not have memory access, we obtain the

10

corresponding system states (e.g., the value of registers) from the virtual machine con-
trol block (VMCB), and retrieve the instruction to be emulated using single-step and
the program context . Finally, we execute the instruction directly in the hypervisor.

To apply this emulation-based interpolator for power analysis, PWRLEAK first hooks
the VMEXIT handler. When the target instruction is interrupted, the VMEXIT trampo-
line handler is called. PWRLEAK forces the instruction to be emulated multiple times
in the trampoline handler, surrounded by the instruction that reads the power consump-
tion. The emulation-based interpolator can be used as a tool to analyze power-based
vulnerabilities by precisely collecting the power consumption of specific instructions.
Even the emulation-based approach works well in SEV, it cannot be recognized as an
effective attack method because an attacker can directly read the values of registers in
SEV, and such information leakage will cause more severe leaks. Meanwhile, this ap-
proach is limited by SEV-ES and SEV-SNP. SEV-ES and SEV-SNP would encrypt the
Virtual Machine Save Area (VMSA), which stores all VM’s state-related data. It would
prevent the emulation-based interpolator from obtaining the register values. Therefore,
the emulation-based interpolator cannot work with in the machine that supports SEV-ES
and SEV-SNP.

Interrupt-based Interpolator. The interrupt-based interpolator is considered to be a
more general approach. In this paper, we have shown that it is feasible to use this ap-
proach in the baseline SEV, and similar approaches may also potentially work with
SEV-ES or SEV-SNP. Specifically, by setting a value to the APIC timer, the attacker
can control where the APIC interrupt arrives. The single-step makes the interrupt ar-
rive when executing the first instruction after the VMRUN. Similar to the single-step,
by setting a small APIC interval, the interrupt-based interpolator makes the interrupt
arrive at the SEV VM within the VMRUN; thus, the exception will be raised before
the next guest instruction has been executed, and the instruction pointer of the guest
VM will not be advanced (shown in red lines in Figure 3). In our experiment setup,
the attacker conservatively underestimates the APIC interval and can directly verify
whether the instruction is zero-stepped by checking the unencrypted rip register in-
side the SEV VM’s VM control block. While this paper did not test for it, attackers
may still be able to determine whether a zero-step or single-step occurred in SEV-ES
or SEV-SNP environment through other side-channel information, such as observing
changes in the ciphertext of the rip register, or by monitoring performance counters.
With the interrupt-based interpolator approach, the attacker can force the VMRUN or tar-
get instruction in the VM to be executed multiple times for measurement purposes [31].
However, the root reason of distinguishable power consumption of an instruction ampli-
fied by interrupt-based interpolator is not verified by the paper. The power consumption
difference could be introduced by different hamming weight in VMCB or be introduced
by transient execution of the next instruction.

4.5 Power Attack

After amplifying and measuring the power consumption of the instructions with the
power interpolator, PWRLEAK uses the power information to infer the secret. For op-
erations with noticeable differences in power consumption, PWRLEAK uses the Simple

11

Power Analysis (SPA) attack to infer the secret. PWRLEAK uses the cross correlation
analysis (CCA) to infer the secret in those applications for which SPA fails.

5 Evaluation

In this section, we evaluate PWRLEAK using two case studies. We first present how to
use only the emulation-based interpolator to analyze the power leakage from libjpeg,
and then demonstrate the attack targeting an RSA implementation with the interrupt-
based interpolator. The evaluation settings are identical as the experiment settings in
Sec. 3, excepting the attacker now doesn’t control the SEV-protected VM.

5.1 Infer Images from libjpeg

Libjpeg is a widely used image-rendering library that offers lossy image compression
and decompression implementations. The input of the libjpeg library is a bitmap image.
The decoding of a JPEG image transfer a bitmap image into blocks with 8x8 pixels with
three steps: decompression, dequantization, and inverse discrete cosine transformation
(IDCT). The encoding procedure transfers blocks to a bitmap image with discrete co-
sine transform, quantization, and compression. The JPEG image is shown on the screen
based on the decoded pixels. With enough information about each 8x8 pixels, adver-
saries can recover the whole JPEG image.

1 i n t j p e g i d c t i s l o w (j d e c o m p r e s s p t r c i n f o ,
2 jpeg component in fo * compptr , JCOEFPTR c o e f b l o c k ,
3 JSAMPARRAY output buf , JDIMENSION o u t p u t c o l) {
4 . . .
5 / * Pass 1 : p r o c e s s columns from input . * /
6 i n p t r = c o e f b l o c k ;
7 f o r (c t r = DCTSIZE; c t r > 0; c tr − −) {
8 i f (i n p t r [DCTSIZE*1]==0 && i n p t r [DCTSIZE*2]==0 &&
9 i n p t r [DCTSIZE*3]==0 && i n p t r [DCTSIZE*4]==0 &&

10 i n p t r [DCTSIZE*5]==0 && i n p t r [DCTSIZE*6]==0 &&
11 i n p t r [DCTSIZE*7]==0) {
12 −−−− Simple C a l c u l a t i o n −−−
13 c o n t in u e ;}
14 −−− Complex C a l c u l a t i o n −−−
15 }
16 / * Pass 2 : p r o c e s s rows from work array . * /
17 wsptr = workspace ;
18 f o r (c t r = 0; c t r < DCTSIZE; c t r ++) {
19 # i f n d e f NO ZERO ROW TEST
20 i f (wsptr [1]==0&& wsptr [2]==0&& wsptr [3]==0&&
21 wsptr [4]==0&& wsptr [5]==0&& wsptr [6]==0&&
22 wsptr [7] = = 0) {
23 −−−− Simple C a l c u l a t i o n −−−
24 c o n t in u e ; }

26 # e n d i f
27 −−− Complex C a l c u l a t i o n −−−
28 −−− (with a l o t o f m u l t i p l i c a t i o n c a l c u l a t i o n s) −−−
29 }}

Fig. 4: IDCT function in libjpeg.

In IDCT algorithm [29], there
are two loops to handle a block
(i.e. eight columns and eight
rows). A simple calculation ap-
plies when all elements in a row
or a column are zeros; otherwise,
a complex calculation with more
page faults applies. The attacker
can then infer the value of each
block by normalizing the number
of data-page faults. To mitigate
this vulnerability, libjpeg (version
6b, Figure 4) implemented the flag
NO ZERO ROW TEST. When the
flag is enabled, all rows use com-
plex calculation, thus page faults
can not infer data in rows. Thus in-
creases the difficulty of using only
page fault information to recover
JPEG images.

In this experiment, we demonstrate that the power information can further be ex-
ploited to infer rows in JPEG images on the IDCT implementation of the newest libjpeg
library. We first present that the power-based attack is also useful when the program is
vulnerable to order-based attacks. Using the emulation-based interpolator to measure

12

the power consumption of the simple and the complex calculations (wherein the in-
put is a column with four pixels equals 0) and using the SPA to analyze the results.
Particularly, we amplified some target instructions 100, 000 times, measured the power
consumption, and inferred the instruction and the secret. The results are presented in
Figure 5(a), which indicates that the power of the simple and complex calculations can
be easily distinguished with the emulation-based interpolator.

0 200 400 600 800 1000
Energy (x104)

0

2000

4000

6000

8000

10000

12000

N
um

be
r
of
 c
as

es

Simple Calculation
Complex Calculation

(a) Columns Processing

100 200 300 400 500 600 700 800
Energy (x104)

0

2000

4000

6000

8000

10000

12000

N
um

be
r
of
 c
as
es

Eight Zeros
Four Zeros

(b) Rows Processing

Fig. 5: Energy Consumption of Emulation-based Interpolator.

Then, we demonstrate the power information is another covert channel when order-
based attacks is mitigated. To analyze the energy consumption of rows of JPEG images,
we use emulation-based approach to simulate/collect the power consumption. We mea-
sured the power consumption of each instruction 100, 000 times and amplified each
one 100, 000 times with the emulation-based interpolator. Finally, we applied the SPA
to analyze the results. The results are presented in Figure 5(b), where the blue bars are
the rows with all bits (except the first one) as zeros, and the orange bars are the rows
with the Hamming weight equal to 4. The result indicates that these two conditions are
discernible. This is because one of the most energy-consuming calculations is multipli-
cation, which consumes much less energy when multiplying by 0. While this paper did
not reconstruct the JPEG image, attackers may still be able to recover the whole image
as the columns and rows with all bits as zeros is discernible [51].

5.2 Steal Private Exponent in RSA

RSA is a widely used asymmetric cryptographic algorithm. Modular exponentiation
is one of the most important components of the RSA algorithm. To mitigate attacks
such as SPA [33] and DPA [22], the modular exponentiation algorithm with message
blinding [14,44] was discovered (as shown in Algorithm 1) by introducing a random
variable. However, attackers could still exploit this algorithm when they can discover
the correlation between the private exponent and the power consumption.

Here we targeted at a non-constant time RSA implementation of Intel’s Integrated
Performance Primitives (Intel IPP) library [19] with modular exponentiation algorithm
with message blinding, and we exploited both emulation-based and interrupt-based in-
terpolators to infer the private exponent. The RSA implementation in the IPP library
first calls the ippsRSA Decrypt / ippsRSA Encrypt function and then selects
the actual function (e.g., gsRSAprv cipher) for the encryption and the decryption
based on the instruction set supported by the CPU. We evaluated the effect of the power-
based attacks on it with a 512-bit RSA private exponent.

13

Interrupt-based Interpolator. Firstly, we try to exploit the interrupt-based interpolator
on a modular exponentiation algorithm with message blinding. As the algorithm runs

Algorithm 1: Modular Exponentia-
tion

Input: x, n, d=(de−1, de−2, · · · , d2, d1, d0),
a=r − 1 mod n (r is a random number)
Output: xd mod n
begin

T[0]← a, T[1]← x*r mod n, z← r mod x
foreach i = e− 1 to 0 do

z← z*z mod n, z← z*T[di] mod n
end
z=z*a mod n
return z

end

inside the SEV, neither plaintext nor
ciphertext are available to adversaries.
Thus, the CCA attack [34,23] is se-
lected. The underlying assumption of
the CCA attack is that the correlation
coefficient of the power consumption
between two “z = z ∗ T [di] mod n”
operations would be higher if the val-
ues of two T [di]s are the same. Other-
wise, the correlation coefficient would
be relatively low.

Power Trace Collection. For verification purposes, we use a relatively short RSA
private exponent (512-bit) to decrypt a ciphertext in this experiment. To collect the
power traces of the RSA operation, we focus on the “z = z ∗ T [di] mod n” opera-
tion in each iteration. For each instruction of this operation, we apply the interrupted-
based interpolator to amplify the power consumption of each instruction N times (zero-
stepping). As N increases, the precision of instruction’s power consumption also be-
comes greater. Then, we organize all the power information collected into our defined
format (as shown in Definition 1). In total, 3, 000, 000 power traces were collected.

Definition 1 Let Pi = {Pi0, Pi1, · · · , Pir} be the power trace of ith execution of the
RSA decryption operation, and in total r power traces collected. Pij = {ei,j,0, ei,j,1,
· · · , ei,j,k} corresponding to the power information of the jth iteration of the multipli-
cation operation (“z = z ∗ T [di] mod n”) for the ith power trace. This multiplication
operation has k instructions, and ei,j,k indicates the power consumption of the kth
instruction in it.

Correlation Calculation. To calculate the correlation coefficient, we first randomly
select a jth bit as the reference bit. Then we calculate the Pearson correlation coefficient
of power consumption between the jth bit and all other bits with the equation shown in
Equation 1 [50]. The result of this equation is the correlation coefficient of the power
consumption for the same instruction between different bits in the private exponent.

ρ(Pij1, Pij2) =
∑r−1

i=0 (ei,j1,1ei,j2,1)−
∑r−1

i=0
ei,j1,1

∑r−1
i=0

ei,j2,1
r√

(
∑r−1

i=0 e2i,j1,1−
(
∑r−1

i=0
ei,j1,1)2

r)

√
(
∑r−1

i=0 e2i,j2,1−
(
∑r−1

i=0
ei,j2,1)2

r)

(1)

An example of this algorithm is shown in Figure 6. Each column is the power con-
sumption of an instruction in the operation “z = z ∗ T [di] mod n”. For instance, the
first red column is the power consumption of the first instruction in the operation when
processing bit 0, and the second red column is the power consumption of the first in-
struction when processing bit j. We calculate the power correlation between the same
instruction in different bits; thus, 512 correlations are calculated for each instruction.
When the operation “z = z∗T [di] mod n” consists of k instructions, 512∗k correlations
are calculated in total.

14

Pi0

eij0 eij1 eij2 eij3 eij4 … eijk
Pi :

Bit 0

ei00 ei01 ei02 ei03 ei04 … ei0k …

e0j0 e0j1 e0j2 e0j3 e0j4 … e0jkP0 : e000 e001 e002 e003 e004 … e00k …

e1j0 e1j1 e1j2 e1j3 e1j4 … e1jkP1 : e100 e101 e102 e103 e104 … e10k …

e2j0 e2j1 e2j2 e2j3 e2j4 … e2jk
P2 : e200 e201 e202 e203 e004 … e00k …

… … … … … … …… … … … … … … …

e.g., 510

C0jk

Bit j

Pij

kFig. 6: Correlation Calculation Algorithm.

Exploit Key Bits. We use the correlation coefficient to distinguish bits in the private
exponent [47]. In particular, a higher correlation coefficient indicates that two bits (e.g.,
T [0] or T [1]) are the same. A relatively low correlation coefficient means that either two
bits are different, or a significant amount of noise is included in the power information.
As the noise introduced by the APIC interrupt and the system (e.g., random time delay,
random clock, etc.) could affect the result of the correlation coefficient, we only keep
those instructions that have a high correlation coefficient. In particular, the following
two steps are used:

• We filter the noise with an intermediate value, the variance. As shown in Figure 7a,
each row consists of correlation values of the same instruction from various bits. We
first calculate the variance for each instruction (each row), then keep those instruc-
tions with a relatively higher variance. A higher variance (peaks in Figure 7b) means
that the power information of this instruction can help infer the private exponent.

• Then, we add up the correlation coefficient of these selected instructions (e.g., rows
in red in Figure 7a) for each bit, then deduce the private exponent based on the
value of the summed correlation coefficients with the threshold-based approach. A
higher sum of the correlation coefficient means that this bit has a higher chance to
be the same as the reference bit. A lower correlation indicates that this bit has higher
probability to be opposite to the reference bit. Thus, an attacker can use correlation
analysis to infer the value of each bit and have different levels of confidence in the
predicted value of each bit.

Evaluation Results. We randomly generated a 512-bit RSA key using openssl and used
the two interpolators discussed above to recover the private exponent. To recover this
RSA key (private exponent), we recorded 3, 000, 000 traces in total.

Interrupted-based Interpolator. The interrupted-based interpolator method could cor-
rectly infer 427 out of 512 bits of the private exponent by comparing with the correct
key. With only correlation values, it is hard to know which bits of the key do not recover
correctly. When comparing this result with other works with a recovery rate greater than
90% [5], the lower recovery rate of the interrupt-based interpolator indicates that this
approach is affected by some noise. Such noise might be averaged out with the increas-
ing number of traces collected, we leave this for future work. However, the time needed
for collecting power consumption data also increases with the number of traces, and in
the experiment described in the paper, collecting 3 million traces took around 80 hours.

15

C0j0…C050C040C010C000 C020 C030

C0j1…C051C041C011C001 C021 C031

……………… … …

C0jk…C05kC04kC01kC00k C02k C03k

Inst 0:

Inst 1:

Inst k:

Bit 0 Bit 1 Bit 2 Bit 3 Bit 4 Bit 5 Bit j

Sum

(a) Noise Filtering.

0 10 20 30 40 50
Power Points

0.10

0.15

0.20

0.25

0.30

Va
ri
an

ce

(b) Correlation Coefficient.

Fig. 7: Interrupt-based Interpolator.

Emulation-based Interpolator. With the same approach discussed above, we mea-
sured the power consumption of each instruction in the operation “z ← z*T[di] mod
n” with the emulation-based interpolator. In particular, for the evaluation purpose, we
generated the RSA key pair with a 512-bit modulus. For each instruction, we applied
the emulation-based interpolator to amplify the power consumption 100, 000 times. In
total, 1, 000, 000 different power traces were collected. After applying the CCA attack,
we successfully recovered the private exponent without an error.

6 Discussion

Countermeasures. The power-based side-channel attack needs to gather fine-grained
power information during run-time in order to analyze and infer secret using the col-
lected data. Thus, adding additional noise may be one potential way to prevent power-
based side-channel attacks. The power-based side-channel attack could be prevented
if the hardware or the VM itself could add noises during run-time to hide the power
consumption pattern caused by different instructions and operands. The hardware man-
ufacturers can also use a microcode patch to disable the hardware reporting interfaces of
TEE’s power assumption to prevent such attacks. For example, affected by two general
power-based side-channel attacks [31,30], AMD has added restrictions on accessing
power-consumption interfaces in newer kernel versions, and Linux has also removed
some related drivers that could potentially cause leakage [35].

Comparison with Other Power Attacks. To launch a power-based side-channel at-
tack, the CPA attack is a widely used method [10,32,9], which can resist noise. How-
ever, CPA attack mainly targets at algorithms and requires either plaintext or ciphertext,
which is not the case in the AMD SEV’s scenario. The most related work to us is Platy-
pus [31], which uses Intel RAPL to break Intel SGX protection, steal private keys from
constant-time cryptographic implementation (AES-NI), and study power consumption
of instructions in AMD platform. Considering that different CPU hardware and TEE
design (Intel SGX aims at protecting an application instead of a VM) could introduce
different power pattern, PWRLEAK could be a complementary work to Platypus with
similar approaches but target a different TEE design and cryptographic implementation
with low-secure level (non-constant time Intel IPP library).

Future Work. Due to equipment limitations, we did not perform experiments on SEV-
ES and SEV-SNP. Here we discuss the feasibility of power side-channel attacks on these
machines and treat them as future work. The current version of the emulation-based
interpolator could not work on SEV-ES and SEV-SNP due to the encrypted VMSA.
The interrupt-based interpolator could potentially work on both SEV-ES and SEV-SNP.

16

However, this approach would encounter a substantial amount of unstable noise intro-
duced by additional protection from SEV-ES or SEV-SNP. For example, in SEV-ES,
there is an integrity check for the VM Save Area region (the region used to encrypt and
backup registers) during each VMEXIT or VMRUN. In SEV-SNP, each memory write
access in the case of a TLB miss introduces a Reverse Map Table (RMP) check. These
additional protections may introduce inaccuracies in the observed energy consump-
tion. Therefore, a precise noise cancellation algorithm or an amplifier that can further
magnify the difference in power consumption may be necessary for such side-channel
attacks to work in SEV-ES or SEV-SNP VMs.

7 Related Work

Other Attacks against AMD SEV. AMD SEV has been studied by both industry and
academia since its first release in 2016. Faced with a strong threat model in which the
entire software stack is not trusted, previous work showed that AMD SEV suffers from
numerous attack surfaces, including both incomplete system designs [39,25,15,28,49,18]
and side-channel attacks [27,24,48]. For incomplete system designs, AMD actively ad-
dresses existing attacks by providing microcode patches [7] and adding new hardware
extensions (including AMD SEV Encrypted States (SEV-ES) [21] and AMD SEV Se-
cure Nested Paging (SEV-SNP) [6]) in addition to the baseline AMD SEV. However,
for side-channel attacks, which are not included in AMD SEV’s thread model and in-
directly leak secret from the SEV-protected VM [26,27,24], AMD typically does not
provide fixes for such attacks. Common side-channel attacks in AMD SEV include
page table-based side-channel attacks [40], cache side-channel attacks, PMC-based
side-channel attacks [48], and ciphertext side-channel attacks [24]. The defense mech-
anisms against such side-channel attacks often involve refactoring source code to avoid
certain patterns or gadgets, or adopting code with constant-time implementations.

8 Conclusion

In this paper, we have demonstrated the potency of power-based side-channel attacks
in extracting secrets from AMD SEV-protected VMs. Through a series of exploratory
experiments and an emulation-based interpolator, we show that adversaries can still no-
tice the differences in the instruction and operand level with the 1ms coarse-grained
power sampling interval provided by AMD. Additionally, we have successfully leaked
a random generated RSA key in an IPP implementation using PWRLEAK.

Acknowledgments

We would like to thank the anonymous reviewers and the shepherd Moritz Lipp for
their very helpful comments and feedback during revision, which have significantly
improved the quality and clarity of the work. This research was partially supported by
NSF award 2207202. Any opinions, findings, and conclusions or recommendations in
this paper are those of the authors and do not necessarily reflect the views of the NSF.

17

References

1. Confidential computing: an AWS perspective . https://aws.amazon.com/blogs
/security/confidential-computing-an-aws-perspective/, 2021. Aug,
2021.

2. SEV Secure Nested Paging Firmware ABI Specification. https://www.amd.com/sy
stem/files/TechDocs/56860.pdf, 2021.

3. Arm Confidential Compute Architecture . https://www.arm.com/architecture
/security-features/arm-confidential-compute-architecture, 2022.
Dec, 2022.

4. Intel trust domain extensions. https://www.intel.com/content/www/us/en/
developer/articles/technical/intel-trust-domain-extensions.h
tml, 2022. Dec, 2022.

5. Ebru Akalp Kuzu, Betül Soysal, Muhammet Şahinoğlu, Umut Güvenç, and Ali Tangel. New
cross correlation attack methods on the montgomery ladder implementation of rsa. In 2013
3rd IEEE International Advance Computing Conference (IACC), pages 138–142, 2013.

6. AMD. AMD SEV-SNP: Strengthening VM isolation with integrity protection and more.
White paper, 2020.

7. AMD. AMD Secure Encryption Virtualization (SEV) Information Disclosure (Bulletin ID:
AMD-SB-1013). https://www.amd.com/en/corporate/product-securit
y/bulletin/amd-sb-1013, 2021.

8. AMD. AMDSEV branch. https://github.com/AMDESE/AMDSEV/, 2022.
9. Paul Bottinelli and Joppe W Bos. Computational aspects of correlation power analysis.

Journal of Cryptographic Engineering, 7(3):167–181, 2017.
10. Eric Brier, Christophe Clavier, and Francis Olivier. Correlation power analysis with a leakage

model. In International workshop on cryptographic hardware and embedded systems, pages
16–29. Springer, 2004.

11. Suresh Chari, Josyula R Rao, and Pankaj Rohatgi. Template attacks. In International Work-
shop on Cryptographic Hardware and Embedded Systems, pages 13–28. Springer, 2002.

12. Yimin Chen, Xiaocong Jin, Jingchao Sun, Rui Zhang, and Yanchao Zhang. Powerful: Mo-
bile app fingerprinting via power analysis. In IEEE INFOCOM 2017-IEEE Conference on
Computer Communications, pages 1–9. IEEE, 2017.

13. Christophe Clavier, Benoit Feix, Georges Gagnerot, Mylene Roussellet, and Vincent
Verneuil. Improved collision-correlation power analysis on first order protected aes. In
International Workshop on Cryptographic Hardware and Embedded Systems, pages 49–62.
Springer, 2011.

14. Jean-Sébastien Coron. Resistance against differential power analysis for elliptic curve cryp-
tosystems. In International workshop on cryptographic hardware and embedded systems,
pages 292–302. Springer, 1999.

15. Zhao-Hui Du, Zhiwei Ying, Zhenke Ma, Yufei Mai, Phoebe Wang, Jesse Liu, and Jesse Fang.
Secure encrypted virtualization is unsecure. arXiv preprint arXiv:1712.05090, 2017.

16. Thomas Eisenbarth, Christof Paar, and Björn Weghenkel. Building a side channel based
disassembler. In Transactions on computational science X, pages 78–99. Springer, 2010.

17. Google. Introducing google cloud confidential computing with confidential VMs. https:
//cloud.google.com/blog/products/identity-security/introduci
ng-google-cloud-confidential-computing-with-confidential-vms,
2020.

18. Felicitas Hetzelt and Robert Buhren. Security analysis of encrypted virtual machines. ACM
SIGPLAN Notices, 52(7):129–142, 2017.

18

https://aws.amazon.com/blogs/security/confidential-computing-an-aws-perspective/
https://aws.amazon.com/blogs/security/confidential-computing-an-aws-perspective/
https://www.amd.com/system/files/TechDocs/56860.pdf
https://www.amd.com/system/files/TechDocs/56860.pdf
https://www.arm.com/architecture/security-features/arm-confidential-compute-architecture
https://www.arm.com/architecture/security-features/arm-confidential-compute-architecture
https://www.intel.com/content/www/us/en/developer/articles/technical/intel-trust-domain-extensions.html
https://www.intel.com/content/www/us/en/developer/articles/technical/intel-trust-domain-extensions.html
https://www.intel.com/content/www/us/en/developer/articles/technical/intel-trust-domain-extensions.html
https://www.amd.com/en/corporate/product-security/bulletin/amd-sb-1013
https://www.amd.com/en/corporate/product-security/bulletin/amd-sb-1013
https://github.com/AMDESE/AMDSEV/
https://cloud.google.com/blog/products/identity-security/introducing-google-cloud-confidential-computing-with-confidential-vms
https://cloud.google.com/blog/products/identity-security/introducing-google-cloud-confidential-computing-with-confidential-vms
https://cloud.google.com/blog/products/identity-security/introducing-google-cloud-confidential-computing-with-confidential-vms

19. Intel integrated performance primitives. https://software.intel.com/content
/www/us/en/develop/tools/oneapi/components/ipp.html.

20. Kouichi Itoh, Dai Yamamoto, Jun Yajima, and Wakaha Ogata. Collision-based power at-
tack for RSA with small public exponent. IEICE transactions on information and systems,
92(5):897–908, 2009.

21. David Kaplan. Protecting VM register state with SEV-ES. White paper, 2017.
22. Paul Kocher, Joshua Jaffe, Benjamin Jun, et al. Introduction to differential power analysis

and related attacks, 1998.
23. Ebru Akalp Kuzu, Betül Soysal, Muhammet Şahinoğlu, Umut Güvenç, and Ali Tangel.

New cross correlation attack methods on the montgomery ladder implementation of rsa.
In 2013 3rd IEEE International Advance Computing Conference (IACC), pages 138–142.
IEEE, 2013.

24. Mengyuan Li, Luca Wilke, Jan Wichelmann, Thomas Eisenbarth, Radu Teodorescu, and
Yinqian Zhang. A Systematic Look at Ciphertext Side Channels on AMD SEV-SNP. In
2022 IEEE Symposium on Security and Privacy (SP), pages 1541–1541. IEEE Computer
Society, 2022.

25. Mengyuan Li, Yinqian Zhang, and Zhiqiang Lin. Crossline: Breaking “security-by-crash”
based memory isolation in AMD SEV. In Proceedings of the 2021 ACM SIGSAC Conference
on Computer and Communications Security, pages 2937–2950, 2021.

26. Mengyuan Li, Yinqian Zhang, Zhiqiang Lin, and Yan Solihin. Exploiting unprotected I/O
operations in AMD’s secure encrypted virtualization. In 28th USENIX Security Symposium
(USENIX Security 19), pages 1257–1272, 2019.

27. Mengyuan Li, Yinqian Zhang, Huibo Wang, Kang Li, and Yueqiang Cheng. CIPHER-
LEAKS: Breaking Constant-time Cryptography on AMD SEV via the Ciphertext Side Chan-
nel. In 30th USENIX Security Symposium (USENIX Security 21), pages 717–732, 2021.

28. Mengyuan Li, Yinqian Zhang, Huibo Wang, Kang Li, and Yueqiang Cheng. TLB Poisoning
Attacks on AMD Secure Encrypted Virtualization. In Annual Computer Security Applica-
tions Conference, pages 609–619, 2021.

29. Libjpeg. Libjpeg version 6b Files. https://sourceforge.net/projects/libjp
eg/files/libjpeg/6b/.

30. Moritz Lipp, Daniel Gruss, and Michael Schwarz. AMD Prefetch Attacks through Power and
Time. In 31st USENIX Security Symposium (USENIX Security 22), pages 643–660, 2022.

31. Moritz Lipp, Andreas Kogler, David Oswald, Michael Schwarz, Catherine Easdon, Claudio
Canella, and Daniel Gruss. Platypus: Software-based power side-channel attacks on x86. In
2021 IEEE Symposium on Security and Privacy (SP), pages 355–371. IEEE, 2021.

32. Owen Lo, William J Buchanan, and Douglas Carson. Power analysis attacks on the AES-
128 S-box using differential power analysis (DPA) and correlation power analysis (CPA).
Journal of Cyber Security Technology, 1(2):88–107, 2017.

33. Stefan Mangard, Elisabeth Oswald, and Thomas Popp. Power analysis attacks: Revealing
the secrets of smart cards, volume 31. Springer Science & Business Media, 2008.

34. Thomas S Messerges, Ezzy A Dabbish, and Robert H Sloan. Power analysis attacks of mod-
ular exponentiation in smartcards. In International Workshop on Cryptographic Hardware
and Embedded Systems, pages 144–157. Springer, 1999.

35. Michael Larabel. AMD Energy Driver Booted From The Linux 5.13 Kernel. https:
//www.phoronix.com/news/Linux-5.13-AMD-Energy-Removed, 2021.

36. Yan Michalevsky, Aaron Schulman, Gunaa Arumugam Veerapandian, Dan Boneh, and Gabi
Nakibly. PowerSpy: Location Tracking Using Mobile Device Power Analysis. In 24th
USENIX Security Symposium (USENIX Security 15), pages 785–800, 2015.

37. Microsoft. Azure and AMD announce landmark in confidential computing evolution. http
s://azure.microsoft.com/en-us/blog/azure-and-amd-enable-lift
-and-shift-\confidential-computing/, 2021.

19

https://software.intel.com/content/www/us/en/develop/tools/oneapi/components/ipp.html
https://software.intel.com/content/www/us/en/develop/tools/oneapi/components/ipp.html
https://sourceforge.net/projects/libjpeg/files/libjpeg/6b/
https://sourceforge.net/projects/libjpeg/files/libjpeg/6b/
https://www.phoronix.com/news/Linux-5.13-AMD-Energy-Removed
https://www.phoronix.com/news/Linux-5.13-AMD-Energy-Removed
https://azure.microsoft.com/en-us/blog/azure-and-amd-enable-lift-and-shift-\confidential-computing/
https://azure.microsoft.com/en-us/blog/azure-and-amd-enable-lift-and-shift-\confidential-computing/
https://azure.microsoft.com/en-us/blog/azure-and-amd-enable-lift-and-shift-\confidential-computing/

38. Amir Moradi, Oliver Mischke, and Thomas Eisenbarth. Correlation-enhanced power analy-
sis collision attack. In International Workshop on Cryptographic Hardware and Embedded
Systems, pages 125–139. Springer, 2010.

39. Mathias Morbitzer, Manuel Huber, and Julian Horsch. Extracting secrets from encrypted
virtual machines. In Proceedings of the Ninth ACM Conference on Data and Application
Security and Privacy, pages 221–230, 2019.

40. Mathias Morbitzer, Manuel Huber, Julian Horsch, and Sascha Wessel. Severed: Subverting
AMD’s virtual machine encryption. In Proceedings of the 11th European Workshop on
Systems Security, pages 1–6, 2018.

41. Yongchuan Niu, Jiawei Zhang, An Wang, and Caisen Chen. An efficient collision power
attack on AES encryption in edge computing. IEEE Access, 7:18734–18748, 2019.

42. Jungmin Park, Xiaolin Xu, Yier Jin, Domenic Forte, and Mark Tehranipoor. Power-based
side-channel instruction-level disassembler. In 2018 55th ACM/ESDA/IEEE Design Automa-
tion Conference (DAC), pages 1–6. IEEE, 2018.

43. Daehyun Strobel, Florian Bache, David Oswald, Falk Schellenberg, and Christof Paar. Scan-
dalee: a side-channel-based disassembler using local electromagnetic emanations. In 2015
Design, Automation & Test in Europe Conference & Exhibition (DATE), pages 139–144.
IEEE, 2015.

44. Yen Sung-Ming, Seungjoo Kim, Seongan Lim, and Sangjae Moon. A countermeasure
against one physical cryptanalysis may benefit another attack. In International Conference
on Information Security and Cryptology, pages 414–427. Springer, 2001.

45. Jo Van Bulck, Frank Piessens, and Raoul Strackx. SGX-step: A practical attack framework
for precise enclave execution control. In Proceedings of the 2Nd Workshop on System Soft-
ware for Trusted Execution, (SysTEX’17), 2017.

46. Dennis Vermoen, Marc Witteman, and Georgi N Gaydadjiev. Reverse engineering JAVA
card applets using power analysis. In IFIP International Workshop on Information Security
Theory and Practices, pages 138–149. Springer, 2007.

47. Wunan Wan, Wei Yang, and Jun Chen. An optimized cross correlation power attack of
message blinding exponentiation algorithms. China Communications, 12(6):22–32, 2015.

48. Jan Werner, Joshua Mason, Manos Antonakakis, Michalis Polychronakis, and Fabian Mon-
rose. The SEVerESt Of Them All: Inference Attacks Against Secure Virtual Enclaves. In
Proceedings of the 2019 ACM Asia Conference on Computer and Communications Security,
pages 73–85, 2019.

49. Luca Wilke, Jan Wichelmann, Mathias Morbitzer, and Thomas Eisenbarth. Sevurity: No se-
curity without integrity: Breaking integrity-free memory encryption with minimal assump-
tions. In 2020 IEEE Symposium on Security and Privacy (SP), pages 1483–1496. IEEE,
2020.

50. Marc F Witteman, Jasper GJ van Woudenberg, and Federico Menarini. Defeating RSA
multiply-always and message blinding countermeasures. In Cryptographers’ Track at the
RSA Conference, pages 77–88. Springer, 2011.

51. Yuanzhong Xu, Weidong Cui, and Marcus Peinado. Controlled-channel attacks: Determin-
istic side channels for untrusted operating systems. In Proceedings of the 2015 IEEE Sym-
posium on Security and Privacy (SP’15). IEEE, 2015.

52. Shengqi Yang, Wayne Wolf, Narayanan Vijaykrishnan, Dimitrios N Serpanos, and Yuan Xie.
Power attack resistant cryptosystem design: A dynamic voltage and frequency switching
approach. In Design, Automation and Test in Europe, pages 64–69. IEEE, 2005.

53. Alan Zeichick. Security Ahoy! Flying the NX Flag on Windows and AMD64 To Stop Attacks.
Advanced Micro Devices, March 2007.

54. Bing Zhao, Lihui Wang, Kun Jiang, Xiaobing Liang, Weijun Shan, and Jing Liu. An im-
proved power attack on small RSA public exponent. In 2016 12th International Conference
on Computational Intelligence and Security (CIS), pages 578–581. IEEE, 2016.

20

	PwrLeak: Exploiting Power Reporting Interface for Side-channel Attacks on AMD SEV

