
Your IoTs Are (Not) Mine: On the Remote Binding

Between IoT Devices and Users

Jiongyi Chen∗, Chaoshun Zuo†, Wenrui Diao‡§, Shuaike Dong∗, Qingchuan Zhao†,

Menghan Sun∗, Zhiqiang Lin†, Yinqian Zhang†, and Kehuan Zhang∗

∗The Chinese University of Hong Kong
†The Ohio State University

‡Shandong University
§Jinan University

Abstract—Nowadays, IoT clouds are increasingly deployed to
facilitate users to manage and control their IoT devices. Unlike
the traditional cloud services with communication between a
client and a server, IoT cloud architectures involve three parties:
the IoT device, the user, and the cloud. Before a user can
remotely access her IoT device, remote communication between
them is bootstrapped through the cloud. However, the security
implications of such a unique process in IoT are less understood
today.

In this paper, we report the first step towards systematic
analyses of IoT remote binding. To better understand the
problem, we describe the life cycle of remote binding with a
state-machine model which helps us demystify the complexity in
various designs and systematically explore the attack surfaces.
With the evaluation of 10 real-world remote binding solutions,
our study brings to light questionable practices in the designs
of authentication and authorization, including inappropriate use
of device IDs, weak device authentication, and weak cloud-side
access control, as well as the impact of the discovered problems,
which could cause sensitive user data leak, persistent denial-of-
service, connection disruption, and even stealthy device control.

I. INTRODUCTION

One of the fastest growing industries today is the Internet-

of-Things (IoT), which connects the smart computing devices

embedded in our daily lives and allows them to be sensed

and controlled remotely via the Internet. Many applications

with IoT have been developed over the past a few years,

ranging from smart homes, smart health, to smart cities and

beyond. Numerous benefits can be gained by using the IoT,

such as improved efficiency and accuracy, and reduced human

intervention.

However, not all IoT devices are connected to the Internet

directly. To enable their remote management, typically there

is a cloud service acting as a relay between the end user

and the device. For instance, in a smart home solution, even

when a user is not at home, she can still remotely operate

the IoT devices using the corresponding mobile apps installed

on her phone. Such convenience is made possible by the

IoT cloud. Unlike the traditional server/client communication

architecture, a typical IoT system involves three parties: the

IoT device, the end user (or the mobile app as the user agent)

The bulk of work was performed while the first author was visiting The
Ohio State University in spring and summer of 2018.

and the IoT cloud. However, it is unclear today whether the

introduction of a third party (i.e., the IoT device) comes with

new security challenges, especially when bootstrapping and

removing remote communication between the user and the

device through the IoT cloud.

Remote binding of IoT. The remote communication boot-

strapping process is also known as remote binding. In general,

there are four steps in the life cycle of remote binding: (1) at

first, the user and the device are authenticated to the cloud

respectively; (2) Then, the user and the device need to bind

with each other on the local network. After local binding, a

device-specific secret such as the device ID is delivered to the

user; (3) Next, they both talk to the cloud, and the user submits

such a device ID to the cloud to create a binding with the

specified device. At this moment, the user can remotely control

her device; (4) Later on, when the user resets her device, the

binding in the cloud will be revoked. Therefore, to support

those operations, the cloud needs to authenticate the device

and the user, and correctly assign the binding permissions to

the user.

Our study and findings. Given the complexity of remote

binding, we need a systematic methodology to decompose

existing designs into primitives so that the security risk can be

analyzed and understood clearly. To this end, we model and

describe the functional design using a state-machine model,

in which the procedures of remote binding are represented as

cloud-side device state transitions in response to primitives

messages sent by the device and the user. Such a process

model captures the essential functional demands, which helps

us demystify various design principles.

With the assistance of our state-machine model, we were

able to inspect the remote binding designs of 10 IoT vendors

and systematically evaluate their security risks. Our study

reveals that, for most of the devices, security measures are

either nonexistent or incorrectly designed and implemented.

As such, remote attacks can be realistically orchestrated by

abusing device IDs and exploiting flawed authorization, which

allows the attacker to exfiltrate sensitive information remotely,

launch denial-of-service to the user’s binding, disrupt the

user’s connection, or even take absolute control of the device.

In fact, we found that such a threat is completely realistic,

as the user’s device ID could be easily leaked in practice:

on the one hand, some vendors simply use weak device IDs,

such as MAC addresses, allowing attackers to enumerate or

brute-force them within a small search space (with vendor-

specific bytes excluded, the search space of MAC addresses is

often within 3 bytes). Even worse, recent attacks indicate that

some device IDs only contain 6 or 7 digits [14], [18], allowing

attackers to traverse all possible IDs within an hour. On the

other hand, the IoT device is a “thing” in nature and the device

ID could be leaked through ownership transfer in real life, for

example, during shipping, distribution, or redistribution in a

supply chain.

Today, security risks in the IoT remote binding are not

well understood, and more secure practices are needed in IoT

development. As such, we highlight two significant misunder-

standings in our study: first, static identifiers should never be

used for device authentication. Instead, a better approach is

to adopt dynamic authentication tokens. Second, proper au-

thorization mechanisms should be used in the remote binding

and unbinding operations, to confirm a user’s ownership to the

device.

Contributions. We summarize this paper’s contributions as

below:

1) New findings and understandings. We conducted the first

systematic study on the security of IoT remote binding.

Notably, we use a state-machine model to decompose

the remote binding process, further evaluating various

designs and exploring the attack surfaces. Our study

reveals multiple design flaws in the mainstream binding

solutions, which could cause serious consequences such

as user data leak, binding denial-of-service, connection

disruption, as well as complete device control.

2) Real-world case studies. To confirm the potential design

and implementation flaws, we studied ten real-world IoT

remote binding solutions. The experimental results align

with the systematic investigation and demonstrate that

the attacks are serious and realistic. With the real-world

case studies, our study sheds light on a new class of

vulnerabilities and contributes to a better understanding

of the rapidly growing IoT area.

Roadmap. The rest of the paper is organized as follows:

Section II provides the background information for our study.

Section III describes the adversary model, the investigation,

and the state-machine model. Section IV elaborates on the

existing designs of remote binding. Section V presents the

attack surfaces in remote binding. Section VI gives the results

of the real-world attacks. Section VII summarizes the lessons

learned in our study. Section VIII details the limitations and

future directions of this work. Section IX surveys the prior

related research, and Section X concludes this paper.

II. BACKGROUND

In this section, we give the necessary knowledge of the

typical IoT communication architecture and the procedures of

the remote binding.

Local binding

 Network provisioning and device authentication

Binding creation initiated

by the app

Binding revocation

initiated by the app

IoT Device CloudUser App

User authentication

-- Remote Control --

Binding creation initiated by the device

Binding revocation initiated by the device

Fig. 1: Procedures of remote binding

A. IoT Communication Architecture

The communication in IoT environments usually involves

three parties: the IoT device, the user (or the mobile app as

the user agent), and the cloud. Each of them takes different

responsibilities:

• The IoT device acts as the information collector. Often-

times, multiple devices can be deployed and work col-

laboratively in a smart home to monitor the environment

status.

• The IoT app is developed by vendors to facilitate user

operations. It is used to interpret or visualize sensor data

of IoT devices and interact with users.

• As a connector between the device and the user, the

IoT cloud enables the user and IoT device to remotely

communicate with each other.

To connect the user with the device, there are two con-

nection modes in IoT systems: local connection and remote

connection:

• Local connection allows the user and the device to

communicate within local networks, where home routers

are typically used as local delegations to relay messages

between the user and the device.

• In remote connection, the user’s phone is not in the same

LAN with the IoT devices. Therefore, the cloud is needed

to relay messages between the user and the device.

B. Procedures of Remote Binding

Here we consider the entire life cycle of remote binding,

involving user authentication, local configuration (i.e., device

authentication and local binding), binding creation, and bind-

ing revocation. In particular, as Figure 1 shows, user first logs

in and authenticates herself to the cloud. Then, she needs

2

to configure the device to associate with her mobile app

and access the local network. Next, both the phone and the

IoT device communicate with the cloud to create a binding

relationship in the cloud for subsequent remote connection.

Finally, if the user resets the device, the binding in the cloud

should also be revoked. To get an idea, we describe the typical

design of remote binding as below:

• User authentication. IoT vendors usually deploy

password-based schemes to authenticate users [52].

Specifically, this involves two steps: first, the user logs

in the cloud; then the cloud returns a user token as the

credential for subsequent steps.

• Local configuration. In this step, the IoT device is set up

to access the LAN (Wi-Fi) and authenticate to the cloud.

In the meantime, the device is also configured to pair

with the user’s IoT app.

– Network provisioning. To provide network connec-

tion for IoT devices, network cable-based devices

can directly connect with the home router using the

DHCP protocol. For wireless devices, there are some

well-known techniques, such as SmartConfig [13] and

Airkiss [16], that can facilitate the operation.

– Device authentication. Once the device can access the

network, it is authenticated to the cloud by sending the

authentication token that contains its device informa-

tion. Meanwhile, it also reports the device status and

attributes, such as the firmware version and the model

name, to the cloud.

– Local binding. When both the app and the device are

connected to the same local network, they need to

discover and associate with each other. In some solu-

tions, service discovery protocols like Simple Service

Discovery Protocol (SSDP) [12] are used to broadcast

self-descriptions and exchange information between

the device and the app. Alternatively, some vendors

attach labels containing device information (e.g., De-

vice IDs or pairing IDs) on devices, and ask users to

input such IDs in their apps. When the app obtains the

device information, the app will broadcast messages

containing such information to locally bind with the

device.

• Binding creation. Since the cloud relays the messages

between a specific device and a specific user, a binding re-

lationship of the device and the user should be maintained

in the cloud. As such, a binding message that contains

the device information and the user information (such as

the user token) will be sent to the cloud by the app, or

alternatively by the device (notated with dashed arrows

in Figure 1). After the binding is created, the app and the

device can remotely communicate with each other.

• Binding revocation. When the user resets a device or

deletes the device in the app, the binding should be

revoked in the cloud. In this case, to notify the cloud,

an unbinding message should be sent by the app or the

device (notated with dashed arrows in Figure 1).

Given that there are already mature solutions for user

authentication and local binding, in the following sections, we

focus on the security threats in device authentication, binding

creation, and binding revocation.

III. PRELIMINARIES

In this section, we first describe the adversary model. Then,

we present the state-machine model that helps systematically

decompose the remote binding designs and analyze security

vulnerabilities.

A. Adversary Model

In this paper, the adversary aims to launch targeted attacks

exploiting the remote binding between a device and a user.

We assume that the adversary can obtain the device IDs, due

to the weak protection in real life:

• Inference of the device ID. Attackers may infer, brute-

force, or enumerate the device ID according to the

regulation of ID sequence arrangement. For example, the

device MAC addresses (as device IDs) contain a vendor-

specific field, which only leaves small search space.

• Off-site physical interaction of the device. The IDs may

be leaked through device ownership transfer, including

device reuse, reselling, stealing, and so forth. For ex-

ample, the attacker could purchase an IoT device from

Amazon, record the device ID, and return it. What is

worse, some IoT vendors attach the ID labels on devices

or the packages (e.g., [5], [15], [19]) to facilitate local

configuration. It also brings the risks that untrusted supply

chain participants may copy device IDs during products

transportation or distribution.

In practice, given that IoT devices are usually connected in

local networks that are protected by firewalls or encryption

like WPA2 [20], the bar of local attacks is exceptionally

high. Therefore, unlike prior studies [42], [43], [58], we

assume the adversary cannot access user’s local networks.

Additionally, we assume the device firmware and IoT apps

are not compromised.

B. Decomposition

Before we analyze the security threat, we need to clearly

understand how the remote binding functionality is built up. As

such, we take a top-down approach to decompose the remote

binding functionality into primitives, and then systematically

analyze the implementation and design choices.

Top-down investigation. The ultimate goal of remote binding

is to achieve remote communication between a specific user

and a specific device. As the basic requirement for secure

communication, the cloud needs to authenticate both the user

and the device. In addition, the cloud should also maintain

the binding relationship between the authenticated user and

the authenticated device. Therefore, in order to achieve remote

communication with a device, the cloud needs to confirm two

kinds of status for a device1: whether the device is online (or

1In the following sections, we use the term “device shadow” [17] to
represent the status of the device in the cloud.

3

Initial

State

Online

State

Control

State

Bound

State

Status

Bind

Unbind

Unbind Bind

Status

Status

Status /

Unbind

Fig. 2: State machine of a device shadow: ➀ and ➅ represent

device authentication; ➁ and ➃ represent binding creation; ➂

and ➄ represent binding revocation.

logged in) and whether the device is bound2. In particular,

a device shadow is online if the cloud has authenticated the

real device and received messages from the device. The device

shadow is bound if a binding of the device has been created.

Additionally, although a device might be bound with several

users (i.e. device sharing) and a user can also manage several

devices, in this paper we only focus on how a binding of one

user and one device is established and revoked, which can be

easily applied to many-to-one (or one-to-many) bindings.

To investigate whether the above design demands of IoT

remote binding are properly designed and implemented, we

model the remote binding functionality using the state machine

of the device shadow, whose state transitions represent the

completion of procedures and are changed when receiving

primitive messages. With its help, we then systematically

analyze and discuss the designs in each procedure.

State-machine model. At a high level, the state-machine

model consists of four states and receives three types of

primitive messages (i.e. atomic actions) to achieve transitions.

As we discussed earlier, the cloud maintains two kinds of

status for device shadow during remote binding: whether the

device is online and whether the device is bound. Therefore,

there are four states for a device shadow:

• Initial state. The device in this state is offline and

unbound (not bound with any users). This is the initial

state of the device shadow.

• Online state. The device in this state is online and

unbound. In this state, the device has been authenticated

to the cloud but not yet bound with any users. This state is

maintained when the device sends registration messages

or heartbeat messages to the cloud. The device shadow

goes into this state, for example, before device binding

or after device unbinding.

2The binding status of a device is the same as the binding status of the
bound user. Also, the cloud does not need to maintain the online status of
a user because the user is assumed online during the entire remote binding
process.

TABLE I: Notations in Section IV, Section V, and Section VI

Status Messages to report device status (sent by the
device)

Bind Messages to creating bindings in the cloud
Unbind Messages to revoke bindings in the cloud
DevId A piece of definite data for device authentication
DevToken A piece of random data for device authentication
BindToken A piece of random data for the authorization in

binding creation
UserToken A piece of random data for user authentication
UserId Identifier (e.g. email address) of user account
UserPw Password of user account

• Control state. The device in this state is online and bound.

After device setup, the device is authenticated to the cloud

and bound with the user. This is the only state that allows

the user to control the device.

• Bound state. In this state, the device is offline and bound.

The device shadow goes into this state (1) when the

real device is powered off or the network connection

is disrupted. However, the binding relationship is still

maintained in the cloud; (2) Or when the binding is

created in the cloud, but the device is not online yet.

As can be seen in Figure 2, to achieve remote communi-

cation, a device shadow changes from the initial state to the

control state. This means a binding can be created before the

device authentication (initial state → bound state → control

state) or after the device authentication (initial state → online

state → control state). To achieve state transitions, the cloud

receives three types of messages from the user or the device:

status messages, binding messages, and unbinding messages.

Below we describe the functions of them in details:

• Status: status message. Status messages could either be

the registration message or the heartbeat message. In our

process model, they share the same functionality: they

change the online/offline state of a device shadow. The

reception of such a message in the cloud indicates the

online status of the real device (i.e. device authentication).

If the message is not received within a certain time period,

the device is considered offline. Although the fields of a

registration message might be different from that of a

heartbeat message, in our model they still achieve the

same state transitions. Besides, this message is only sent

from the device.

• Bind: binding message. In the message, it specifies

which user is bound with which device. A binding is

created in the cloud when the cloud receives such a

message. This message can be sent from a user or a device

with both the device identity and the user identity.

• Unbind: unbinding message. This message revokes an

existing binding of a user and a device in the cloud.

Besides, it can also be sent from a user or a device.

Note that except for the above three types of messages, there

are other messages, such as control messages sent by the user.

However, we do not consider them in this paper, as they do

not change the states in binding.

4

 DevToken

 DevToken

IoT Device User App

Cloud

 Status:

DevToken

(a) Device authentication using device tokens

Status: DevId

IoT Device Cloud

(b) Device authentication using device IDs

Fig. 3: Device Authentication

IV. EXISTING DESIGNS

In order to investigate and evaluate the remote binding

designs of IoT vendors, we selected 10 representative IoT

device pairs3 that rank top on Amazon. They are the best-

selling products offered by mainstream manufacturers from

China and the U.S. In addition to those designs, we also refer

to the solutions of remote binding from IoT solution providers,

such as AWS, IBM, Google, and Samsung. In this section, we

elaborate on the existing designs of remote binding and discuss

potential misunderstandings.

A. Device Authentication

Device authentication is to verify the identity of a device

in the cloud. As shown in Figure 3, there are two kinds of

authentication modes based on the usage of different identi-

fiers: device tokens (DevToken) and device IDs (DevId) in

the status messages (notations are shown in Table I).

• Type 1: Status : DevToken. The IoT app requests a

device token from the cloud and then delivers it to the IoT

device during local configuration. After that, the device

sends the token to the cloud for authentication. Given that

the user app needs to locally negotiate with the device

anyway before the device is put into use, using a user app

for device authentication does not bring extra complexity.

Among the devices that we evaluated, at least three of

them (see Table III) use the device token mechanism. The

tokens are put in the encrypted status messages directly.

• Type 2: Status : DevId. Also, some vendors assign a

unique device ID to each of their devices, and such an

ID will be used for device authentication (at least 4 of

our evaluated devices use this design). The ID can be a

device MAC address [10] or a device serial number [14],

[18]. This design is actually a user-friendly feature: if

the user app keeps such an ID, device binding can be

3For each device type, we purchased a pair of devices (20 devices in total).
For each pair, we assume one device belongs to the victim, and the other one
belongs to the attacker.

completed even if the device and the mobile app are not

on the same network [42]. Unfortunately, in this case, a

device is under risk if its device ID is leaked. For instance,

the attacker can report fake device data to the victim or

receive sensitive information of the user, by forging the

device status messages. Besides, the attacker may hijack

a victim’s device by exploiting the implementation flaws

of the cloud (see Section V).

Apart from the above designs, there are some public-key-

based authentication solutions specified by most IoT infras-

tructure providers such as AWS IoT [4], IBM Watson IoT [8],

and Google Cloud IoT [7]. In their solutions, a key pair is

generated during manufacturing. The public key is stored in

the cloud, and the private key is embedded in the device.

Although this allows the cloud to authenticate each message

sent by the device securely, such a scheme is rarely used in

commercial IoT products. The main reason is that it requires

hardware support, like TPM, to protect the secret keys, which

increases the cost and affects the execution efficiency. On the

other hand, currently, those cloud service providers only have

basic infrastructures for individual developers who manage

a specific device and a specific app4. However, this is less

suitable for IoT vendors who manage a bunch of devices and

a bunch of registered users.

Our assessment: The use of static identifiers (i.e., DevId)

for authentication will inevitably introduce security risks, al-

though such implementation could bring some convenience

of remote binding. Another observation is that the solutions

provided by leading IT companies, such as AWS, IBM, and

Google, require the support of trusted hardware, in most

cases, which is not suitable for resource-constrained IoT

devices. A more promising approach is to use dynamic

authentication token (i.e., devToken), relying on the user

to obtain such a token from the cloud and deliver it to the

device via local communication.

B. Binding Creation

When the cloud receives the binding message, it will create

a binding relationship between a device and the corresponding

user account. Particularly, there are two types of binding mech-

anisms: ACL-based binding and capability-based binding.

ACL-based binding. In practice, most of the devices we stud-

ied use the device ID and the user token to indicate the rela-

tionship in a binding message: Bind : (DevId, UserToken).
The binding message can be delivered by the mobile app or

the IoT device (see Figure 4):

• App-initiated binding. The mobile app sends a binding

message containing the device ID (obtained from the

device) and the user token (obtained from the cloud)

to the cloud. After receiving it, the cloud will create a

matched binding relationship. Most of our experimental

devices belong to this category.

4Packages that contain key pairs should be installed on the device and the
user app.

5

 DevId

 Bind: (DevId,

UserToken)

IoT Device User App

Cloud

(a) ACL-based binding, binding message sent by app

 Bind:

(DevId, UserId,

UserPw)

 UserId + UserPw
IoT Device

Cloud

User App

(b) ACL-based binding, binding message sent by device

 BindToken

 BindToken
IoT Device

Cloud

User App

 BindToken

(c) Capability-based binding

Fig. 4: Binding Creation

• Device-initiated binding. For this design, first, the user

credential (i.e. the username UserId and the password

UserPw) is delivered to the device during local config-

uration. Next, the device submits a binding message that

contains both the user credential and the device ID to

the cloud. After receiving the message, the cloud creates

a binding relationship. However, delivering the user’s

credential to the device might put the user account in

danger if the device is compromised.

Interestingly, in some ACL-based binding designs, we find

that after the binding message is submitted to the cloud, the

user and the device will execute an extra step for the post-

binding authorization, which could prevent device hijacking

attacks (see Section V-E). More specifically, when the binding

messages are submitted to the cloud, a random token will

be returned to both the user and the device by the cloud.

In the subsequent interactions, this token will be included in

every message of the device and the user app5. With such a

mechanism, even if an attacker can forge a binding message

that indicates the binding between the attacker and the victim’s

device, hijacking a victim’s device is infeasible. The reason is

that the attacker is unable to force the target device to submit

the same token (as the attacker’s). Note that, although the

involvement of a random token can prevent the forgery of user

messages and device messages in the control state, it cannot

prevent the forgery of binding messages.

Capability-based binding. Under our adversary model, a

secure binding mechanism should rely on the capability-based

authorization, in which an authorization token (in this case,

the binding message is: Bind : BindToken) is delivered from

the cloud to the user app and then locally transmitted to the

device [3]. After that, the device submits this token back to

the cloud, to confirm the binding with that user. This design

could guarantee the user’s ownership of the device: to bind

with a device remotely, the user must be locally bound with

the device.

Our assessment: A significant misunderstanding of binding

creation is the use of ACL-based binding, in which ven-

dors combine devId and UserToken to confirm binding

relationships. This design could result in the “ambient

authoritya” [1] and open the door to a series of attacks (as

demonstrated in Section V). Instead, the best practice is to

use capability-based binding, such as the solution of Sam-

sung SmartThings [3]. That is, a binding token BindToken

represents the actual authority, and the authorization step is

only achieved by locally communicating with that specific

device (i.e., ownership confirmation).

aThe device ID itself does not including authorizing information and
could potentially be used by other users.

C. Binding Revocation

A binding is revoked when the device is reset or the user

removes the device in her account6. We found that there are

three kinds of unbinding messages to revoke bindings in the

cloud (assuming that device i is bound with user j in the

cloud):

• Type 1: Unbind : (DevIdi, UserTokenj). To revoke

the binding, the user or the device sends an unbinding

message with the user token and the device ID to the

cloud. When receiving such a message, the cloud first

verifies the user token and then revokes the corresponding

binding according to the submitted device ID. Besides,

the cloud needs to check whether the message sender

has been already bound with the device.

• Type 2: Unbind : DevIdi. Alternatively, an unbinding

message can be sent from the IoT device. Since one

5For the device, such a token means the device token that we previously
discussed.

6There could be multiple ways to achieve physical device reset. For
example, a message can be sent from the device if the device has been
physically reset and connects to the Internet. This message informs the cloud
that the previous binding should be revoked.

6

device only belongs to a specific user, an unbinding

message only containing the device identifier can also

achieve unbinding function. This approach can bring

convenience to the user because the unbinding message

can be sent during the device reset and no extra action

is needed. Unfortunately, this approach could also bring

security risks because anyone obtaining the device ID can

forge an unbinding message and revoke the binding.

• Type 3: Bind : (DevIdi, UserTokenn). An interesting

finding is that there is one device that does not support

unbinding operations, and the user has to use new bind-

ing to replace the previous one in the cloud. In other

words, whenever a binding message is received, the cloud

replaces the bound user i with the new user n. This

design decreases the development efforts for developers,

but inevitably introduces new security risks: the attacker

can forge binding messages to replace a user’s binding,

which could cause device unbinding or device hijacking

(see Section V).

Our assessment: Binding revocation is also a critical autho-

rization procedure that is often misunderstood or neglected

by developers. Our study concludes that not only should

it be correctly designed (e.g., using authorization token to

manipulate cloud-side resources), but also the cloud should

enforce strict policy to check whether a message sender

indeed has the permission to revoke the claimed binding

relationship.

V. SECURITY VULNERABILITIES

In this section, we analyze the security risks lying in the

remote binding. Notably, we show how the design and im-

plementation choices can be abused to launch several attacks,

ranging from binding denial-of-service to device hijacking.

A. Overview

We aim to investigate the security risks in remote binding

with respect to the procedures that we described earlier. To

this end, we systematically explore potential attack surfaces by

considering that all three types of messages could be forged

and sent to the cloud in all states of a device shadow:

• When status messages are forged, the attacker could act

as the user’s device. As such, fake device data can be

injected and user data can be stolen in the control state

and the bound state. We call it data injection and stealing

attack.

• When binding messages are forged, the attacker could

create a binding with the user’s device before the user

binds with it. This causes binding denial-of-service at-

tacks. Or alternatively, if the user is already bound with

her device, the binding could be replaced by the attacker’s

binding. In this case, it is possible for the attacker to

disconnect the user with her device or take control of the

user’s device.

• When unbinding messages are forged, the attacker could

revoke the user’s binding. This causes device unbinding

to the user. Note that this attack could also be combined

with binding message forgery to further hijack the user

device.

The attacks can be categorized into four types: data stealing

and injection, binding occupation, device unbinding, and de-

vice hijacking. We give a taxonomy in Table II and describe

them in details in the following.

B. Data Injection and Stealing (A1)

This attack occurs when the user’s device shadow is in

the control state or the bound state. The attacker can forge

status messages with the user’s device ID. As a result, data

from the “device” cannot be trusted, and the user data could

also be leaked to the “device”. One consequence is that the

attacker can inject the sensor data to the cloud and the user.

For example, if the user owns a fire alarm, the attacker can

inject fake data to trigger alerts and annoy the user. Even

worse, it will have a cascade effect when data from the device

is involved in rules (e.g., IFTTT [9]). For instance, when

an air conditioning system is associated with a temperature

sensor, fake data of the sensor may turn on or turn off the air

conditioning system. On the other hand, the attacker can also

forge device messages to retrieve private user data from the

cloud, for example, when the user sets a schedule for a smart

lock, the attacker is able to obtain the opening and closing

time of the door.

C. Binding Denial-of-Service (A2)

Binding denial-of-service occurs when the attacker occupies

the binding of a user’s device before the user binds with the

device. The forged binding message consists of the attacker’s

token and the user’s device ID. Once the attack is successfully

launched, the user is unable to create the binding with her own

device. Unfortunately, given that some vendors use sequential

device IDs for its products, attackers can enumerate or brute-

force the device IDs, and it could even cause scalable denial-

of-service attacks to the entire product series of a vendor [14],

[18].

D. Device Unbinding (A3)

The attacker can also leverage unbinding messages, binding

messages or status messages to disconnect the user with the

user’s device. Specifically, For unbinding message forgery, the

message Unbind : DevId with the user’s device ID can be

utilized to revoke the user’s binding in the cloud (A3-1). For

unbinding message type Unbind : (DevId, UserToken), the

attacker will succeed only if the cloud does not check whether

the submitted user token is the bound user (A3-2). On the

other hand, binding messages can also be leveraged to cause

device unbinding (A3-3). In this case, the attacker sends a

binding message to replace the user’s binding if the cloud does

not check whether the device is already bound with a user.

Therefore, after the attacker’s binding is created, the device

will disconnect with the user. In addition to that, forgery of

status messages can also cause device unbinding (A3-4). In

this case, the cloud takes the attacker as a new device and

7

TABLE II: The Taxonomy of Attacks in Remote Binding

Attacks Forged message types Targeted states End states Consequences

A1: Data injection and stealing Status : DevId
Control state

and bound state
Control state

The attacker can inject fake device data

or steal private user data.

A2: Binding denial-of-service Bind :(DevId, UserToken) Initial state Bound state
The attacker can cause denial-of-service to the

user’s binding operation.

A3: Device

unbinding

A3-1 Unbind : DevId

Control state Online state
The attacker can disconnect the device with

the user.

A3-2 Unbind :(DevId, UserToken)

A3-3 Bind :(DevId, UserToken)

A3-4 Status : DevId

A4: Device

hijacking

A4-1
Bind :(DevId, UserToken)

Control state Control state
The attacker can take absolute control of

the device.
A4-2 Online state Control state

A4-3

➀ Unbind : DevId

or (DevId, UserToken)

➁ Bind :(DevId, UserToken)

Control state Control state

disconnect with the real device. Such attacks can cause denial-

of-service to the user’s operation of her devices, which may

lead to serious consequences. For example, a user’s property

may be put in danger if a smart lock or a fire alarm stop

reporting status to the user.

E. Device Hijacking (A4)

For this attack, the attacker can take absolute control of the

device. In particular, there are three ways to achieve device

hijacking. On the one hand, the attacker can send a binding

message with the attacker’s token and the user’s device ID to

the cloud. In this case, we consider the user’s device shadow

can be in two states: the control state and the online state.

When the user is in the control state, the attack occurs (A4-1)

if the cloud does not check the message sender and the bound

user. This could either be an implementation flaw in which the

cloud directly manipulate the existing binding without checks

or a design flaw of unbinding in which a previous user’s

binding is designed to be replaced by a new binding. Note

that such an attack happens in the entire control state, instead

of the perfect timing of binding operations. When the user is

in the online state, the attacker can bind with the user’s device

before the user does, by exploiting the time window during

user’s device setup (A4-2).

On the other hand, device hijacking can also be achieved

(A4-3) by combining two vulnerabilities. In particular, the

attacker first sends an unbinding message to disconnect the

user and the device (A3-1). This turns the device into the

online state. Next, the attacker can send a binding message

to bind with the device and take control of it (A4-2). Note

that above device hijacking attacks will fail if device tokens

are used for device authentication. Because the device cannot

authenticate to the cloud without receiving a device token from

the attacker.

VI. EXPERIMENTAL RESULTS

In this section, we first describe our experiment setup to

evaluate the devices and perform our attacks. Then we give our

evaluation results of the attacks. In the end, we further clarify

the misunderstandings and discuss why existing designs fail.

A. Experiment Procedures

In our experiments, the user and the attacker have different

network access (the attacker’s access point is set up on

an Ubuntu host machine with 8G RAM and Intel Core i7

2.81 GHz), different Android smartphones (Samsung Galaxy

S5, Android 5.0) and different accounts. We installed the

companion apps of the devices in both smartphones and logged

in the apps with the user’s account and the attacker’s account

respectively. Then we setup the devices and configure them

with the corresponding apps.

As the first step, we need to identify device IDs of users’

devices. Among the 10 devices that we studied, 6 of them

directly attach the device IDs on the devices. 5 of them

use MAC addresses (the first 3-bytes are ID number of the

manufacturer) as their device IDs. For the rest, device IDs

can be observed from the traffic or be easily obtained with a

differential analysis of the messages.

Next, to launch the attacks, we substitute the user’s device

IDs with the attacker’s device IDs in the targeted messages. To

this end, we first identify the binding and unbinding messages

through manual dynamic analysis of the apps (9 devices

send binding messages by apps). To capture and analyze the

HTTP/HTTPS messages from the attacker’s app, we use a

Man-in-the-Middle proxy [6]. Then we generate fake requests

using the tool Postman [11]. For unknown protocols, we use

the dynamic instrumentation tool Frida [2] to intercept and

modify the source requests generated in the app. On the other

hand, to forge device messages, we need to perform firmware

reverse engineering. As we all know that firmware analysis is

not easy [21], [27], [57] and not always feasible, we were only

able to forge device messages for 3 devices (with firmware

downloaded from the official websites). We either performed

dynamic analysis to emulate the firmware images (for 1 of

them) or perform static analysis to identify and manually craft

device messages out of the box (for 2 of them).

B. Results

Table III shows the designs of the devices and the results of

our attacks. As can be seen, at least 4 of the devices use device

8

TABLE III: Evaluation Results on Experimental Devices

Vendors Device Types
Designs Attacks

Status
Bind :

(DevId, UserToken)
Unbind A1 A2 A3 A4

#1: Belkin Smart Plug DevToken Sent by the app (DevId, UserToken) ✗ ✓ A3-2 ✗

#2: BroadLink Smart Plug Ο Sent by the app (DevId, UserToken) Ο ✓ ✗ ✗

#3: KONKE Smart Socket DevToken Sent by the app N.A. ✗ ✗ A3-3 ✗

#4: Lightstory Smart Plug DevToken Sent by the app (DevId, UserToken) ✗ ✓ ✗ ✗

#5: Orvibo Smart Plug Ο Sent by the app (DevId, UserToken) Ο ✓ A3-2 ✗

#6: OZWI IP Camera DevId Sent by the app (DevId, UserToken) Ο ✓ ✗ A4-2

#7: Philips Hue Smart Bulb Ο Sent by the app (DevId, UserToken) Ο ✗ ✗ ✗

#8: TP-LINK Smart Bulb DevId Sent by the device
(DevId, UserToken)

& DevId
✗ ✗ A3-1 & A3-4 A4-3

#9: E-Link Smart IP Camera DevId Sent by the app (DevId, UserToken) Ο ✗ ✗ A4-1

#10: D-LINK Smart Plug DevId Sent by the app (DevId, UserToken) ✓ ✓ ✗ ✗

✓: attack successfully launched; ✗: attack failed to launch; Ο: Unable to confirm due to firmware challenges; N.A.: Not Applicable.

IDs for device authentication7. A favorite design is to send

messages by the app, while we still found one exception that

sends binding messages by the device. Most devices (90%)

support message type Unbind : (DevId, UserToken) sent

by the app to revoke bindings. For device #3 that does not

support binding revocation, we found out that it actually uses

binding operations of a new user to replace a previous user’s

binding.

On the whole, our attacks were successfully launched on

9 devices. In particular, data injection and stealing (A1) was

launched on device #10. We reverse engineered its firmware

and found the device messages. Next, we forged such device

messages by reconstructing the messages and establishing an

OpenSSL socket connection with the cloud. To simulate data

injection attacks, we forged messages that report fake power

consumption to the user. For data stealing attacks, we setup

a schedule on the app to turn on and turn off the smart plug.

And the attacker could then successfully receive the response

of the schedule from the cloud.

There are 6 devices suffering from binding denial-of-service

attacks (A2). For device #7, when the binding is initiated on

the user app, it requires the user to press a physical button

on the device within 30 seconds. Under the hood, a device

registration message is sent when the button is pressed. Then

the cloud compares whether the source IP addresses of the

device request and the user request are the same [30]. The

binding fails if they are not the same. Interestingly, device

#3 does not suffer from binding denial-of-service because of

its broken unbinding mechanism: any new binding creation

manipulates the previous binding.

To our surprise, there are 4 devices suffering from device

unbinding attacks (A3). Since device #3 does not support bind-

ing revocation, the binding between the user and the device

can be replaced by the attacker’s new binding. Therefore,

it suffers from device unbinding attacks. However, although

7For device #1, #8 and #10, we reverse engineered their firmware. For
device #4, we checked its API document. For device #6 and #9, we
successfully launched binding and unbinding attacks. Those attacks indicate
that the devices use device ID for authentication.

the attacker can create such a binding, she is not able to

hijack the device. Because it uses the device token for device

authentication and the attacker cannot send a fresh token to

the device. For device #8, we forged its device status messages

and this also causes device unbinding with the user. We also

forged an unbinding message with type Unbind : devId, and

this can also successfully unbind the user with the device.

Besides, we successfully launched device hijacking attacks

(A4) on 3 devices. Device #9 is hijacked with design flaw A4-

1, by simply sending a new binding message to replace the

user’s binding in the cloud. Device #6 is hijacked when it is

in the online state and not bound with any users. For device

#8, we first sent an unbinding message to revoke its binding

with the user. Then we forged a binding message to bind it

with the attacker.

In prior research [43], device hijacking requires the attacker

to send a message directly to the device to setup the device

communication key. However, our attacks exploit the design

flaws and cloud implementation flaws and thus does not

require any local network access.

C. Ethics and Responsible Disclosure

We carefully designed our experiment to avoid ethical

problems. When we conduct our attacks, we only exploit

the devices that we purchased, meaning that we only obtain

privacy data of our own devices and exploit the flawed designs

that only affect our own devices. Although the device IDs

could be sequential, we only substitute the IDs of our own de-

vices and we do not brute-force them in case of affecting other

users. Also, we have reported our discoveries and suggestions

to the corresponding vendors. At the time of this writing,

we have received acknowledgments from some of them, and

they have promised to check the details and improve their

designs of remote binding. To disclose vulnerability details

responsibly, we release the vulnerabilities that have been fixed

as case studies on our project website8.

8https://sites.google.com/view/iot-remote-binding

9

VII. LESSONS LEARNED

In our research, we discovered a series of design failures and

implementation flaws in IoT remote binding. In fact, vendors

have not yet raised awareness to protect the device IDs in

their solutions. For example, they may use fixed, sequential or

predictable device IDs. Although they can adopt device IDs

with sufficient length and randomness, the leak of device IDs

is unavoidable. Since the device is a thing in nature and the

ownership can be transferred in reusing or selling. Such loose

protection of device IDs in practice actually poses security

challenges in IoT remote binding.

More importantly, given the complexity, the security impli-

cations in remote binding are less understood by IoT devel-

opers. To this end, we systematically examined the designs

and implementations from products of 10 IoT vendors, and

successfully launched real-world attacks on the devices. Our

study brings the following misunderstandings in IoT remote

binding to the spotlight:

• First of all, the use of static device IDs for device

authentication allows the attacker to compromise de-

vice authentication. As aforementioned attacks show, this

could lead to serious consequences like data injection and

stealing or device hijacking. Given that IoT devices are

first configured by users in most scenarios, we suggest

that a better solution is to request a dynamic device secret

from the user.

• Second, the binding between a user and a device involves

the user’s authorization to access her device in the cloud.

As such, proper access control mechanisms should be

enforced in binding (i.e., both pre-binding and post-

binding). Unfortunately, the devices that we studied do

not have such proper design of authorization. In this case,

the device ID is essentially an ambient authority, and it

cannot be used to represent the user’s ownership (i.e. the

authority of binding) of the device.

• Third, binding revocation is also a critical authorization

step, in which only the user who is already bound with

the device can revoke its binding. However, some devices

do not have correct designs and implementations in this

step. A prominent example is that binding revocation

is achieved by creating a new binding to replace the

previous binding, which has been demonstrated to suffer

from multiple attacks.

• Last, given that nowadays IoT devices are attracting

more and more attention of attackers, a user’s sensitive

information, such as the user account, should never be

delivered to the device during remote binding.

VIII. DISCUSSION

We have present a systematic study on the remote binding

mechanisms together with multiple attacks against them. In

this section, we discuss some of the limitations of our research

in terms of the scope and the evaluation. We also highlight a

few of the potential follow-up studies that could be performed

based on our findings.

Problem scope. First, our study is based on the common

communication architecture that only includes three parties:

the device (or the hub), the user, and the cloud. In future work,

it may be interesting to see if our study could be generalized

to other communication architectures that involve four parties:

the Zigbee/Bluetooth device, the IP-based hub device, the user,

and the cloud. Second, although the goal of our research is to

understand the protocol-level vulnerabilities that are specific

to remote binding, the remote binding process could also be

affected by other vulnerabilities during local configuration,

for example, Man-in-the-Middle attacks that compromise the

local binding by proximity [23], key reinstallation attacks that

allow injection and manipulation of encrypted home Wi-Fi

packets [51], and sniffing attacks that allow the attacker to

obtain Wi-Fi credentials [41].

Experimental results. First of all, since we could not obtain

the firmware images for some of our experimental devices, we

were unable to confirm data injection and stealing attacks on

them. Second, although the results of our attacks do not have

false positives, there could be some false negatives. In our

experiments, the attack failures were identified from: response

messages or the success of other attacks. As an example, the

success of attack A3-3 indicates that binding denial-of-service

attack would fail. However, given that some implementation

flaws are in the cloud, we were unable to confirm the root

causes of some potential attack failures.

Automatic detection. As a starting point, our systematic study

and manual analysis reveal a series of attack surfaces in remote

binding. In the future, we plan to explore the feasibility to

develop effective and automatic approaches. This could further

help IoT vendors improve the security of their products and

their clouds. Currently, our analyses require the presence of

physical devices, which is less scalable. Therefore, we would

also like to explore the feasibility to automatically discover

remote binding threat without the presence of physical devices.

IX. RELATED WORK

In this section, we introduce and compare prior studies that

are related to ours. We discuss how our work is different from

prior IoT authentication and authorization studies. Apart from

that, our study is also related to the security analysis of IoT

devices.

Authentication in IoT. Given the unique communication

architecture, authentication schemes in IoT have been heavily

studied in previous works, such as [35], [36], [44], [46],

[48], [54]. In fact, the works that are the most related to our

work focus on the authentication problems in Wireless Sensor

Networks (WSN). In WSN, there are three parties: the sensor

node, the gateway node, and the user. Users can communicate

with either the gateway node or a sensor node. For those

WSN studies [31], [47], [50], [53], [55], [56], researchers

proposed arbitrated mutual authentication protocols under var-

ious scenarios, such as authentication between a user and the

gateway node [53], [56], mutual authentication between all

three parties [24], and authentication between a particular user

and a particular sensor node [29], [55].

10

Different from WSN authentication scenarios, in IoT remote

binding, the device and the user are not authenticated to each

other. Instead, the user and the device are both authenticated

to the cloud. Based on that, the cloud then enforces access

control and eventually relay messages between them. On the

other hand, the attacker in our adversary model is regarded

as an insider who already obtains a device identity. This is

different from the WSN studies that assume the attacker is an

outsider.

To the best of our knowledge, there is no prior study about

remote binding standard protocols. The main reason is that

IoT is a new topic, and the remote binding of IoT has not

been studied by researchers. Although nowadays some vendors

provide remote binding solutions, those homemade solutions

are not formally verified. It is our future work to formally

verify their security properties.

Authorization in IoT. Prior studies also have been focusing on

coarse-grained authorization in IoT apps and IoT clouds [32]–

[34], [39], [49]. For example, SmartAuth [49] is an NLP-based

framework to bridge the gap between real behaviors in code

and high-level functionalities in the descriptions of IoT apps,

providing fine-grained access control. ContexIoT [39] utilizes

context information for more fine-grained access control of

sensitive actions in IoT platforms. Moreover, Earlence et

al. [32] performed an empirical security analysis of one emerg-

ing smart home programming platform and found that the

cloud-side privilege separation model could lead to significant

over-privilege. FlowFence [33] tries to address the problem

that existing permission-based access control is ineffective at

controlling how sensitive data flows in apps, by embedding

user intended data flow patterns. Different from those works,

our study takes the first step to systematically analyze the

entire life cycle of remote binding in IoT, which involves

device authentication and user authorization.

Security analysis of IoT. Besides, researchers also have a

increasing interest in the security of IoT devices [22], [27],

[28], [37], [38], [45]. At a high level, their works can be

categorized into two directions: performing security analysis

on IoT devices and proposing defense techniques to tackle

coarse-grained privilege separation. On the one hand, given

that security analysis of IoT devices faces huge challenges,

researchers propose various techniques to discover implemen-

tation flaws and explore attack vectors. For instance, Costin et

al. [27] performed a large scale analysis of implementation

flaws in 32 thousand firmware images and discovered 38

previously unknown vulnerabilities, indicating that today’s

firmware of IoT devices is poorly implemented. For ex-

ploration of attack vectors, Müller et al. [45] performed a

systematic study on network printers by summarizing existing

attacks and designing a tool to detect known attacks. Ho et

al. [38] studied 5 popular smart locks and discovered several

new attacks to leak information and even unlock the doors. On

the other hand, researchers propose various techniques [25],

[26], [40] to separate privileges for IoT systems. For instance,

Abraham et al. [26] implemented a runtime privilege overlay

to provide protections (stack protections and diversification of

code and data regions) for bare-metal systems. Different from

those works, our study exploits cloud-side authorization and

device authentication to take control of devices or to cause

denial-of-service to users.

X. CONCLUSION

This paper reports the first systematic study on the life

cycle of remote binding in IoT. To understand the security

threat, we demystify various design principles of IoT remote

binding with a state machine, in which the procedures of

remote binding are represented as cloud-side device state

transitions in response to primitives messages sent by the

device and the user. This process model provided us a unique

observation of the remote binding process, which enables us

to systematically discover four types of attacks: sensitive user

data leak, persistent denial-of-service, connection disruption,

and stealthy device control. We also carried out case studies

and successfully launched attacks on 10 popular IoT devices,

which reveals the prevalence of our attacks in the real world.

ACKNOWLEDGEMENTS

We are grateful to our shepherd Kaustubh Joshi and the

anonymous reviewers for their insightful comments. This work

was partially supported by National Natural Science Founda-

tion of China (Grant No. 61572415) and the General Research

Funds (Project No. 14217816 and 14208818) established under

the University Grant Committee of the Hong Kong Special

Administrative Region, China, as well as NSF Award 1834215

and 1834216. Wenrui Diao was supported in part by the

Fundamental Research Funds for the Central Universities (No.

21618330).

REFERENCES

[1] “Ambient Authority,” https://en.wikipedia.org/wiki/Ambient authority,
Accessed: April 2019.

[2] “Android Frida,” https://www.frida.re/docs/android/, Accessed: April
2019.

[3] “ARTIK Cloud Development: Secure your device,” https://developer.
artik.cloud/documentation/security.html#secure-registration, Accessed:
April 2019.

[4] “AWS IoT Authentication,” https://docs.aws.amazon.com/iot/latest/
developerguide/iot-authentication.html, Accessed: April 2019.

[5] “D-LINK Wi-Fi Smart Plug,” http://us.dlink.com/products/
connected-home/wi-fi-smart-plug/, Accessed: April 2019.

[6] “Fiddle: Web Debugging Proxy,” https://www.telerik.com/fiddler, Ac-
cessed: April 2019.

[7] “Google Cloud IoT: Device Security,” https://cloud.google.com/iot/docs/
concepts/device-security, Accessed: April 2019.

[8] “IBM Watson IoT: Device authentication,” https://www.ibm.com/
developerworks/library/iot-trs-secure-iot-solutions1/index.html,
Accessed: April 2019.

[9] “IFTTT: IF This Then That,” https://ifttt.com/, Accessed: April 2019.

[10] “MAC addresses: the privacy Achilles’ Heel of the Internet
of Things,” https://www.computing.co.uk/ctg/news/2433827/
mac-addresses-the-privacy-achilles-heel-of-the-internet-of-things,
Accessed: April 2019.

[11] “Postman API Development Environment,” https://www.getpostman.
com/docs/v6/, Accessed: April 2019.

[12] “Simple Service Discovery Protocol,” https://en.wikipedia.org/wiki/
Simple Service Discovery Protocol, Accessed: April 2019.

[13] “SimpleLink Wi-Fi SmartConfig Technology,” http://www.ti.com/tool/
SMARTCONFIG, Accessed: April 2019.

11

[14] “Someone Is Taking Over Insecure Cameras and Spying on
Device Owners,” https://www.bleepingcomputer.com/news/security/
someone-is-taking-over-insecure-cameras-and-spying-on-device-owners/,
Accessed: April 2019.

[15] “TP-LINK Smart Plug HS100,” https://www.tp-link.com/us/products/
details/HS100.html, Accessed: April 2019.

[16] “Use Airkiss To Configure Wi-Fi Connection,” https://www.amebaiot.
com/en/standard-sdk-airkiss/, Accessed: April 2019.

[17] “Using Shadows - AWS IoT,” https://docs.aws.amazon.com/iot/latest/
developerguide/iot-device-shadows.html, Accessed: April 2019.

[18] “Vulnerabilities in Fredi Wi-Fi baby monitor can be exploited to
use it a spy cam,” https://securityaffairs.co/wordpress/73848/hacking/
fredi-wi-fi-baby-monitor.html, Accessed: April 2019.

[19] “WeMo Switch Smart Plug,” http://www.belkin.com/us/p/P-F7C027/,
Accessed: April 2019.

[20] “Wi-Fi Protected Access II,” https://en.wikipedia.org/wiki/Wi-Fi
Protected Access#WPA2, Accessed: April 2019.

[21] D. D. Chen, M. Woo, D. Brumley, and M. Egele, “Towards Automated
Dynamic Analysis for Linux-based Embedded Firmware.” in NDSS,
2016.

[22] J. Chen, W. Diao, Q. Zhao, C. Zuo, Z. Lin, X. Wang, W. C. Lau, M. Sun,
R. Yang, and K. Zhang, “IoTFuzzer: Discovering Memory Corruptions
in IoT Through App-based Fuzzing,” in Proceedings of The Network

and Distributed System Security Symposium, 2018.
[23] J. Chen, M. Sun, and K. Zhang, “Security Analysis of Device Binding

for IP-based IoT Devices,” in The Third International Workshop on

Security, Privacy and Trust in the Internet of Things. Percom, 2019.
[24] T.-H. Chen and W.-K. Shih, “A robust mutual authentication protocol

for wireless sensor networks,” ETRI journal, vol. 32, no. 5, pp. 704–712,
2010.

[25] A. A. Clements, N. S. Almakhdhub, S. Bagchi, and M. Payer, “ACES:
Automatic Compartments for Embedded Systems,” in 27th USENIX

Security Symposium. USENIX Association, 2018.
[26] A. A. Clements, N. S. Almakhdhub, K. S. Saab, P. Srivastava, J. Koo,

S. Bagchi, and M. Payer, “Protecting bare-metal embedded systems with
privilege overlays,” in Security and Privacy (SP), 2017 IEEE Symposium

on. IEEE, 2017, pp. 289–303.
[27] A. Costin, J. Zaddach, A. Francillon, D. Balzarotti, and S. Antipolis,

“A Large-Scale Analysis of the Security of Embedded Firmwares.” in
USENIX Security Symposium, 2014, pp. 95–110.

[28] A. Costin, A. Zarras, and A. Francillon, “Automated dynamic firmware
analysis at scale: a case study on embedded web interfaces,” in Pro-

ceedings of the 11th ACM on Asia Conference on Computer and

Communications Security. ACM, 2016, pp. 437–448.
[29] A. K. Das, P. Sharma, S. Chatterjee, and J. K. Sing, “A dynamic

password-based user authentication scheme for hierarchical wireless
sensor networks,” Journal of Network and Computer Applications,
vol. 35, no. 5, pp. 1646–1656, 2012.

[30] N. Dhanjani, Abusing the internet of things: Blackouts, freakouts, and

stakeouts. ” O’Reilly Media, Inc.”, 2015.
[31] M. S. Farash, M. Turkanović, S. Kumari, and M. Hölbl, “An efficient

user authentication and key agreement scheme for heterogeneous wire-
less sensor network tailored for the Internet of Things environment,” Ad

Hoc Networks, vol. 36, pp. 152–176, 2016.
[32] E. Fernandes, J. Jung, and A. Prakash, “Security analysis of emerging

smart home applications,” in Security and Privacy (SP), 2016 IEEE

Symposium on. IEEE, 2016, pp. 636–654.
[33] E. Fernandes, J. Paupore, A. Rahmati, D. Simionato, M. Conti, and

A. Prakash, “FlowFence: Practical Data Protection for Emerging IoT
Application Frameworks.” in USENIX Security Symposium, 2016, pp.
531–548.

[34] E. Fernandes, A. Rahmati, J. Jung, and A. Prakash, “Decentralized
Action Integrity for Trigger-Action IoT Platforms,” in Proceedings of

The Network and Distributed System Security Symposium, 2018.
[35] M. A. Ferrag, L. A. Maglaras, H. Janicke, J. Jiang, and L. Shu, “Au-

thentication protocols for Internet of Things: a comprehensive survey,”
Security and Communication Networks, vol. 2017, 2017.

[36] K. Habib and W. Leister, “Context-Aware Authentication for the Internet
of Things,” in The Eleventh International Conference on Autonomic and

Autonomous Systems, 2015, pp. 134–139.
[37] G. Hernandez, F. Fowze, D. J. Tian, T. Yavuz, and K. R. Butler,

“FirmUSB: Vetting USB Device Firmware using Domain Informed
Symbolic Execution,” in Proceedings of the 2017 ACM SIGSAC Con-
ference on Computer and Communications Security. ACM, 2017, pp.
2245–2262.

[38] G. Ho, D. Leung, P. Mishra, A. Hosseini, D. Song, and D. Wagner,
“Smart locks: Lessons for securing commodity internet of things de-
vices,” in Proceedings of the 11th ACM on Asia conference on computer

and communications security. ACM, 2016, pp. 461–472.
[39] Y. J. Jia, Q. A. Chen, S. Wang, A. Rahmati, E. Fernandes, Z. M.

Mao, A. Prakash, and S. J. Unviersity, “ContexIoT: Towards providing
contextual integrity to appified IoT platforms,” in Proceedings of The

Network and Distributed System Security Symposium, vol. 2017, 2017.
[40] C. H. Kim, T. Kim, H. Choi, Z. Gu, B. Lee, X. Zhang, and D. Xu, “Se-

curing Real-Time Microcontroller Systems through Customized Memory
View Switching,” in Proceedings of the 25th Annual Network and

Distributed System Security Symposium, 2018.
[41] C. Li, Q. Cai, J. Li, H. Liu, Y. Zhang, D. Gu, and Y. Yu, “Passwords

in the air: Harvesting wi-fi credentials from smartcfg provisioning,” in
Proceedings of the 11th ACM Conference on Security & Privacy in

Wireless and Mobile Networks. ACM, 2018, pp. 1–11.
[42] Z. Ling, J. Luo, Y. Xu, C. Gao, K. Wu, and X. Fu, “Security Vulnera-

bilities of Internet of Things: A Case Study of the Smart Plug System,”
IEEE Internet of Things Journal, vol. 4, no. 6, pp. 1899–1909, 2017.

[43] H. Liu, C. Li, X. Jin, J. Li, Y. Zhang, and D. Gu, “Smart solution,
poor protection: An empirical study of security and privacy issues in
developing and deploying smart home devices,” in Proceedings of the

2017 Workshop on Internet of Things Security and Privacy. ACM,
2017, pp. 13–18.

[44] J. Liu, Y. Xiao, and C. P. Chen, “Authentication and access control in
the internet of things,” in Distributed Computing Systems Workshops

(ICDCSW), 2012 32nd International Conference on. IEEE, 2012, pp.
588–592.

[45] J. Müller, V. Mladenov, J. Somorovsky, and J. Schwenk, “Sok: Ex-
ploiting network printers,” in Security and Privacy (SP), 2017 IEEE

Symposium on. IEEE, 2017, pp. 213–230.
[46] K. T. Nguyen, M. Laurent, and N. Oualha, “Survey on secure communi-

cation protocols for the Internet of Things,” Ad Hoc Networks, vol. 32,
pp. 17–31, 2015.

[47] R. Roman, C. Alcaraz, J. Lopez, and N. Sklavos, “Key management
systems for sensor networks in the context of the Internet of Things,”
Computers & Electrical Engineering, vol. 37, no. 2, pp. 147–159, 2011.

[48] M. Saadeh, A. Sleit, M. Qatawneh, and W. Almobaideen, “Authentica-
tion techniques for the internet of things: A survey,” in Cybersecurity

and Cyberforensics Conference (CCC), 2016. IEEE, 2016, pp. 28–34.
[49] Y. Tian, N. Zhang, Y.-H. Lin, X. Wang, B. Ur, X. Guo, and P. Tague,

“SmartAuth: User-Centered Authorization for the Internet of Things,” in
26th Security Symposium. USENIX Association, 2017, pp. 361–378.

[50] M. Turkanović, B. Brumen, and M. Hölbl, “A novel user authentication
and key agreement scheme for heterogeneous ad hoc wireless sensor
networks, based on the Internet of Things notion,” Ad Hoc Networks,
vol. 20, pp. 96–112, 2014.

[51] M. Vanhoef and F. Piessens, “Key reinstallation attacks: Forcing nonce
reuse in wpa2,” in Proceedings of the 2017 ACM SIGSAC Conference on

Computer and Communications Security. ACM, 2017, pp. 1313–1328.
[52] D. Wang, X. Zhang, J. Ming, T. Chen, C. Wang, and W. Niu, “Resetting

Your Password Is Vulnerable: A Security Study of Common SMS-Based
Authentication in IoT Device,” Wireless Communications and Mobile

Computing, vol. 2018, 2018.
[53] R. Watro, D. Kong, S.-f. Cuti, C. Gardiner, C. Lynn, and P. Kruus,

“TinyPK: securing sensor networks with public key technology,” in
Proceedings of the 2nd ACM workshop on Security of ad hoc and sensor

networks. ACM, 2004, pp. 59–64.
[54] D. J. Wu, A. Taly, A. Shankar, and D. Boneh, “Privacy, discovery, and

authentication for the internet of things,” in European Symposium on

Research in Computer Security. Springer, 2016, pp. 301–319.
[55] K. Xue, C. Ma, P. Hong, and R. Ding, “A temporal-credential-based

mutual authentication and key agreement scheme for wireless sensor
networks,” Journal of Network and Computer Applications, vol. 36,
no. 1, pp. 316–323, 2013.

[56] H.-L. Yeh, T.-H. Chen, P.-C. Liu, T.-H. Kim, and H.-W. Wei, “A secured
authentication protocol for wireless sensor networks using elliptic curves
cryptography,” Sensors, vol. 11, no. 5, pp. 4767–4779, 2011.

[57] J. Zaddach and A. Costin, “Embedded devices security and firmware
reverse engineering,” Black-Hat USA, 2013.

[58] N. Zhang, S. Demetriou, X. Mi, W. Diao, K. Yuan, P. Zong, F. Qian,
X. Wang, K. Chen, Y. Tian et al., “Understanding IoT Security Through
the Data Crystal Ball: Where We Are Now and Where We Are Going
to Be,” arXiv preprint arXiv:1703.09809, 2017.

12

