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Abstract In this paper, we explore the adaption of
techniques previously used in the domains of adversar-
ial machine learning and differential privacy to mitigate
the ML-powered analysis of streaming traffic. Our find-
ings are twofold. First, constructing adversarial sam-
ples effectively confounds an adversary with a predeter-
mined classifier but is less effective when the adversary
can adapt to the defense by using alternative classifiers
or training the classifier with adversarial samples. Sec-
ond, differential-privacy guarantees are very effective
against such statistical-inference-based traffic analysis,
while remaining agnostic to the machine learning clas-
sifiers used by the adversary. We propose three mech-
anisms for enforcing differential privacy for encrypted
streaming traffic, and evaluate their security and util-
ity. Our empirical implementation and evaluation sug-
gest that the proposed statistical privacy approaches
are promising solutions in the underlying scenarios.

1 Introduction

Machine learning (ML) is a powerful tool which can
extract implicit information from massive data, which
has shown promising results in many areas such as im-
age recognition [17, 26, 54, 56] and natural language
processing [22, 38, 53]. However, when used with ma-
licious intentions, ML also empowers notable attacks.
One such example is the traffic-analysis attack, which
is a type of side-channel attack.
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In side-channel attacks, the adversary may learn
secrets of a system or an application that are other-
wise well protected, by observing traces (e.g., timing,
power, or resource usage) of its execution. Traffic anal-
ysis, or more specifically website fingerprinting, aims to
breach users’ privacy by inferring visited websites from
the encrypted traffic. By learning from patterns of en-
crypted traffic to/from known web pages, the ML algo-
rithm can classify unidentified traffic with reasonable
accuracy. With the recent development of deep learn-
ing, such traffic analysis has become more powerful, in-
validating many previously established defenses against
traditional machine learning [51].

A recent work [49] in USENIX Security shows that
a traffic analysis attacker, by merely observing the en-
crypted network packet sequence of the victim, is able
to infer the video that the victim is watching on popular
online video streaming platforms (e.g., Youtube, Net-
flix). They show that by extracting the packet burst
patterns of the encrypted video streams, the adver-
sary can achieve very high classification accuracy (e.g.,
99% for Youtube videos). This indicates that the on-
line video streaming is no longer private from a passive
network observer, even if proper encryption mechanism
is applied. With increasing learning capacity, the secu-
rity threats unleashed by these techniques grow rapidly,
which calls for more effective defenses. In this paper,
we use streaming traffic analysis as a motivating exam-
ple and explore generic solutions to ML-powered side-
channel attacks [34, 44, 64, 65].

Adversarial samples as defenses. Inspired by the re-
cent advances in adversarial machine learning, we first
explore the use of adversarial samples to defeat ML ad-
versaries. Usually, adversarial samples are utilized by
the attacker to fool ML defenders. However, in our sce-



nario, we consider the inverse use: utilize the adversar-
ial examples to confuse ML attackers. To defeat the
ML attacker, which is a convolutional neural network
(CNN) classifier, we apply the Projected Gradient De-
scent (PGD) [35] to generate adversarial samples, and
we successufully lower the classification accuracy to the
baseline. Nevertheless, adversarial samples are fragile:
they do not transfer well, and the classifier can also
adapt to them. by choosing a different classifier or ap-
plying adversarial training, the adversary who aims to
perform traffic analysis on encrypted streaming packets
can still achieve high accuracy.

Differential privacy as defenses. The failure in the
adoption of adversarial samples to defeat streaming traf-
fic analysis motivated us to seek more principled solu-
tions to counter such a powerful adversary. Inspired by
Xiao et al. [62], who exploit d∗-privacy—a variant of
differential privacy—to insert random noise to disturb
storage side channels in procfs, we seek to apply a simi-
lar principle as a defense against traffic-analysis attacks.
However, compared with differentially private procfs
proposed by Xiao et al., applying differential privacy on
network traffic is fundamentally different as traffic anal-
ysis is non-interactive. In contrast, attacks leveraging
procfs are interactive, because the statistical database
is constructed as the attacker queries procfs. Thus the
Laplacian noise can be inserted in the return values
of the procfs queries. Differentially private streaming
traffic needs to be applied proactively to the entire data
streams. The approach to do so and its effectiveness
with regard to security guarantees and utility loss (i.e.,
low bandwidth overhead and small amount of lags) is
uncertain.

To protect streaming traffic by applying differential
privacy, we adapt three mechanisms: 1) Fourier Pertur-
bation Algorithm (FPAk) [47], a differentially private
mechanism that answers long query sequences over cor-
related time series data in a differentially private man-
ner based on the Discrete Fourier Transform (DFT); 2)
d∗-private mechanism (d∗), which extends the d-privacy
mechanism from Chan et al. [8] and applies Laplacian
noise on time series data; 3) dL1-private mechanism
(dL1), which achieves d-privacy with regard to L1 dis-
tance. We perform extensive experiment on these three
mechanisms to evaluate their security as well as util-
ity. For security, we show that by selecting proper pa-
rameters, all these mechanisms can effectively defeat
all types of classifiers, i.e., can reduce their classifica-
tion accuracy to the baseline of random guessing. For
utility, we demonstrate that the utility cost, defined as
waste and deficit, are moderate. We also compare the
three mechanisms empirically, and We further compare
FPAk with a baseline defense mechanism, which shows

that the waste induced by FPAk is at least one order
of magnitude lower than the baseline approach.

To demonstrate the practicality, we implement the
FPAk privacy mechanism in a Chrome extension that
proxies the Youtube streaming between the browser and
the server, which intercepts and modifies XMLHttpRe-
quest(XHR) requests and responses. Our evaluation sug-
gests that the extension completely renders the attacks
proposed by Schuster et al. [49] ineffective. The tech-
niques proposed in this paper also shed light on defenses
against website fingerprinting attacks and generic side-
channel attacks that rely on machine learning classi-
fiers. Our study has provided an important piece of
evidence suggesting that the differential privacy is a
promising solution to ML-enabled inference attacks.

2 Background

Side-channel attacks and traffic analysis. Side-
channel attacks usually involve analysis of externally
observable characteristics of a computer system to ex-
tract sensitive information (e.g., cryptographic keys).
Traffic analysis attacks are side-channel attacks that
observe the meta-data of the encrypted network traffic
to classify the traffic [20, 43, 60]. For our purposes here,
a side channel arises from an attacker’s observation of
a feature x, which may itself consist of multiple com-
ponents. We let X denote the space of all possible such
x values. Often, the attacker will collect feature vec-
tors x and their associated labels in a training phase,
to build a machine learning model to which it will apply
observations x seen during his attack.

Deep learning. In the past, various ML techniques
have been employed in statistical side-channel attacks[12,
44, 64, 65]. For example, support vector machines (SVM)
have been used to perform website fingerprinting in
the Tor network [44] and infer foreground apps on An-
droid [12]; hidden Markov models (HMM) have been
used to infer Android Activity transitions [10] and ex-
tract cryptographic keys in a cross-VM setting [65]; k
nearest neighbors (kNN) have been used to perform
keystroke inference on smartwatch [34] and link Bitcoin
addresses to an iOS device [64]. Deep Learning [29] is
an ML approach that uses multiple layers of non-linear
processing units, each of which transforms the represen-
tation at one level into that at a higher, more abstract
level. The most representative deep learning model is
the Deep Neural Network (DNN) [2], which is an artifi-
cial neural network (ANN) with multiple hidden layers
between the input and output layers [2]. DNNs are very
effective at finding hidden features in high-dimensional
data, which is hard for humans. It has been applied to
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solve various problems, producing promising results in
different areas such as image recognition [17, 26, 54, 56],
speech recognition [21, 37, 48], natural language pro-
cessing [22, 38, 53], and malware detection [11]. One
of the most popular DNN models is the Convolutional
Neural Network (CNN) [30]. CNN typically applies con-
volutional operation at lower levels, and is designed to
process data that has a form of multi-dimensional ar-
rays.

Adversarial samples and adversarial training. An
adversarial sample x′ is an input that is crafted from
a legitimate (untampered) input to make a classifier
misclassify x′ [55]. More specifically, x′ is created to
be within some distance threshold from some untam-
pered input x, in the hopes that this will imply that
x′ remains in the same class as x according to some
notion of ground truth. However, x′ is manipulated so
that the ML classifier will classify x′ differently from x.
Methods of generating adversarial samples include Fast
Gradient Sign Method (FGSM) [18], Projected Gradi-
ent Descent [35], Carlini/Wagner attack (CW) [7], etc.

In response, defenses have been proposed to make
classifiers more robust against adversarial samples. To
date, the most successful one is adversarial training [18,
35, 55], which basically retrains the classifier using the
adversarial samples that were generated to fool the clas-
sifier, in order to increase the classification accuracy on
these crafted samples. However, its effectiveness highly
depends on whether the classifier can generate adver-
sarial samples similar to the ones used by the attacker,
which is difficult to guarantee.

Privacy. Because an adversarial sample x′ generated
from x is designed to be misclassified, it might be viewed
as a more “privacy preserving” representation of x if cor-
rect classification constitutes a privacy violation. For
this reason, we explore the generation of adversarial
samples as a privacy protection in a specific domain, in
Sec. 5. Despite the possibility that adversarial samples
so generated might suffice to defeat ML classifiers to-
day, there remains the possibility that future classifiers,
or auxiliary information that might be brought to bear
by the attacker (classifier), would divulge the correct
class of x′.

For this reason, in this paper we also explore a novel
application of differential privacy [14] to this same do-
main, which will guarantee that certain classes can-
not be distinguished by any classifier (that works with
the same features). The original definition of differen-
tial privacy is specific to statistical databases. More
specifically, two databases x, x′ are adjacent if they dif-
fer in exactly one element. A randomized algorithm
A : X → Z satisfies ε-differential privacy if for any

adjacent databases x, x′ and all Z ⊆ Z,

P (A(x) ∈ Z) ≤ exp(ε)× P (A(x′) ∈ Z) .

Chatzikokolakis et al. [9] proposed a generalization
of differential privacy called d-privacy that will be use-
ful here. A metric d on a set X is a function d : X 2 →
[0,∞) satisfying d(x, x) = 0, d(x, x′) = d(x′, x), and
d(x, x′′) ≤ d(x, x′) + d(x′, x′′) for all x, x′, x′′ ∈ X .
A randomized algorithm A : X → Z satisfies (d, ε)-
privacy if for all Z ⊆ Z,

P (A(x) ∈ Z) ≤ exp(ε× d(x, x′))× P (A(x′) ∈ Z) .

In our context, the application of A to sufficiently close
examples x and x′ (i.e., d(x, x′) is “small”) from differ-
ent classes will ensure that any classifier has a similar
probability of classifying A(x) and A(x′) within any
subset Z of classes.
MPEG-DASH standard. MPEG-DASH is a video
streaming standard that segments video streams to vari-
able segment sizes due to variable-rate encoding, and
instruments the request of video content at the granu-
larity of segments. The size of the video chunks to be
requested is specified as a parameter (i.e., range) of the
HTTP request header. Youtube video streaming imple-
ments a variant of MPEG-DASH [39], which allows the
client to specify a chunk of video to be downloaded by
setting the range parameter to the desired offsets in
bytes. The YouTube client adaptively changes this pa-
rameter to adjust the requested video chunk size, based
on the content of the video and the network condition.

3 A Motivating Example

A recent study by Schuster et al. [49] demonstrated that
packet burst patterns of the encrypted video streams
(an observable side channel that reveals the size of the
segments) can be used to fingerprint video streams from
providers such as Youtube with very high detection ac-
curacy. In this paper, we used this MPEG-DASH video-
stream fingerprinting as a motivating example to ex-
plore how side channels using ML can be mitigated. To
demonstrate the capability of the attacks, we extended
their idea [49] and performed fingerprinting attacks of
40 Youtube videos using a set of five ML classifiers.
The attack was performed in a closed-world setting, in
which we assumed the video to be classified is one of the
40; this closed-world setting is the most advantageous
to the attacker and the least favorable to the defender.
Data collection.Wemanually chose 40 Youtube videos
related to four types of sports (basketball, American
football, soccer, and hockey) as our dataset. To find
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Fig. 1: CNN architecture; n denotes the number of elements of one trace, i.e., the total time divided by the window
size.

these videos, we typed “NBA”, “NFL”, “MLS” and “NHL”
into Youtube search separately, filtered out the short
videos that are less than 20 minutes (to make sure the
video length is long enough for analysis), and selected
10 videos from each category. Each of the 40 videos was
visited from a Chrome browser 100 times during trace
collection. Therefore, in total 4000 (i.e., 40×100) traces
with 40 distinct labels (i.e., the content of the videos)
were included in our dataset. We recorded the times-
tamps and sizes of all packets of the first 3 minutes of
network traffic after starting to stream each video. The
data collection process was automated using Selenium
and Wireshark’s tshark. All the data were collected
from a desktop connected to our campus network using
1 Gbps Ethernet. The whole process of data collection
took about 15 days.
Preprocessing. To convert videos in the dataset into
feature vectors of equal length, we aggregated the raw
data into 0.25-second bins. Here, 0.25s is the window
size. Each 3-minute video stream was thus abstracted
as an array of 720 elements (i.e., bins). Note that we did
not filter out the ad traffic that occurs at the beginning
of the captures.
Classifiers. We implemented five classifiers, including
Support Vector Machine (SVM), Logistic Regression
(LR), Random Forest (RF), Neural Net and Convolu-
tional Neural Network (CNN), in Python. Specifically,
SVM, LR and RF were implemented using scikit-
learn [45], Neural Net and CNN were implemented
using Tensorflow [1] with the Keras front end. For
Neural Net, we used a single Dense layer with 40 neu-
rons and the Sigmoid function as the activation func-
tion. For CNN, we used the same structure as that used
by Schuster et al. [49]. It consists of three convolutional
layers, 1 max pooling layer, and two dense layers. The
detailed CNN structure is shown in Fig. 1.
Classification results. We applied the 5 classifiers to
classify the 4000 video traces. We used 5-fold cross-
validation: each time, a different 20% of the traces were
used for testing while the remaining 80% were used
for training. The features of the dataset were normal-
ized using the MinMaxScaler() method provided by
scikit-learn. For CNN, we used a batch size of 32
and the model was trained for 40 epochs1. As shown
1The model converged after 40 epochs. Training for 1000
epochs improved the accuracy by only 0.024.

in Table 1, SVM, LR and RF achieved 0.809, 0.823,
and 0.751 classification accuracy, respectively. Neural
Net reached 0.831 classification accuracy. CNN had the
highest accuracy of 0.944. The classification results had
very small variance in the 5-fold tests. These exper-
iments validate the attack demonstrated by Schuster
et al. [49]. The results suggest that machine learning,
and particularly deep learning (e.g., CNN), can em-
power traffic analysis to easily identify the Youtube
video streams from encrypted traffic.

Model SVM LR RF Neural Net CNN

Average 0.809 0.823 0.751 0.831 0.944Accuracy

Standard 0.067 0.063 0.046 0.011 0.004Deviation

Table 1: Accuracy with one standard deviation.

4 Threat Model

The attack described in Sec. 3 motivates the follow-
ing scenario. A user who watches a Youtube video in a
web browser (streaming client) wishes to hide the con-
tent of the video. An attacker sitting on the network
(e.g., Internet service provider or local network admin-
istrator) aims to infer the content of the video by ob-
serving only side-channel information. The defender is
a network proxy placed between the service provider
(i.e., Youtube) and the browser, which obfuscates the
network flows from/to the content provider to defeat
the fingerprinting attacks. The attacker utilizes features
(e.g., bytes per second, packets per second or burst se-
ries) of the request and response packets of the MPEG-
DASH video streams as side-channel vectors.

Attacker. We consider the attacker to be a passive
traffic analysis attacker, who can observe the encrypted
packet sequences transmitted between the client ma-
chine and the streaming server via the network.

Defender. The defender intercepts all connections be-
tween the client and the server, and modifies the re-
quests according to the defense mechanisms, so that
the responses sent by the server would follow the pat-
tern dictated by the requests. The attacker can only
observe the traffic after the defender’s perturbation.
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5 Adversarial Machine Learning

Our first attempt is to fool the machine-learning attack-
ers with techniques used in adversarial machine learn-
ing.

5.1 Crafting Adversarial Samples

To generate adversarial samples, we followed the Pro-
jected Gradient Descent (PGD) method [35], which is
a multi-step variant of the Fast Gradient Sign Method
(FGSM) [18].

FGSM. Let x be the input sample, g(x; θ) the classifier
parameterized by θ, y the true label associated with x,
L(g(x; θ), y) the loss/cost function of the classifier, and
η the parameter that controls the amount of perturba-
tion. For untargeted attacks—i.e., the classifier misclas-
sifies a sample as any label but the true label—FGSM
generates the following adversarial sample x∗ from the
clean sample x:

x∗ = x+ η sign(∇xL(g(x; θ), y)) (1)

The perturbation x∗ − x is the gradient image ∇x
of the given loss L, which by definition is the direction
where the loss increases the most. The method then
takes only the sign values of the gradient to make it
unit l∞-normed, then multiplies the normalized gradi-
ent with the desired perturbation strength η. When η is
large, the perturbation is more effective but is more de-
tectable to human eyes or machine classifiers. When η is
small it is less effective but is less likely to be detected.

PGD. PGD can be considered as a universal first-order
adversary. In each iteration, PGD follows the following
rule: x′i+1 = Fclip(FGSM(x′i)), where FGSM(x′i) rep-
resents the output of FGSM as in (1). Fclip keeps x′i+1

within a predefined perturbation range.
In our experiment, we used the PGD implemen-

tation in the adversarial-robustness-toolbox [41]
Python library. We adjusted the level of injected noise
(dictated by the eps parameter, eps ∈ [0, 1]) to gener-
ate adversarial samples corresponding to different noise
levels. Suppose the original value is v. With eps = α,
the adversarial value is within the range of v±αv. To see
how the classifiers perform on adversarial samples, we
targeted the CNN model and generated corresponding

adversarial test samples using PGD, with the noise level
eps = 0.1 and the max number of iterations (max_iter)
set to 100. Then, we fed these samples to the CNN clas-
sifier trained using clean samples. The CNN classifier
was unable to classify such samples, with only 0.003 ac-
curacy, which is significantly lower than the original ac-
curacy (0.944). This result suggests that the adversarial
samples are very effective against the CNN classifier.

5.2 Limitations of Adversarial Samples

However, the attacker can also take actions to adapt to
these adversarial samples. Here, we study two possible
approaches: using a different classifier and conducting
adversarial training.
Using a different classifier. The adversarial samples
generated by PGD are designed to fool one particular
classifier, which may not be able to deceive other classi-
fiers (may not transfer well). To see whether adversarial
samples can transfer, we conduct a transferability study
on the classifiers. Since RF does not provide gradients,
we test SVM, LR, CNN and Neural Net, and the eps
is set to 0.1 for PGD. The average results of 5 rounds
are shown in Table 2. As shown in the table, the ad-
versarial samples targeted the CNN model do not work
well on others; SVM can still achieve 0.570 accuracy.
The adversarial samples based on SVM seem to work
well on all other classifiers; however, as shown shortly,
the attacker could conduct adversarial training to easily
circumvent the defense.
Conducting adversarial training. If the attacker is
aware of the defender’s strategy of using adversarial
examples, it can adapt to such a setting and regain
accuracy by training with those adversarial examples.
Similarly, the defender can also generate adversarial ex-
amples knowing that the attacker will try to make the
classification robust. Although finding an exact equilib-
rium is difficult [19], the attacker can practically utilize
the adversarial training technique by Madry et al. [35]
to make the classification robust.

We conducted the adversarial training on the CNN
model for 10 epochs using their method; the eps for ad-
versarial training was set to 0.1. Then, we re-generated
the adversarial samples targeting the new CNN model.
After this process, the new classifier achieved 0.791 ac-
curacy on the new adversarial samples, which indicates
that the adversarially trained CNN model is robust
against adversarial samples. Therefore, unlike the ma-
jority of works in adversarial ML where the classifier
is the victim and is assumed to stay unchanged, in our
setting the adversary is assumed to be aware of any
defense strategy that is taken and allowed to adapt ac-
cordingly. The defender faces a much harder situation
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when applying adversarial ML techniques under such
an assumption.

Base
Test CNN SVM LR Neural Net

CNN 0.003 0.421 0.344 0.148

SVM 0.048 0.009 0.008 0.028

LR 0.190 0.130 0.263 0.001

Neural Net 0.530 0.164 0.088 0.028

Table 2: Transferability test. The numbers are classi-
fication accuracy of adversarial examples on different
architectures.

6 Differentially Private Streaming

The failure in the adoption of adversarial samples to
defeat streaming traffic analysis motivated us to seek
more principled solutions to counter such a powerful
adversary. Differential privacy [14] stands out as a fea-
sible solution. Differential privacy offers a principled
privacy guarantee for statistical databases that allows
users to query aggregate statistics of elements in the
database without leaking individual data elements. It
offers strong privacy promises that guarantees statisti-
cal indistinguishability of two databases that are differ-
ent in only one element.

We would like to develop ε-differentially private mech-
anisms for streaming traffic, which, by adding random
noise (dictated by ε and a distance threshold t) into the
encrypted video streams, render any two videos within
distance t to be statistically indistinguishable to each
other. In this sense, any two video streams within dis-
tance t (which can be selected by the defender) can
be intermingled and made indistinguishable with re-
spect to ε-differential privacy, though in extreme cases
may require adding substantial noise. In this section,
we explore three mechanisms, FPAk, d∗-privacy and
dL1-privacy, to enforce differential privacy on stream-
ing traffic.

6.1 Differentially Private Mechanisms

Fourier Perturbation Algorithm (FPAk). Rastogi
et al. [47] proposed the Fourier Perturbation Algorithm
(FPAk), which can answer long query sequences over
correlated time-series data in a differentially private
manner by using the Discrete Fourier Transform (DFT).
A DFT is a linear transform of a length-n real or complex-

valued sequenceQ = (Q[1], ..., Q[n]) into another length-
n complex-valued sequence F = (F [1], ..., F [n]) where

F [j] =

n∑
i=1

exp(
2π
√
−1
n

ij)Q[i].

The F [j] is called the j-th Fourier coefficient of the
DFT(Q). An Inverse DFT (IDFT) is also a linear trans-
form of a complex-valued sequence P = (P [1], ..., P [n])

to another complex-valued sequenceR = (R[1], ..., R[n])

where

R[j] =
1

n

n∑
i=1

exp(
2π
√
−1
n

ij)P [i].

An IDFT has the property IDFT (DFT (Q)) = Q.
Let Lap (λ) denote a random variable drawn from

the Laplace distribution with scale λ and location µ =

0. Suppose the inputs of the FPAk algorithm are Q, λ,
and k. FPAk is described as follows:

(a) Keep the first k Fourier coefficients F [1], ..., F [k]
after computing DFT(Q).

(b) Compute F̃ [i] = F [i] + Lap (λ) for i = 1, ..., k.
(c) Return Q̃ = IDFT (PADn([F̃ [1], ..., F̃ [k]])), where

PADn([F̃ [1], ..., F̃ [k]]) denotes the sequence of length
n obtained by appending n−k zeros to F̃ [1], ..., F̃ [k].

Rastogi et al. [47] proved that FPAk (Q,λ) is ε-differentially
private for λ =

√
k∆2(Q)/ε, where ∆2(Q) denotes the

L2 sensitivity of a set of Qs. Formally, ∆2(Q) is the
smallest number such that for all Q,Q′ ∈ Q, |Q−Q′|2 ≤
∆2(Q).

d∗-private Mechanism. Xiao et al. [62] leveraged d-
privacy with a particular distance metric d∗ on one-
dimensional time series. Let x and x′ denote two time
series. The d∗ metric was defined as:

d∗(x, x′) =
∑
i≥1

|(x[i]− x[i− 1])− (x′[i]− x′[i− 1])|

To achieve d∗-privacy, Xiao et al. [62] extended a
mechanism from Chan et al. [8] to implement a d∗-
private mechanism as follows: Let N denote the natural
numbers and D(i) ∈ N denote the largest power of two
that divides i; i.e., D(i) = 2j if and only if 2j |i and
2j+16 | i. Note that i = D(i) if and only if i is a power
of two. The mechanism A computes a noised value x̃[i]
that is used in place of x[i] using the recurrence

x̃[i] = x̃[G(i)] + (x[i]− x[G(i)]) + ri (2)
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Fig. 3: Abstraction of data flow with defense.

where x[0] = x̃[0] = 0, and

G(i) =


0 if i = 1

i/2 if i = D(i) ≥ 2

i−D(i) if i > D(i)

(3)

ri ∼

Lap
(
1
ε

)
if i = D(i)

Lap
(
blog2 ic

ε

)
otherwise

(4)

It was proven by Xiao et al. [62] that the algorithm
in Eqns. 2–4 is (d∗, 2ε)-private.
dL1-private Mechanism. L1 distance is a common
metric for measuring the similarities between two time
series [13, 63]. Let x and x′ denote two time series. The
L1 distance is defined as: dL1(x, x′) =

∑
i |x[i]− x′[i] |.

To achieve dL1-privacy, the mechanism to add noise is
described as follows [62]: The mechanism A computes
a noised value x̃[i] that is used in place of x[i] as

x̃[i] = x[i] + ri (5)

where

ri ∼ Lap

(
1

ε

)
(6)

The algorithm in Eqns. 5–6 is (dL1, ε)-private [62].

6.2 Applying Privacy Mechanisms on Streaming Data

Without loss of generality, the problem specified in Sec. 4
can be simplified and abstracted as the following clas-
sification problem: An encrypted video stream can be
modeled as a sequence of 2-tuples {(ti, si)}i≥0, where
(ti, si) represents a video segments of size si that is
downloaded at time ti. As ti is a timestamp represented
in continuous time, the adversary needs to discretize
the sequence of 2-tuples by grouping all 2-tuples falling
in the same time window of length w (e.g., as small
as a microsecond or as large as a second) into a single
value. As such, each video stream is represented as a
time series x = {bj}j≥0, where bj is the total size of the
downloaded video during time slot j. We let X denote
the space of all possible such x values. Often, the at-
tacker will collect feature vectors x and their associated
labels in a training phase, to build a machine learning
model to which it will apply observations x seen during
his attack.

The goal of the defender is to prevent the videos
from being identified by the attacker, which is achieved
by adding random noise. The workflow of defense and
attacks is depicted in Fig. 3. Specifically, the defender
takes the following steps to reduce the information leak-
age. First, she sets a window size w to convert the 2-
tuples (ti, si) into a fix-length time series x. Then, she
adds random noise, which is dictated by the differen-
tially private mechanisms, to the time series, and gener-
ates the noised time series x̃. When the noised time se-
ries x̃ is reflected as packets, we assume all packets are
transmitted instantaneously; depending on the maxi-
mum packet size allowed by the physical network layer,
it can be represented as a sequence of 2-tuples (t̃i, s̃i),
which are what the attacker observes. Note that the
mapping from the time series to the sequence of two tu-
ples is only determined by the network condition which
is agnostic to the content of the video. The attacker
then chooses his window size (wA) to generate a new
time series, denoted as ẋ, and performs classification on
ẋ.

As such, when used to obfuscate streaming traffic,
the three differentially private mechanisms, FPAk, d∗

and dL1, require two parameters, w and ε. Here, w
represents the window size, which also determines the
length of x̃. For example, w = 1s means each element of
the noised time series represents the total size of down-
loaded video segments within an interval of 1s. Param-
eter ε specifies the privacy level of the mechanism: the
smaller the ε is, the better the privacy would be.

When wA is different from w, x̃ and ẋ may have
different lengths. As a result, the attacker may need to
merge/split bins in x̃ to create ẋ. Here, we let x̃ be a
time series of n elements and ẋ be a time series of nA
elements. Without loss of generality, we only consider
cases where wA mod w = 0 or w mod wA = 0. The
merging and splitting of bins are performed as follows:

• Merging is required when wA > w. Let r = wA/w.
Every r bins from x̃ will be merged (summed) into
one bin in ẋ, i.e.,

ẋ[i] =

i×r+(r−1)∑
j=i×r

x̃[j]

For instance, when wA = 2s and w = 1s, r = 2,
nA = 1

2n. ẋ[i] = x̃[2i] + x̃[2i+ 1].

7



• Splitting is required when wA < w. Let r = wA/w.
Here we assume that the volume of each bin follows
uniform distribution. Therefore, every bin from x̃

will be split (divided) evenly into 1/r bins in ẋ, i.e.,

ẋ[j] = r × x̃[i], j = i

r
, · · · , i+ 1

r
− 1

For instance, when wA = 1s and w = 2s, r = 1
2 ,

nA = 2n. ẋ[2i] = ẋ[2i+ 1] = 1
2 x̃[i].

7 Evaluation

In this section, we evaluate the security and utility
of FPAk and d∗. We implemented both mechanisms
in Python. For FPAk, k was set to 10, so during the
Fourier transformation, only the first 10 Fourier coeffi-
cients were kept. FPAk took a sequence of 2-tuples and
parameter w and ε as input, discretized it into a time se-
ries x with window size w, calculated λ =

√
10∆2(Q)/ε

(where ∆2(Q) denoted the L2 sensitivity of the set of 40
videos collected in Sec. 3), and returned another time
series x̃ of the same size after adding noise by following
the steps mentioned in Sec. 6.1. Similarly, in our imple-
mentation of d∗, it took a sequence of 2-tuples, w and
ε as input, discretized it into a time series x with win-
dow size w, and outputted another time series x̃ after
adding noise.

The two methods were applied on the 40×100 traces
collected in Sec. 3. In our experiment, we used ε ={5×
10−8, 5 × 10−7, · · · , 50}, w = {0.05s, 0.25s, 0.5s, 1s,
2s}, so there were 50 pairs in total. Each element of
the noised time series was truncated by a clip bound of
[0, 1GB] to avoid negative volume or enormous volume,
because the download size cannot be negative and it is
not realistic to complete downloading a large chunk of
data within a small window size. Therefore, values less
than 0 were changed to 0, and values larger than 1GB
were truncated to 1GB.

7.1 Security Evaluation

The security of the differentially private mechanisms
are evaluated by classification accuracy. We used the
same method mentioned in Sec. 3 to preprocess the
data and train the classifiers. According to the dataset
used for training and testing, we consider the following
cases:

7.1.1 Trained with x (clean data), tested with x̃
(noised data)

To compare with the defense mechanism of using ad-
versarial samples described in Sec. 5.2, we first used the

same 5 classifiers trained with original traces to classify
the noised data generated by the two mechanisms with
different choices of ε, when w = 0.25s. The classifica-
tion accuracy and standard deviation of a 5-fold cross
validation are shown in Fig. 4.

For all the data points, the standard deviation is
quite small (<0.01), hardly visible in the figures. For
FPAk (Fig. 4a), since it involved the Fourier transfor-
mation, the new traces were totally different from the
originals, so the classifier could not recognize them for
all ε values. For d∗, since the noise was added upon the
original trace, ε played an important role. As shown
in Fig. 4b, for ε ≤ 5 × 10−6, d∗ was effective. When
ε ≥ 5×10−5, the noise added was not enough to deceive
the classifiers. The trend of dL1 (Fig. 4c) is very similar
to that of d∗, but the settings need to be ε ≤ 5× 10−7

in order to maintain the baseline accuracy for all classi-
fiers, which is one order of magnitude smaller than the
settings of d∗. These results suggest that with properly
selected noise level, both mechanisms can effectively de-
feat traffic analysis attacks. In the following, we con-
sider a more powerful adversary that could adapt by
training the classifiers also with noised data.

7.1.2 Trained with x̃ (noised data), tested with x̃
(noised data)

We evaluated how the two parameters, w and ε, would
affect the security of the defense mechanisms by using
the CNN classifier mentioned in Sec. 3 as the adversary
and measuring the accuracy of the classification. We
specifically consider two scenarios: wA = w and wA 6=
w.
• wA = w. First, we consider the scenario where the at-
tacker and the defender use the same w, which means
that x̃ = ẋ. We altered w to see how it would affect the
classification accuracy. The results of the classification
accuracy and standard deviation of a 5-fold cross vali-
dation are shown in Fig. 5. The classification accuracy
with FPAk protected data is shown in Fig. 5a. When ε
was smaller (e.g., ε = 0.05 and ε = 0.5), more noise was
added during the transformation. The classification ac-
curacy remained low as w increased. However, when ε
was larger (e.g., ε = 5 and ε = 50), the noise level was
low and w played a more significant role—when w = 2s,
the classification accuracy went down by about 15%.
This is because larger window sizes (used by the ad-
versary during discretization) erased some important
features in the data traces, making the classification
harder.

The classification accuracy with d∗ protected data
is shown in Fig. 5b. With smaller ε values (e.g., ε =

5 × 10−8 and ε = 5 × 10−7), w still had no impact on
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Fig. 4: Classification accuracy of 5-fold cross validation when trained with original traces and tested with noised
traces.
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Fig. 5: wA = w: effect of w

the classification accuracy at all. A different trend was
observed when ε = 5 × 10−6: w = 2s would increase
the accuracy to about 25%. We conjecture it was re-
lated to the mechanism by which d∗ added noise: The
amount of noise added had a linear relationship with
the length of the time series. When w was large, with
the video length remaining the same, the time series
had fewer elements. Therefore, the noise added was
less, which was not enough to confuse the classifier.
When ε = 5 × 10−5, the classification accuracy fluc-
tuated as w increases from 0.05 to 2. We believe this
was the combined result of two causes: the larger win-
dow size reduced the noise level, but also eliminated
some of the useful information used by the classifiers.
The classfication accuracy with dL1 protected data is
shown in Fig. 5c. The trend is very similar to that of
d∗, the main difference is that to maintain the base-
line accuracy, dL1 requires ε ≤ 5 × 10−7, which is one
order of magnitude smaller than the threshold of d∗.
The reason is that d∗ and dL1 have different distance
metrics and different noise-adding mechanisms. For all
methods, the standard deviation of each data point was
very small (less than 0.01).

Next, we study the effect of ε. The result is shown
in Fig. 6. The x axis is log10(ε/5) (e.g., x = −3 means
that ε = 5×10−3). We only show the cases of w = 0.05s

and w = 2s, since they were the smallest and largest
w values we experimented with; result of other w val-
ues were similar. Similar to Fig. 5, the standard devi-
ations in Fig. 6 were negligible. From Fig. 6, we can
see that in order to keep a low classification accuracy,
d∗and dL1 methods required a much smaller ε. For ex-
ample, when w = 0.05s, to make sure the classifier had
a baseline accuracy (i.e., 2.5%, given 40 videos with 100
traces each), d∗ needed ε ≤ 5 × 10−6 and dL1 needed
ε ≤ 5 × 10−7, while FPAk only required ε ≤ 0.5. This
is because the definitions of ε in the methods are dif-
ferent. We also provide a proof to bridge the ε values
between traditional differential privacy and d-privacy
in Appendix Appendix A.

• wA 6= w. Next, we consider the scenario where the
attacker and the defender chose different w. To perform
the experiment, first, we set ε ={5×10−8, 5×10−7, · · · ,
50}, respectively. Then, we let w = {0.05s, 0.25s, 0.5s,
1s, 2s}, and tested the classification accuracy when wA
= {0.05s, 0.25s, 0.5s, 1s, 2s}. We only show the results
when w = 0.05s and w = 2s in Fig. 7. We can see from
the figure that with the same w, when wA increased, the
classification accuracy for both methods decreased. The
amount of decrease with d∗and dL1 was more significant
than FPAk. From this result, it can be inferred that
choosing a smaller wA would benefit the adversary. This
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Fig. 6: wA = w: effect of ε

is because the larger window size used by the adversary
during discretization erased some important features in
the data traces.

From the defender’s perspective, the choice of w
made a difference in the effectiveness of the defense.
For FPAk, w = 0.05s and w = 2s did not differ much
(Fig. 7a and Fig. 7b). But for d∗, w mattered: for w =

0.05s (Fig. 7c), ε = 5 × 10−6 was good enough to fool
the classifier; but for w = 2s (Fig. 7d), ε = 5×10−6, the
classifier can achieve an accuracy of 40% when wA ≤
0.5s. Smaller w also made dL1 more effective against
the classifier, as shown in Fig. 7e and Fig. 7f. There-
fore, from the defender’s perspective, if the d∗ or dL1
method is chosen, it is better to choose a smaller w to
achieve better privacy.

7.2 Utility Evaluation

We define two metrics, waste and deficit , to evaluate the
utility of the mechanisms. Let the original time series be
x and noised time series be x̃. Consider the cumulative
traces A =

∑n
1 x and B =

∑n
1 x̃. We define waste as

the maximum difference between traces A and B when
the noised trace B is above the original trace A.

waste = max
1≤i≤n

{max(B[i]−A[i], 0)} (7)

deficit is defined as the maximum difference between
A and B when the noised trace B is below the original
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Fig. 7: wA 6= w
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trace A.

deficit = max
1≤i≤n

{max(A[i]−B[i], 0)} (8)

waste means the maximum amount of data that
have been downloaded in advance during a time pe-
riod, and deficit means the maximum amount of data
that needs to be downloaded to keep streaming dur-
ing a time period. An example of waste and deficit is
illustrated in Fig. 8. The red line represents the cumu-
lative volume of the original trace A, and the blue line
is that of the noised trace B. The deficit is the max dif-
ference between the two lines in the orange area, while
the waste is that in the blue area.

The utility of the three mechanisms was evaluated
using the same set of w and ε values as in Fig. 5. The
waste and deficit of each noised trace were computed
first, and the average waste and deficit over all traces
were calculated and shown in Fig. 9 and Fig. 10. Ac-
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Fig. 9: waste experiment.
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Fig. 10: deficit experiment.
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Fig. 11: Utility Comparison: FPAk (w = 2s, ε = 0.5); d∗ (w = 0.5s, ε = 5e-6); dL1 (w = 2s, ε = 5e-7).

cording to Fig. 9a, parameter w did not affect the waste
of FPAk much. But when ε increased, waste would de-
crease, since there was less noise added. Similarly, for d∗

and dL1, ε was the major factor that affected the waste
(see Fig. 9b and Fig. 9c). However, w also had an influ-
ence: When ε was fixed, larger w indicated fewer waste
for d∗ and dL1. We conjecture it was again related to
the mechanism by which d∗ and dL1 added noise. The
amount of noise added had a linear relationship with
the length of the series. When w was larger, the time
series was shorter for the same video length. Therefore,
less noise was added, which resulted in smaller waste.

However, the deficit metric of the three mechanisms
followed a different trend (Fig. 10). In FPAk, deficit was
less fluctuated when w and ε changed (Fig. 10a). For
different (w,ε) pairs, the average deficit stayed within
[1.5MB, 3MB]. However, for d∗, changes in either w or
ε affected the deficit significantly. From Fig. 10b, it was
clear that when the w was small (e.g., 0.05s), there was
no deficit at all for all ε values; when the w was large
(e.g., 2s), the deficit could be as large as 0.8MB. The
deficit of dL1 (Fig. 10c) was quite similar to that of d∗:
the deficit was negligible when w was small, and stayed
within 1MB when w was large. Overall, FPAk cost less

waste but incurred more deficit , while d∗ and dL1 had
fewer deficit with higher waste.

Note that it is possible to take measures to lower
the waste and deficit . For example, one can choose an
ε value to ensure privacy while keeping a reasonable
waste and deficit . Lowering the upper bound can reduce
the waste, while increasing the lower bound can remove
the deficit . Also, the deficit can be easily eliminated if
buffering the video content upfront for a few seconds.

7.3 Comparison of Mechanisms

To compare the three differentially private mechanisms,
we chose the best (w,ε) pair for each method, which
achieves the baseline accuracy (i.e., 2.5%) and lowest
waste. According to the experiment results presented
in Sec. 7.1 and Sec. 7.2, for FPAk, the best parameters
were w = 2s, ε = 0.5; for d∗, w = 0.5s, ε = 5×10−6 were
chosen; for dL1, we used w = 2s, ε = 5×10−7. The waste
and deficit distribution of the 4000 traces after applying
the three methods are shown in Fig. 11. From Fig. 11a,
it is clear that with the best parameters, FPAk traces
had a median waste of about 200%; median waste of
dL1 traces was about 300%; that of d∗ traces was even

11



0 20 40 60 80 100 120 140 160 180
Time (s)

0.0

0.2

0.4

0.6

0.8

1.0

1.2

W
as

te
 (M

B)

FPAk

d *

dL1

Fig. 12: The waste added per window with the best
parameters: FPAk (w = 2s, ε = 0.5); d∗ (w = 0.5s, ε =
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higher (600%). For deficit (Fig. 11b), however, more
than 80% of d∗ traces had a deficit less than 1%; most
of dL1 traces had a deficit less than 5%; the majority
of FPAk traces (> 50%) had at least 5% deficit .

From Fig. 11, we find that FPAk tended to induce
less waste (about 200% of the original video size). To
achieve similar security protection, dL1 cost about 300%
waste (1.5 times of FPAk), while d∗ had to download 3
times more volume than FPAk. To achieve differential
privacy, some utility loss has to be allowed when ap-
plying the three mechanisms. Moreover, it is clear that
with the same security level (in regards to classifica-
tion accuracy), if the primary objective is minimize the
waste, FPAk is the best choice; if the main goal is to
reduce the deficit , d∗ would be the better option. dL1
is somewhere in the middle, which is more balanced.

We also studied the waste added per window for the
three mechanisms when choosing the best parameters.
The waste added in the ith window is denoted as δ[i].
Following the notions in Sec. 6, we have δ[i] = x̃[i]−x[i].

For FPAk, x̃[i] = Q̃[i], so

δ[i] = Q̃[i]− x[i].

For dL1,

δ[i] ∼ Lap

(
1

ε

)
.

For d∗, based on the mechanism presented in Sec. 6.1,

δ[i] = x̃[i]− x[i] = ri + rG[i] + rG[G[i]] + · · ·+ r1.

The average waste added per window of the 4000
traces when choosing the best parameters in each set-
ting were presented in Fig. 12. We find that the waste
added per window stayed at roughly 0.7MB and 0.9MB
for FPAk and dL1, respectively, while that of d∗ was in-
creasing gradually from 0.1MB to 0.8MB. This is con-
sistent with their noise adding mechanisms presented
in Sec. 6. Based on this observation, when the length
of the video increases, the noise of d∗ will accumulate,
costing more waste than FPAk and dL1.

7.4 Comparison with Baseline Defense

In a baseline defense mechanism, the defender could
simply download at a constant rate for all videos in
the dataset. To make videos with different total data
size indistinguishable, smaller videos need to be padded
with dummy data to obfuscate the traffic analysis. We
designed the following mechanism to avoid introducing
deficit in the resulting streams: With a bin size of w, we
divided each time series into multiple bins, and identi-
fied the maximum value of downloaded data (denoted
as C) for all bins of these 4000 original time series.
Then as a baseline defense mechanism, all videos were
downloaded at a constant rate of C bytes per w. As
such, from the attacker’s perspective, all video streams
were identical, and no deficit would be incurred for the
noised video. We evaluated this baseline method with
w = [0.05s, 0.25s, 0.5s, 1s, 2s], and the corresponding
waste are [15.7GB, 14.9GB, 11.5GB, 8.1GB, 4.1GB], which
represent the extra data downloaded for a 3-minute
video.

We note that it is only fair to compare this base-
line approach with FPAk, because both of them require
knowledge of the download profiles of all videos in a
dataset (i.e., the set of videos the defender would like
to render indistinguishable). By contrast, d∗and dL1 can
be used to add noise on-the-fly. As shown in Fig. 9a,
the waste induced by FPAk is at least one order of
magnitude lower than the baseline approach. With a
tunable privacy level ε, i.e., by enforcing statistical in-
distinguishability rather than absolute indistinguisha-
bility, FPAk can be much more practical (e.g., with less
than 10MB waste when ε = 5).

8 Impacts of Video Lengths

In the previous sections, the video length (l) was set
to 3 minutes (180s); in this section, we further studied
how the video length would affect the security. Specifi-
cally, we evaluated the security with l = [30s, 60s, 90s,
120s, 150s]. We used the same 40× 100 traces. Here we
set wA = w = 0.25s since w is not the major factor
affecting security and utility based on our evaluation
in Sec. 7. We used ε ={5×10−8, 5×10−7, · · · , 50}. The
settings in the FPAk method remains the same, i.e.,
k = 10. We assume that the attacker uses the noised
data (x̃) for training and testing. We used 5-fold cross
validation for security evaluation.
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Fig. 13: Classification accuracy with different video lengths.

8.1 Impact on Security

The classification accuracy and one standard deviation
of a 5-fold cross validation with different video lengths
are shown in Fig. 13.

FPAk. The result for the FPAk method is shown in
Fig. 13a. When ε is small (e.g., ε = 0.05 and ε = 0.5),
the classification accuracy remains low since the noise
level is high. However, when ε is larger (e.g., ε = 5

and ε = 50), longer videos yield higher classification
accuracy: when ε = 50, the accuracy goes down by over
30% when l = 30s, compared to l = 150s. The reason
is that longer videos have more features in the traces,
which gives the classifier more information to better
separate them.

d∗. The result with d∗ as the defense mechanism is
shown in Fig. 13b. When ε ≤ 5×10−6, the video length
does not affect the accuracy. When ε = 5× 10−5, how-
ever, the accuracy keeps increasing when l is increasing.
The reason is the same as that in FPAk: longer videos
indicate more features, thus easier classification.

dL1. The result of the dL1 mechanism is shown in Fig. 13c.
As shown in the figure, dL1 requires tighter parameters
(ε ≤ 5× 10−7) to maintain the baseline accuracy, com-
pared to d∗. When the noise level is low (ε ≥ 5×10−6),
dL1 mechanism cannot keep the videos indistinguish-
able. The accuracy also increases when the video length
increases.

8.2 Implications of Longer Videos

Our evaluation shown in Fig. 13 indicates that longer
videos need tighter paramters (ε) to maintain the same
security level. However, if the video length is longer
than the defender expected, what are the implications
on the three mechanisms? Note that FPAk is not ap-
plicable in this scenario, since the video length must
be known before it performs the Fourier Perturbation.
Therefore, we focus on d∗ and dL1 in this subsection.
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Fig. 14: Classification accuracy when ε is set to thres
(d∗, 0.25, 30) and thres (dL1, 0.25, 30) for d∗ and dL1,
respectively.

Methodology. To answer this question, we need to
find a way to set d∗ and dL1 in the same security level
when the video length is short, and evaluate the im-
pact when the length is longer. To achieve this, for each
method, we first define Acc(m0, w0, ε0, l0) as the classifi-
cation accuracy when method = m0, w = w0, ε = ε0, l =

l0, and thres(m0, w0, l0) as the maximum ε that can
maintain the baseline accuracy whenmethod = m0, w =

w0, l = l0. In our case, since the baseline accuracy is
0.025, for each method, the thres(m0, w0, l0) needs to
satisfy the following two conditions:

Acc(m0, w0, thres, l0) = 0.025,

∀ε ≥ thres, Acc(m0, w0, ε, l0) > 0.025.

For d∗ and dL1, we use the two conditions in bi-
nary search to find the approximate thres when w =

0.25s, l = 30s. Suppose the search range for the ith
round in the binary search is [Li, Ri]. Since we use
Python for evaluation and the floats in Python follow
the IEEE 754 double precision standard, which contain
53 bits of precision (16 digits)2, the stopping condition
is set as Ri − Li ≤ 1e-16. After the binary search ends
(n rounds), we set thres = Rn.
Evaluation. For d∗ and dL1, we use the evaluation re-
sult presented in Fig. 13 to set the [L0, R0] for the bi-
nary search. For d∗, L0 = 5e-6, R0 = 5e-5; for dL1, L0

2https://docs.python.org/3/tutorial/floatingpoint.html
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= 5e-7, R0 = 5e-6. After the binary search ends, we
have the thres for the two mechanisms3. Then, we set
the ε to the thres for d∗ and dL1, respectively, and eval-
uate the classification accuracy with 5-fold cross vali-
dation when l = [60s, 90s, 120s, 150s, 180s]. The results
are shown in Fig. 14. We can learn that when the video
length is longer than 30 seconds, the classification ac-
curacy increases no matter which defense mechanism is
chosen. However, the impacts on the two mechanisms
are different: for d∗, the accuracy increases to about
18% when l = 180s; for dL1, the accuracy goes up to
over 40%, which is more than twice as that of d∗. The
results indicate that dL1 is less effective when the video
length is longer than the expected setting, compared to
d∗. Therefore, if the video to be protected may have a
longer length than the defender expected, it is better
to choose d∗ over dL1.

9 Real-world Implementation

To demonstrate the practicality of our approach, we im-
plemented the FPAk privacy mechanism in a Chrome
extension that proxies Youtube streaming. The work-
flow of the extension is illustrated in Fig. 15. First,
the Youtube client running inside the Chrome browser
sends a request to the Youtube server, which is inter-
cepted by the extension. Instead of relaying the request
immediately, the proxy sends requests on behalf of the
client at a constant rate (e.g., once per second), which
is specified by the w parameter of the extension. Af-
ter receiving the responses from the server, the proxy
caches the video chunks locally. If there is a pending
request from the Youtube client, the extension returns
the requested portion to the client directly from local
storage. In this way, the Youtube requests/responses as
seen by an external observer are fully controlled by the
extension. Since the request pattern from the proxy is
differentially private, traffic analysis is thwarted.

To enforce the privacy guarantee, the range param-
eters in the proxy’s requests are decoupled from those in
the client’s requests. The requests sent by the Chrome
extension use a range parameter dictated by the FPAk
mechanism. To properly watch a Youtube video, both
its video stream and its audio stream needs to be down-
loaded. We applied the differentially private mechanism
on both streams.

Implementation. In our implementation, we made
use of the Xhook4 framework, which allows us to in-
tercept and modify the XMLHttpRequest requests and

3thres(d∗,0.25,30) = 0.0000111524321020, thres(dL1,0.25,30)
= 0.0000024160161657.
4https://github.com/jpillora/xhook

Fig. 15: Workflow of the Chrome extension.

responses. In our implementation of FPAk, k = 10, w =

1s, ε = 0.5. We used the numjs5 library, which is simi-
lar to Python’s numpy, to implement numeric computa-
tion, and used the Random library in SIM.JS6 to imple-
ment the Laplace distribution. The extension has about
700 lines of Javascript code in total. Note that the use
of FPAk requires the original trace of the video to be
known to the proxy beforehand.

Data collection.We used the same methods described
in Sec. 3 to collect traces for 10 videos, and 100 traces
for each video, with our extension enabled. Therefore,
the network traffic observed is only the communica-
tion between the extension and the Youtube server. The
traces were collected when the w parameter of the ex-
tension was set to 1s, which means that it would send
a video request and an audio request to the Youtube
server every 1 second.

Effectiveness. To demonstrate that the extension can
indeed defeat ML-based traffic analysis, we extracted
12 features which were also time series from the stream
and performed classification one by one. The features
were: the number of bytes per bin (BPB), the number
of packets per bin (PPB), the average packet length per
bin (LPB), the size of bursts7 (BURST ).

In BPB series, each element represents the volume
in one bin; in PPB series, each element is the num-
ber of packets collected in one bin; and in LPB series,
each element represents the average packet length in
one bin, i.e., LPB [i] = BPB [i]/PPB [i] if PPB [i] > 0. In
BURST series, each element is the value of burst in one
bin. The subscription “up” means packets from client to
server; “down” means packets from server to client; no
subscription means the sum of “up” and “down”. We
also evaluated the classification accuracy with all 12
features combined, labeled as ALL.8

The dataset (1000 traces) was split into a training
set (80%, 800 traces) and a test set (20%, 200 traces).
We set wA = {0.05s, 0.25s, 0.5s, 1s, 2s} to bin the
traces, then trained the CNN model in Sec. 3 for 40
epochs with a batch size of 32 using the training set.

5https://github.com/nicolaspanel/numjs
6https://github.com/mvarshney/simjs-source
7A burst is the total size of all packets whose timestamps are
no farther apart than a threshold. Here the threshold is set
to 0.5s.
8In previous sections, the evaluations were performed on the
BPB feature; here we show that extracting more features does
not really help the classification.
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wA (s) BPBup BPBdown BPB PPBup PPBdown PPB LPBup LPBdown LPB BURSTup BURSTdown BURST ALL

0.05 0.16 0.12 0.16 0.12 0.16 0.14 0.14 0.13 0.16 0.14 0.15 0.16 0.13

0.25 0.20 0.16 0.22 0.18 0.16 0.20 0.12 0.08 0.16 0.23 0.14 0.19 0.21

0.5 0.19 0.12 0.22 0.14 0.16 0.20 0.14 0.08 0.10 0.19 0.14 0.15 0.20

1 0.16 0.14 0.18 0.14 0.19 0.13 0.10 0.10 0.11 0.16 0.14 0.12 0.18

2 0.14 0.12 0.16 0.13 0.14 0.16 0.10 0.10 0.09 0.16 0.16 0.19 0.17

Table 3: Classification result when the Chrome extension is enabled. Each column represents the accuracy when
trained with the specified feature. The features are up/down/total bytes per bin (BPB), up/down/total packets
per bin (PPB), up/down/total average packet length per bin (LPB), up/down/total bursts (BURST ), and the
combination of all 12 features (ALL).

After that, the classification was performed on the test
set. The results are shown in Table 3. As expected, the
CNN model can hardly classify these obfuscated traces.
For most cases, the classifier only achieved an accuracy
of about 15%. Using certain features may increase the
classification accuracy (e.g., 23% with BURST up for
wA = 0.25s), which were still significantly lower than
the values in Table 1. This result suggests that differen-
tial privacy is effective in defeating machine learning ad-
versaries. According to the Post-processing Lemma [15],
the composition of differentially private mechanisms is
still differentially private. Therefore, combining the fea-
tures does not benefit the attacker. As shown in the
“ALL” column in Table 3, the 12-feature combined clas-
sification accuracy remained on the same level as indi-
vidual features.
Usability. While we cannot directly quantify the user
experience, in our evaluation, the video streaming went
smoothly without pausing after buffering for roughly 3
seconds at the very beginning. We leave a comprehen-
sive user study on the usability as future work. Nev-
ertheless, an optimal implementation of our statistical
privacy mechanisms would enforce the privacy on both
the client side and the server side. The browser exten-
sion can only control the request rate of the Youtube
video streaming, but cannot directly control the re-
sponse rate from the server. If the server chooses to
respond to a request with a packet pattern that is spe-
cific to the downloaded video, privacy of the stream-
ing traffic can not be protected by the extension alone.
Fortunately, as shown in our experiment, it is not the
case—packet patterns in the video download are not
content-specific. Therefore, the packet patterns do not
leak additional information.

10 Discussion

In this section, we discuss the limitation and extension
of the statistical privacy approaches.
Reducing waste. To be practical, measures must be
taken to lower the waste. For example, one can lower

the security guarantee by increasing the ε, so that the
amount of noise added is reduced. Another possible ap-
proach is to make the upper clip bound smaller. In
Fig. 11a, the upper clip bound is set to 1GB, which
is far from realistic scenarios. It would be more reason-
able to find an empirical clip bound based on real-world
statistics.

Leakage through video length. None of the statisti-
cally private mechanisms prevents leakage through the
length of the videos. Intuitively, to make an 1-minute
video indistinguishable from an 1-hour video, consider-
able amount of noise must be added to hide the differ-
ence of the video length, as the L2 sensitivity in this
case is prohibitively high. As a result, the utility of the
solution will drop significantly. Therefore, in practice,
it is more desirable to only make videos with similar
length indistinguishable from one another. To do so,
grouping the videos by length and padding them to the
longest length in each group might be a good solution.
For example, all videos of the length between 50-minute
to 1-hour could be considered in one group and padded
so that all of them appear to be a 1-hour video.

Applying the mechanisms to protect longer videos.
In our paper, the videos are only 3-minute long, which
may not be realistic in reality. While the methods present
in the paper can be applied to longer videos, due to
the increase of the video length, more noise needs to
be added in order to make them indistinguishable. To
make it more practical and reduce the utility cost, the
user can utilize the approaches to reduce the waste as
mentioned above, as well as grouping the videos be-
fore adding noise. Moreover, in practice, it may not be
necessary to maintain a baseline accuracy; lowering the
security guarantee to obtain a reasonable balance be-
tween security and utility may be a better approach.

Comparing the three mechanisms. In Sec. 7.3, we
compared the utility of the three differentially private
mechanisms with certain w and ε parameters selected
to render the CNN classifier ineffective. However, CNN
classification accuracy does not translate directly to
security guarantees. As these mechanisms offer differ-
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ent theoretical privacy guarantees, directly comparing
them is less meaningful. However, it is worth mention-
ing that FPAk mechanism additionally requires the knowl-
edge of the entire time series x before transforming it
into the noised version x̃. This additional requirement
may be less desirable in scenarios where such informa-
tion is not available.

Applying differential privacy to website finger-
printing. Although we have shown that differentially
private mechanisms are promising countermeasures to
streaming traffic analysis attacks, directly applying the
same approach to prevent website fingerprinting requires
some modifications. Unlike streaming traffic, HTTP traf-
fic is more interactive. For example, an HTML web page
may embed a number of objects (e.g., JavaScript files
or images) that will be downloaded after the HTML
file is parsed by the browser. While streaming allows us
to proactively request video contents beforehand and
cache data locally, the download of some HTML re-
sources can only start after finishing the download of a
previous resource. We plan to address this type of in-
teractive web traffic and expand our approach to WF
attacks in future work.

Open-world settings. In this paper, we performed
our evaluation on a 40-video dataset. While 40 may
seem to be a small number, in real attacks, the attacker
may utilize some auxiliary information to narrow down
the set of videos the victim may be watching. Moreover,
the closed-world setting is themost advantageous to the
attacker and the least favorable to the defender. As a re-
sult, it would be much harder to build a defense against
attackers in the closed-world settings than open-world
settings. Our evaluation demonstrates the effectiveness
of the defense method in a more challenging scenario.
Therefore, the proposed defense should also work in the
open-world settings.

Practical deployment. To deploy our defense ap-
proaches in real-world systems, it is important to make
the end users aware of the trade-off between privacy
and cost. Better privacy leads to higher waste and/or
higher deficit . If the deficit is too high, the video can-
not be played smoothly; if the waste is too high, the
cost of network usage will increase. To lower the deficit ,
the service provider can enforce larger packet sizes of
the first few seconds with differential privacy guaran-
tee. Fortunately, all mechanisms offer tunable security
parameters to adjust privacy levels. Service providers
can configure a set of privacy levels for end users to
choose from; the privacy gain and utility loss should be
properly explained so that the users can adjust their
levels accordingly.

11 Related Work

Defenses against side-channel attacks. Our work
has been influenced by prior studies that insert noise
to obfuscate side-channel observations. Many research
projects have tried to perturb timers to mitigate timing
side-channel attacks [32, 33, 59]. Researchers have also
shown that adding noise to shared resources can be an
effective defense [4, 25, 66]. Particularly relevant to our
work is due to Xiao et al. [62], which introduced the
d∗ algorithm to mitigate storage side channels result-
ing from procfs in Linux, so that statistics reporting
through procfs satisfies d-privacy for a meaningful dis-
tance metric d∗. Their work considered interactive sta-
tistical data release, i.e., in which the defender knows
exactly when and how the adversary observes the data.
In our case, the adversary does not have to interact with
the defense system; he only needs to passively observe
the streaming traffic, which requires this defense to be
more pervasively applied. This, in turn, underscores the
importance of measuring its utility impact, as we have
done here.

Privacy of time-series data. Our work is built upon
a number of previous studies that apply differential pri-
vacy to time-series data. Rastogi et al. [47] proposed
the Fourier Perturbation Algorithm (FPAk) algorithm
to ensure differential privacy for time-series data. Shi et
al. [50] proposed aggregator-oblivious encryption to en-
sure differential privacy for distributed time-series data.
Benhamouda et al. [3] extended this work to introduce a
general framework for constructing privacy-preserving
aggregator-oblivious encryption schemes. Fan et al. [16]
presented a framework, FAST, to release real-time ag-
gregate statistics under differential privacy based on fil-
tering and adaptive sampling. Cao et al. [6] proposed
two methods to answer a subset of representative slid-
ing window queries with differential privacy. Kellaris et
al. [24] introduced ω-event privacy over infinite streams,
which protects any event sequence occurring in ω suc-
cessive timestamps. None of these works considered ap-
plying differential privacy to defeat traffic analysis, how-
ever.

Website fingerprinting defenses.One important branch
of traffic analysis is website fingerprinting (WF) on en-
crypted channels or anonymity networks (e.g., Tor). In
a typical WF attack, the adversary utilizes supervised
machine learning techniques to train a classifier with
encrypted network traffic to/from a set of websites of
interest and then classify unknown traffic captured from
the victim. Prior works have shown effectiveness of such
attacks [43, 44, 51, 52, 60]. Accordingly, many research
projects have explored mechanisms [5, 23, 44, 61] to
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address this security threat. The major difference be-
tween these work and ours is that our method is de-
signed with a theoretical privacy guarantee. We believe
our solution can be applied to WF attacks as well. How-
ever, unlike streaming traffic, which is essentially non-
interactive, additional care must be taken to eliminate
leakage through interactive traffic patterns. We plan to
expand our approach to WF attacks in future work.
Private messaging systems. Prior works have ap-
plied differential privacy techniques in private messag-
ing systems. One of the first systems is Vuvuzela [58],
which is a large-scale private messaging system that
protects against both passive and active adversaries
with differential privacy guarantee. There are other works
that extend Vuvuzela for private messaging systems [27,
28, 57]. Although these works also applied differential
privacy to prevent traffic analysis, however, their sce-
narios are completely different. In these private mes-
saging systems, the information they are trying to hide
is the participants of communications, i.e., who is talk-
ing to whom in the system. In our scenario, the two
parties involved are obviously known—the client and
the server; however, we strive to prevent traffic analysis
from divulging the content that is being streamed from
the server to the client.
Privacy using adversarial ML. The possibility that
adversarial ML might be leveraged to improve privacy
by interfering with automated classification of observa-
tions is a relatively new idea. Oh et al. [42] specifically
considered methods to interfere with automated per-
son recognition in an image. Marohn et al. [36] simi-
larly explored the effectiveness of an image-obfuscation
technique dubbed “thumbnail preserving encryption”
against ML classifiers. A recent paper [40] has also ex-
plored adversarial ML to defeat traffic analysis attack-
ers. However, they assume that the defender can arbi-
trarily inject/remove/change packets, which is unreal-
istic in our case.
Differential privacy and adversarial samples. There
are works that use differential privacy to increase the
robustness of classifiers against adversarial samples [31,
46]. These papers have different objectives from ours.
Their goals are to improve the robustness of classifica-
tion; our paper has the opposite goal: using differential
privacy to make classification difficult.

12 Conclusion

In this paper, we borrowed techniques from adversar-
ial machine learning and differential privacy to address
privacy concerns of streaming traffic. Our findings sug-
gest that constructing adversarial samples effectively

confounds an adversary with a predetermined classifier
but is less effective when the adversary can adapt to the
defense, either by using alternative classifiers or train-
ing the classifier with adversarial samples. On the other
hand, differential privacy effectively defeats statistical-
inference-based traffic analysis, while remains agnostic
to the machine learning classifiers used by the adver-
sary. Our evaluation suggests that the differentially pri-
vate mechanisms used in the paper offer good security
protection with moderate utility loss.
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nockỳ, J.: Strategies for training large scale neural
network language models. In: 2011 IEEEWorkshop
on Automatic Speech Recognition and Understand-
ing (ASRU). IEEE (2011)

38. Mnih, A., Teh, Y.W.: A fast and simple algorithm
for training neural probabilistic language models.
arXiv preprint arXiv:1206.6426 (2012)

39. Mondal, A., Sengupta, S., Reddy, B.R., Koundinya,
M., Govindarajan, C., De, P., Ganguly, N.,
Chakraborty, S.: Candid with youtube: Adaptive
streaming behavior and implications on data con-
sumption. In: 27th Workshop on Network and
Operating Systems Support for Digital Audio and
Video (NOSSDAV). ACM (2017)

40. Nasr, M., Bahramali, A., Houmansadr, A.: Blind
adversarial network perturbations. arXiv preprint
arXiv:2002.06495 (2020)

41. Nicolae, M.I., Sinn, M., Tran, M.N., Buesser, B.,
Rawat, A., Wistuba, M., Zantedeschi, V., Bara-
caldo, N., Chen, B., Ludwig, H., Molloy, I., Ed-
wards, B.: Adversarial robustness toolbox v1.2.0.
CoRR (2018). URL https://arxiv.org/pdf/
1807.01069

42. Oh, S.J., Fritz, M., Schiele, B.: Adversarial image
perturbation for privacy protection – a game theory
perspective. In: IEEE International Conference on
Computer Vision (2017)

43. Panchenko, A., Lanze, F., Pennekamp, J., Engel,
T., Zinnen, A., Henze, M., Wehrle, K.: Website fin-
gerprinting at internet scale. In: NDSS (2016)

44. Panchenko, A., Niessen, L., Zinnen, A., Engel,
T.: Website fingerprinting in onion routing based
anonymization networks. In: 10th annual ACM
workshop on Privacy in the electronic society. ACM
(2011)

45. Pedregosa, F., Varoquaux, G., Gramfort, A.,
Michel, V., Thirion, B., Grisel, O., Blondel, M.,
Prettenhofer, P., Weiss, R., Dubourg, V., Vander-
plas, J., Passos, A., Cournapeau, D., Brucher, M.,
Perrot, M., Duchesnay, E.: Scikit-learn: Machine
learning in python. The Journal of Machine Learn-
ing Research (2011)

46. Pinot, R., Yger, F., Gouy-Pailler, C., Atif, J.:
A unified view on differential privacy and ro-
bustness to adversarial examples. arXiv preprint
arXiv:1906.07982 (2019)

47. Rastogi, V., Nath, S.: Differentially private aggre-
gation of distributed time-series with transforma-
tion and encryption. In: 2010 ACM SIGMOD Inter-
national Conference on Management of data. ACM
(2010)

48. Sainath, T.N., Mohamed, A.r., Kingsbury, B.,
Ramabhadran, B.: Deep convolutional neural net-
works for lvcsr. In: 2013 IEEE international con-
ference on Acoustics, speech and signal processing
(ICASSP). IEEE (2013)

49. Schuster, R., Shmatikov, V., Tromer, E.: Beauty
and the burst: Remote identification of encrypted
video streams. In: USENIX Security Symposium
(2017)

50. Shi, E., Chan, H., Rieffel, E., Chow, R., Song, D.:
Privacy-preserving aggregation of time-series data.
In: NDSS (2011)

51. Sirinam, P., Imani, M., Juarez, M., Wright, M.:
Deep fingerprinting: Undermining website finger-
printing defenses with deep learning. arXiv preprint
arXiv:1801.02265 (2018)

52. Sun, Q., Simon, D.R., Wang, Y.M., Russell, W.,
Padmanabhan, V.N., Qiu, L.: Statistical identifica-
tion of encrypted web browsing traffic. In: IEEE
Symposium on Security and Privacy. IEEE (2002)

53. Sutskever, I., Vinyals, O., Le, Q.V.: Sequence to se-
quence learning with neural networks. In: Advances
in neural information processing systems (2014)

54. Szegedy, C., Liu, W., Jia, Y., Sermanet, P., Reed,
S., Anguelov, D., Erhan, D., Vanhoucke, V., Rabi-
novich, A., et al.: Going deeper with convolutions.
CVPR (2015)

55. Szegedy, C., Zaremba, W., Sutskever, I., Bruna,
J., Erhan, D., Goodfellow, I., Fergus, R.: Intrigu-
ing properties of neural networks. arXiv preprint
arXiv:1312.6199 (2013)

56. Tompson, J.J., Jain, A., LeCun, Y., Bregler, C.:
Joint training of a convolutional network and a
graphical model for human pose estimation. In:
Advances in neural information processing systems
(2014)

19



57. Tyagi, N., Gilad, Y., Leung, D., Zaharia, M.,
Zeldovich, N.: Stadium: A distributed metadata-
private messaging system. In: 26th Symposium on
Operating Systems Principles. ACM (2017)

58. Van Den Hooff, J., Lazar, D., Zaharia, M., Zel-
dovich, N.: Vuvuzela: Scalable private messaging
resistant to traffic analysis. In: 25th Symposium
on Operating Systems Principles. ACM (2015)

59. Vattikonda, B.C., Das, S., Shacham, H.: Eliminat-
ing fine grained timers in xen. In: 3rd ACM work-
shop on Cloud computing security workshop. ACM
(2011)

60. Wang, T., Cai, X., Nithyanand, R., Johnson, R.,
Goldberg, I.: Effective attacks and provable de-
fenses for website fingerprinting. In: USENIX Se-
curity Symposium (2014)

61. Wang, T., Goldberg, I.: Walkie-talkie: An efficient
defense against passive website fingerprinting at-
tacks. In: USENIX Security Symposium (2017)

62. Xiao, Q., Reiter, M.K., Zhang, Y.: Mitigating stor-
age side channels using statistical privacy mecha-
nisms. In: 22nd ACM Conference on Computer and
Communications Security. ACM (2015)

63. Yi, B.K., Faloutsos, C.: Fast time sequence indexing
for arbitrary lp norms (2000)

64. Zhang, X., Wang, X., Bai, X., Zhang, Y., Wang,
X.: Os-level side channels without procfs: Explor-
ing cross-app information leakage on ios. In: NDSS
(2018)

65. Zhang, Y., Juels, A., Reiter, M.K., Ristenpart, T.:
Cross-VM side channels and their use to extract
private keys. In: 19th ACM conference on Com-
puter and communications security. ACM (2012)

66. Zhang, Y., Reiter, M.K.: Düppel: retrofitting com-
modity operating systems to mitigate cache side
channels in the cloud. In: 2013 ACM conference
on Computer and communications security. ACM
(2013)

Appendix A: Appendix

Theorem 1 Suppose for database D, we have method
A that is ε-private, and method B that is (d∗, ε)-private.
We denote the maximum and minimum d∗ distance in
D as dmax and dmin. Then we have:

(1) If B is (d∗, ε)-private, then B is (εdmax)-private.
(2) If A is ε-private, then A is (d∗, ε

dmin
)-private.

PROOF. According to the definitions, we have:

A : P(A(x) ∈ Z) ≤ exp(εA)× P(A(x′) ∈ Z) (A.1)

B : P(A(x) ∈ Z) ≤ exp(εB × d∗(x, x′))× P(A(x′) ∈ Z)
(A.2)

For B, we have:

εB × dmin ≤ εB × d∗(x, x′) ≤ εB × dmax (A.3)

If B is (d∗, ε)-private,

P(A(x) ∈ Z)
P(A(x′) ∈ Z)

= exp(ε× d∗(x, x′)) ≤ exp(ε× dmax)

(A.4)

So B is at least (εdmax)-private. Similarly, if A is
ε-private, let ε = ε′ × d∗(x, x′), we have:

ε′ =
ε

d∗(x, x′)
≤ ε

dmin
(A.5)

So A is at least (d∗, ε
dmin

)-private.
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