
CloudRadar: A Real-Time Side-Channel Attack
Detection System in Clouds

Tianwei Zhang1, Yinqian Zhang2, and Ruby B. Lee1

1 Princeton University, Princeton, NJ, USA
{tianweiz,rblee}@princeton.edu

2 The Ohio State University, Columbus, OH, USA
yinqian@cse.ohio-state.edu

Abstract. We present CloudRadar , a system to detect, and hence mit-
igate, cache-based side-channel attacks in multi-tenant cloud systems.
CloudRadar operates by correlating two events: first, it exploits signature-
based detection to identify when the protected virtual machine (VM)
executes a cryptographic application; at the same time, it uses anomaly-
based detection techniques to monitor the co-located VMs to identify ab-
normal cache behaviors that are typical during cache-based side-channel
attacks. We show that correlation in the occurrence of these two events
offer strong evidence of side-channel attacks. Compared to other work
on side-channel defenses, CloudRadar has the following advantages: first,
CloudRadar focuses on the root causes of cache-based side-channel at-
tacks and hence is hard to evade using metamorphic attack code, while
maintaining a low false positive rate. Second, CloudRadar is designed
as a lightweight patch to existing cloud systems, which does not re-
quire new hardware support, or any hypervisor, operating system, appli-
cation modifications. Third, CloudRadar provides real-time protection
and can detect side-channel attacks within the order of milliseconds. We
demonstrate a prototype implementation of CloudRadar in the Open-
Stack cloud framework. Our evaluation suggests CloudRadar achieves
negligible performance overhead with high detection accuracy.

Keywords: Attack Detection, Side-channel Attacks, Performance Coun-
ters, Cloud Computing, Mitigation

1 Introduction

Infrastructure-as-a-Service (IaaS) cloud systems usually adopt the multi-tenancy
feature to maximize resource utilization by consolidating virtual machines (VMs)
leased by different tenants on the same physical machine. Virtualization tech-
nology is used to provide strong resource isolation between different VMs so
each VM’s memory content is not accessible to other co-tenant VMs. However,
confidentiality breaches due to cross-VM side-channel attacks become a major
concern. These attacks often operate on shared hardware resources and extract
sensitive information, such as cryptographic keys, by making inferences on the
observed side-channel events due to resource sharing. CPU caches are popular

2 Tianwei Zhang, Yinqian Zhang, and Ruby B. Lee

attack surfaces that lead to cross-VM side-channel attacks. Several prior work
have shown the possibilities of cross-VM secret leakage via different levels of
CPU caches [10,14,15,21,42,45,46].

Mitigating side-channel attacks in clouds is challenging. Past work on de-
feating side-channel attacks have some practical drawbacks: they mostly require
significant changes to the hardware [6,20,39,40], hypervisors [17,18,31,33,35,48]
or guest OSes [48], making them impractical to be deployed in current cloud dat-
acenters. Other work have proposed to mitigate these attacks in cloud contexts
by periodic VM migrations to reduce the co-location possibility between vic-
tim VMs and potential malicious VMs [25, 47]. These heavy-weight approaches
cannot effectively prevent side-channel leakage unless performed very frequently,
making them less practical as VM co-location takes on the order of minutes [34]
while side-channel attacks can be done on the order of milliseconds [21,42].

In this paper, we propose to detect side-channel attacks as they occur and
prevent information leakage by triggering VM migration upon attack detection.
However, side-channel attack detection is non-trivial. To do so, we must overcome
several technical challenges in the application of traditional detection techniques,
like signature-based detection and anomaly-based detection, to side-channel at-
tacks. Signature-based side-channel detection exploits pattern recognition to de-
tect known attack methods [4, 5, 13]. While low in false negatives for existing
attacks, it fails to recognize new attacks; anomaly-based detection flags behav-
iors that deviate significantly from the established normal behaviors as attacks,
which can potentially identify new attacks in addition to known ones. However,
differentiating side-channel attacks from normal applications is difficult as these
attacks just perform normal memory accesses which resemble some memory in-
tensive applications.

To overcome these challenges, we design CloudRadar , a real-time system to
detect the existence of cross-VM side-channel attacks in clouds. There are two
key ideas behind CloudRadar : first, the victim has unique micro-architectural
behaviors when executing cryptographic applications that need protection from
side-channel attacks. So the cloud provider is able to identify the occurrence of
such events using a signature-based detection method. Second, the attacker VM
creates an anomalous cache behavior when it is stealing information from the
victim. Such anomaly is inherent in all side-channel attacks due to the inten-
tional cache contention with the victim to induce side-channel observations. By
correlating these two types of events, CloudRadar is able to detect the stealthy
cache side-channel attacks with high fidelity.

We implement CloudRadar as a lightweight extension to the virtual machine
monitors. Specially, it (1) utilizes the existing host system facilities to collect
micro-architectural features from hardware performance counters that are avail-
able in all modern commodity processors, and (2) non-intrusively interacts with
the existing virtualization framework to monitor the VM’s cache activities while
inducing little performance penalty. Our evaluations show that it effectively de-
tects side-channel attacks with high true positives and low false positives.

CloudRadar: A Real-Time Side-Channel Attack Detection System in Clouds 3

Compared to past work, CloudRadar has several advantages. First, CloudRadar
focuses on the root causes of cache-based side-channel attacks and hence is hard
to evade using different attack code, while maintaining a low false positive rate.
Our approach is able to detect different types of side-channel attacks and their
variants with a simple method. Second, CloudRadar is designed as a lightweight
patch to existing cloud systems, which does not require new hardware support
or hypervisor/OS modifications. Therefore CloudRadar can be immediately in-
tegrated into modern cloud fabric without making drastic changes to the under-
lying infrastructure. Third, CloudRadar exploits hardware performance counters
to monitor VM activities, which detects side-channel attacks within the order
of milliseconds with negligible performance overhead. Finally, CloudRadar re-
quires no changes to the guest VM or the applications running in it, and thus is
transparent to cloud customers.

To summarize, CloudRadar achieves the following contributions:

• The first approach to detect cache side-channel attacks using techniques that
combine both signature-based and anomaly-based detection techniques.
• A novel technique to identify the execution of cryptographic applications,

which are of interest in its own right.
• A non-intrusive system design that requires no changes to the hardware, hy-

pervisor and guest VM and applications, which shows potential of immediate
adoption in modern clouds.
• Full prototype implementation and extensive evaluation of the proposed ap-

proach and detection techniques.

The rest of this paper is organized as follows: Sec. 2 presents the background
of cache side-channel attacks and defenses, and other detection systems based on
performance counters. Sec. 3 presents the design challenges and system overview.
Sec. 4 discusses the signature-based methods to detect cryptographic applica-
tions. Sec. 5 shows the anomaly-based method to detect side-channel activities.
Sec. 6 presents the architecture and implementation of CloudRadar . Sec. 7 eval-
uates its performance and security. We discuss the limitations of CloudRadar
and potential evasive attacks against it in Sec. 8. Sec. 9 concludes.

2 Background and Related Work

2.1 Cache Side-Channel Attacks

In cache-based side-channel attacks, the adversary exfiltrates sensitive informa-
tion from the victim via shared CPU caches. The sensitive information are usu-
ally associated with cryptographic operations (e.g., signing or decryption), but
may also be extended to other applications [46]. Such sensitive information are
leaked through secret-dependent control flows or data flows that lead to attacker-
observable cache use patterns. The adversary, on the other hand, may exploit
several techniques to manipulate data in the shared cache to deduce the victim’s
cache use patterns, and thereby make inference on the sensitive information that

4 Tianwei Zhang, Yinqian Zhang, and Ruby B. Lee

dictates these patterns. Two cache manipulation techniques are well-known for
side-channel attacks:

Prime-Probe attacks: The adversary allocates an array of cacheline-sized,
cacheline-aligned memory blocks so that these memory blocks can exactly fill up
a set of targeted cache sets. Then the adversary repeatedly performs two attack
stages: in the prime stage, the adversary reads each memory block in the array to
evict all the victim’s data in these cache sets. The adversary waits for some time
interval before performing the probe stage, in which he reads each memory block
in the array again, and measures the time of memory accesses. Longer access
time indicates one or more cache misses, which means this cache set has been
accessed by the victim between the prime and probe stages. The adversary
will repeat these two steps for significant amount of times to collect traces that,
hopefully, overlap with the victim’s execution of cryptographic operations, for
offline analysis. This technique was first proposed by Percival [27], and then
applied to the cloud environment in [14,21,28,45].

Flush-Reload attacks: This type of attacks assumes identical memory pages
can be shared among different VMs, so that the adversary and victim VMs may
share the same pages containing cryptographic code or data. The adversary care-
fully selects a set of cacheline-sized, -aligned memory blocks from these shared
pages. Then he also conducts two stages repeatedly: in the flush stage, the ad-
versary flushes the selected blocks out of the entire cache hierarchy (e.g., using
the clflush instruction). Then it waits for a fixed interval in which the victim
might issue the critical instructions and fetch them back to the caches. In the
reload stage, the adversary reloads these memory blocks into the caches and
measures the access time. A short access time for one memory block indicates
a cache hit, so this block has been accessed by the victim during the interval.
By repeating these two stages the adversary can obtain traces of the victim’s
memory accesses and deduce the confidential data. This Flush-Reload tech-
nique was first proposed in [11], and further demonstrated in different virtualized
platforms with different variants [9, 10,15,46]

2.2 Defenses Against Side-channel Attacks

Previous studies propose to defeat cache-based Side-channel attacks in one of
these three ways:

– Partitioning caches: One straightforward approach is to prevent the cache
sharing by dividing the cache into different zones by sers or ways for different
VMs. This can be achieved by hardware [6, 19, 40] or software methods [17,
31].

– Randomization: This idea is to add randomization to the attacker’s mea-
surements, making it hard for him to get accurate information based on
his observations. This includes random memory-to-cache mappings [39, 40],
cache prefetches [20], timers [18,35] and cache states [48].

– Avoiding co-location: New VM placement policies were designed [1,12] to
reduce the co-location probability between victim and attacker VMs. Zhang

CloudRadar: A Real-Time Side-Channel Attack Detection System in Clouds 5

et al. [47] and Moon et al. [25] frequently migrated the VMs to add difficulty
of VM co-location for the attackers.

These approaches, when applied in the cloud setting, require significant
modification of computing infrastructure, and thus are less attractive to cloud
providers for practical adoption. In our study, we aim to build atop existing cloud
framework a lightweight side-channel attack detection system to detect, and then
mitigate, the attacks as they take place, while doing so without modifying guest
OS, hypervisor or hardware.

2.3 Intrusion Detection Using Hardware Performance Counters

Hardware performance counters are a set of special-purpose registers built into
x86 (e.g., Intel and AMD) and ARM processors. They work along with event
selectors which specify certain hardware events, and update a counter after a
hardware event occurs. Most modern processors provide a Performance Monitor
Unit (PMU) that enables applications to control performance counters. One of
the basic working modes of PMUs is the interrupt-based mode. Under this work-
ing mode, an interrupt is generated when the occurrences of a given event exceed
a predefined threshold or a predefined amount of time has elapsed. Therefore, it
makes both event-based sampling and time-based sampling possible.

Performance counters were originally designed for software debugging and
system performance tuning. Recently, researchers exploited performance coun-
ters to detect security breaches and vulnerabilities [2, 5, 23, 32, 36, 37, 41, 43].
The intuition is that the performance counters can reveal programs’ execution
characteristics, which can further reflect the programs’ security states. Besides,
performance counter detection introduces negligible performance overhead to
the programs. Related to ours were signature-based side-channel attack detec-
tion using performance counters [4, 5, 13], which, unfortunately, could be easily
evaded by smarter attackers by slightly changing cache probing pattern.

3 Design Challenges and Overview

In this paper, we explore an oft-discussed, but never successfully implemented,
idea: exploiting hardware performance counters available in commodity proces-
sors to detect side-channel attacks that abuse processor caches. We first system-
atically explore the design challenges and then sketch our design of CloudRadar .

Threat model and assumptions. We focus on cross-VM side-channel threats
in public IaaS clouds based on Last Level Caches (LLC) that are shared between
processor cores. We assume the adversary is a legitimate user of the cloud service
who is able to launch VMs in the cloud and has complete control of his VMs.
We further assume the attacker is able to co-locate one of his VMs on the same
server as the victim VM, and the two VMs will share the same processor package,
thus the LLC, with non-negligible probability. We consider both Prime-Probe
side-channel attacks and Flush-Reload side-channel attacks, which represent
all known LLC side channels in modern computer systems.

6 Tianwei Zhang, Yinqian Zhang, and Ruby B. Lee

3.1 Design Challenges

Signature-based detection. Signature-based detection approaches are widely
used techniques in detecting network intrusion and malware, by comparing moni-
tored application or network characteristics with pre-identified attack signatures.
Similarly, to detect side-channel attacks, signatures of side-channel attacks must
be generated from all known side-channel attack techniques and used to compare
with events collected from production systems. Prior work [4,5] has preliminar-
ily explored such ideas. Particularly, Demme et al. demonstrated in a simplified
experiment setting that classification algorithms could successfully differentiate
normal programs from Prime-Probe attack programs. The advantage of this
approach is that they have high true positive rate in detecting known attacks.
However, such detection method is very fragile and easy to evade by clever at-
tackers. It also fails to recognize unknown attacks even with only subtle changes
from existing ones. For instance, the attacker can change the memory access
pattern (e.g., sequential order, access frequency) in a Prime-Probe attack to
evade signature-based detection.

Anomaly-based detection. In anomaly-based detection, the normal behav-
iors of benign applications are modeled and any substantial deviation from such
models are detected as attacks. To detect side-channel attacks using such tech-
niques, one can build models for benign application behaviors. Then for each VM
to be monitored, we check if its behaviors conform to the models in the database.
Compared to signature-based detection, anomaly-based detection can potentially
identify “zero-day” attacks in addition to known ones. However, the difficulty
of applying the anomaly-based approach to side-channel attacks stems from the
challenge of precisely modeling benign application activities using performance
counters. Cache side-channel attacks resemble benign memory intensive applica-
tions (e.g., memory streaming application [24]), and therefore they are difficult
to be differentiated using only hardware performance counters. False positive or
false negative rates can be extremely high due to imprecise application behavior
modeling. We are not aware of successful side-channel detection methods that
are based on anomaly detection.

3.2 Design Overview

We design a side-channel attack detection system, CloudRadar , that combines
both anomaly-based and signature-based techniques. The only features used by
CloudRadar are hardware event values read from the performance counters avail-
able in commercial processors. The key insight that motivates CloudRadar is
derived from our prior research in side-channel attacks: in cache side-channel
attacks, to effectively exfiltrate secret information from the victim’s sensitive
execution, the attacker needs to repeatedly conduct side-channel activities (e.g.,
Prime-Probe or Flush-Reload) and deduce his own cache uses based on the
execution time of his own memory activities. Then he can make inferences on the
victim’s cache use pattern by looking at the statistics of his use of caches (e.g.,
cache hits and cache misses). As such, the attacker’s cache use patterns must be

CloudRadar: A Real-Time Side-Channel Attack Detection System in Clouds 7

different when the victim executes sensitive operations so that the attacker can
differentiate them in his own analysis. Our intuition is that if such distinction
can be detected by the attacker using timing channels, it can be detected by the
cloud provider using performance counters.

We design CloudRadar to monitor all VMs running on a cloud server and
collect their cache use patterns using hardware performance counters. Once
anomaly in cache use patterns are detected by CloudRadar , these anomalies
will be correlated with the sensitive operations (usually cryptographic opera-
tions) in the co-located protected VM (i.e., VMs owned by customers paying for
such services). Strong correlation will serve as a good indicator of cache-based
side-channel attacks.

Two key technical challenges in our design are (1) identifying the execu-
tion of the protected VM’s sensitive operations without asking the customers
to modify their applications and (2) detecting untrusted VM’s abnormal cache
use patterns. We aim to achieve both by using only values read from perfor-
mance counters. To do so, we first propose to use signature-based techniques to
detect sensitive applications of the protected VM, because they are conducted
by honest parties and will not attempt to evade detection intentionally—a per-
fect target of signature-based detection techniques. Second, we propose to use
anomaly-based detection techniques to detect abnormal cache patterns due to
side-channel activities, as they are expected to vary due to different attack tech-
niques and intensity. As side-channel attack detection is done via correlation
with sensitive operations, false positives that are common challenges to anomaly
detection techniques can be ruled out. We will highlight our design of these two
components in Sec. 4 and 5.

4 Signature Detection of Cryptographic Applications

As sensitive operations that are targeted by side-channel attacks are usually
cryptographic operations, we consider detection of cryptographic applications in
this paper. Our working hypothesis here is that all cryptographic applications
have unique signatures that can be easily identified by performance counters. In
this section, we validate our hypothesis by a set of preliminary experiments.

4.1 Cryptographic Signature Generation

To generate signatures for detecting cryptographic applications, we need to select
a proper hardware performance feature that uniquely characterizes a certain
execution phase [30] of such applications.

Feature selection. Modern processors allow a large number of events to be
measured and reported by performance counters. The signature generated from
a proper hardware event should satisfy two requirements: (1) uniqueness: the
signatures of different applications should be highly distinguishable; (2) repeata-
bility : the signature of a cryptographic application should be identical each time
it is generated, regardless of the platform’s configurations and the inputs.

8 Tianwei Zhang, Yinqian Zhang, and Ruby B. Lee

We consider different events from three main categories: CPU events, cache
events and kernel software events. We use the Fisher Score [7] to test the repeata-
bility and uniqueness of these events in identifying cryptographic applications.
Fisher Score is one of the most widely used methods to select features quickly. It
finds the optimal feature so that the distances between data points in the feature
space of different classes are maximized, while the distances between data points
in the same class are minimized.

To test the uniqueness of an event, we use performance counters to measure
the number of this event every 100µs during the execution of six representative
cryptographic applications (i.e., asymmetric cryptography: ElGamal and DSA
from GnuPG; symmetric cryptography: AES and 3DES from OpenSSL; hash:
HMAC from OpenSSL and SHA512 from GnuPG). We select 10 consecutive
counter values (collected from 10 × 100µs) from the beginning of each applica-
tion to form a timing sequence as one training data point. We repeat this 100
times for each cryptographic application. For each hardware event we consid-
ered, we calculate the Fisher Score using 600 training data points from the six
cryptographic applications to test the uniqueness of this event in distinguishing
different applications. Table 1 (Inter-class F-Score column) shows the results.
Note a larger inter-class F-Score indicates a better uniqueness of this event.
We can see some CPU events (instructions, branches and mispredicted branch
instructions) and cache events (L1I load misses) are better candidates for signa-
ture generation. They vary significantly for different cryptographic applications.
The events that rarely happen during the cryptographic execution (e.g., context
switches and page faults), or remain identical for different cryptographic appli-
cations (e.g., CPU cycles or clock) fail to satisfy the uniqueness requirement.

To test the repeatability of an event, we repeat the above experiments on three
servers with different hardware and software configurations. For each crypto-
graphic application, we calculate the Fisher Score from 300 training data points
collected from three servers. Table 1 (Intra-class F-Score column) shows the
average Fisher Score of the six cryptographic programs. A smaller Intra-class
F-Score indicates the signature with this event is more repeatable. We are able
to find some events with good repeatability (e.g., instructions, branches and
mispredicted branch instructions).

Based on the inter-class and intra-class Fisher Scores, we can choose the
features with both good uniqueness and repeatability for signature matching.
For instance, we can use instructions and branch instructions to conduct multi-
feature classification. Further evaluations in Sec. 7 show one single feature (i.e.,
branch instructions) is already enough to give good accuracy. So we will collect
the number of branch instructions as the feature to generate signatures in the
following sections.

Phase selection . It has been shown in prior studies that programs run in
different phases [30]. Therefore, another question we need to solve is which phase
of the cryptographic application we should use to generate the signature. The
selected phase should be able to distinguish cryptographic applications from
non-cryptographic applications. It should also be independent of the inputs.

CloudRadar: A Real-Time Side-Channel Attack Detection System in Clouds 9

Category Events
Inter-class Intra-class

F-Score F-Score

CPU events

instructions 1.49 0.13
branch instructions 1.55 0.14

mispredicted branch instructions 1.11 0.15
CPU cycles 0.01 0.30

Cache events

L1D load accesses 0.37 0.72
L1D load misses 0.69 0.42
L1I load misses 1.14 0.20

LLC load accesses 0.79 0.31
LLC load misses 0.05 0.36

iTLB load accesses 0.55 0.27
iTLB load misses 0.23 0.21

dTLB load accesses 0.22 0.63
dTLB load misses 0.36 0.62

Software events
context switches 0.00 0.00

page faults 0.00 0.00
CPU clock 0.01 0.50

Table 1: Fisher Scores for different events.

We conducted the following experiments: we ran the same six cryptographic
applications as above. For each cryptographic application, the cryptographic keys
and input message (for signing or encryption) are randomly chosen each time
the applications are executed. We exploit the performance counters to record
the number of branch instructions taking place in the program within 100µs
windows. Figure 1 shows the profiling results for each cryptographic application.
For comparison, we also show the profiling results for three non-cryptographic
applications: Apache, Mysql and the Network File System (NFS).

We observe that the cryptographic applications have different behaviors from
the non-cryptographic ones. Each cryptographic application exhibits three dis-
tinguishable stages, labeled in Figure 1. (1) The first stage initializes the program
and variables. Specifically, it analyzes the application’s parameters, allocates
buffers for the input and output messages, retrieves keys from passphrase or
salts, and sets up the cipher context. This stage does not depend on the inputs.
(2) The second stage computes the cryptographic operations (e.g., multiply or
square operations, checking lookup tables, etc.), the characteristics of which are
input dependent: the duration of this stage is linearly related to the length of the
plaintext/ciphertext, and the pattern depends on the values of the cryptographic
key and the plaintext/ciphertext blocks. (3) The last stage ends the application,
frees the memory buffer and reports the results. We chose the first stage as the
signature to represent a crypto application, because it is input independent. The
Fisher Score in Table 1 were also generated for this stage.

4.2 Cryptographic Application Detection

To detect the execution of the sensitive applications, CloudRadar only requires
the customers to provide the signature generated offline using performance coun-
ters (not necessarily on the same hardware) or simply the executables for the
service provider to generate the signature. At runtime, CloudRadar keeps mon-

10 Tianwei Zhang, Yinqian Zhang, and Ruby B. Lee

0 2 0 4 0 6 0 8 0 1 0 0 1 2 0 1 4 0
0 . 0

2 0 . 0 k
4 0 . 0 k
6 0 . 0 k
8 0 . 0 k

1 0 0 . 0 k
1 2 0 . 0 k
1 4 0 . 0 k

��

o
f b

ran
ch

 in
str

uc
tio

ns

t (m s)

�

�

(a) Elgamal

0 2 0 4 0 6 0 8 0 1 0 0 1 2 0 1 4 0 1 6 0
0 . 0

2 0 . 0 k
4 0 . 0 k
6 0 . 0 k
8 0 . 0 k

1 0 0 . 0 k
1 2 0 . 0 k
1 4 0 . 0 k
1 6 0 . 0 k
1 8 0 . 0 k

o
f b

ran
ch

 in
str

uc
tio

ns

t (m s)

���

�

(b) DSA

0 2 0 4 0 6 0 8 0 1 0 0 1 2 0 1 4 0
0 . 0

2 0 . 0 k
4 0 . 0 k
6 0 . 0 k
8 0 . 0 k

1 0 0 . 0 k
1 2 0 . 0 k

o
f b

ran
ch

 in
str

uc
tio

ns

t (m s)

���

�

(c) SHA512

0 2 0 4 0 6 0 8 0 1 0 0 1 2 0 1 4 0 1 6 0
0 . 0

2 0 . 0 k
4 0 . 0 k
6 0 . 0 k
8 0 . 0 k

1 0 0 . 0 k
1 2 0 . 0 k
1 4 0 . 0 k
1 6 0 . 0 k

o
f b

ran
ch

 in
str

uc
tio

ns

t (m s)

���

�

(d) 3DES

0 2 0 4 0 6 0 8 0 1 0 0 1 2 0 1 4 0 1 6 0
0 . 0

2 0 . 0 k
4 0 . 0 k
6 0 . 0 k
8 0 . 0 k

1 0 0 . 0 k
1 2 0 . 0 k
1 4 0 . 0 k

o
f b

ran
ch

 in
str

uc
tio

ns

t (m s)

���

�

(e) AES

0 2 0 4 0 6 0 8 0 1 0 0 1 2 0
0 . 0

2 0 . 0 k
4 0 . 0 k
6 0 . 0 k
8 0 . 0 k

1 0 0 . 0 k
1 2 0 . 0 k
1 4 0 . 0 k
1 6 0 . 0 k

o
f b

ran
ch

 in
str

uc
tio

ns

t (m s)

���

�

(f) HMAC

0 2 0 4 0 6 0 8 0 1 0 0 1 2 0 1 4 0
0

1 0 k
2 0 k
3 0 k
4 0 k
5 0 k
6 0 k
7 0 k
8 0 k

o
f b

ran
ch

 in
str

uc
tio

ns

t (m s)

(g) Apache

0 2 0 4 0 6 0 8 0 1 0 0 1 2 0 1 4 0
0 . 0

5 . 0 k

1 0 . 0 k

1 5 . 0 k

2 0 . 0 k

2 5 . 0 k

o
f b

ran
ch

 in
str

uc
tio

ns

t (m s)

(h) Mysql

0 2 0 4 0 6 0 8 0 1 0 0 1 2 0 1 4 0
0

1 0 k

2 0 k

3 0 k

4 0 k

5 0 k

6 0 k

o
f b

ran
ch

 in
str

uc
tio

ns

t (m s)

(i) NFS

Fig. 1: Signatures of different applications based on the number of branches

itoring the protected VM using the same set of performance counters. It then
compares the data points collected at runtime with the signature of the crypto-
graphic application. If a signature match is found, CloudRadar will assume the
cryptographic application is being executed by the protected VM (In fact, our
evaluation in Sec. 7 shows high fidelity of this approach).

Because the cryptographic signatures and runtime measurements are tem-
poral sequences of performance counter values, we cast the signature detection
problem as a time series analysis problem: i.e., measuring the similarity between
the two sequences that represent the signature and the runtime measurement,
respectively. We adopt the Dynamic Time Warping (DTW) algorithm [29] to
calculate the distance between the two sequences. DTW is able to measure the
similarity between temporal sequences which may vary in speed: it tries differ-
ent alignments between these sequences and finds the optimal one that has the
shortest distance. This distance is called the DTW distance. We chose the DTW
algorithm because the runtime sequence may be slightly stretched or shrunk
due to the difference of the computing environment (e.g., CPU models, running
speed, interruption, etc.). DTW is powerful enough to find the similarity between
two temporal sequences even with distortion.

We normalize the DTW distance to the magnitude of the signature sequence,
which is used as the metric for pattern matching. Figure 2 shows the normalized
DTW distance of different cryptographic programs. We observe that occurrence
of cryptographic programs yields very small DTW distances, which indicates a

CloudRadar: A Real-Time Side-Channel Attack Detection System in Clouds 11

0 2 0 4 0 6 0 8 0 1 0 0 1 2 0 1 4 0
0 . 0
0 . 3
0 . 6
0 . 9
1 . 2
1 . 5
1 . 8

C r y p t oC r y p t o

DT
W

t (m s)

C r y p t o

(a) Elgamal

0 2 0 4 0 6 0 8 0 1 0 0 1 2 0 1 4 0 1 6 0
0 . 0
0 . 3
0 . 6
0 . 9
1 . 2
1 . 5
1 . 8

C r y p t oC r y p t oC r y p t o

DT
W

t (m s)

(b) DSA

0 2 0 4 0 6 0 8 0 1 0 0 1 2 0 1 4 0
0 . 0
0 . 3
0 . 6
0 . 9
1 . 2
1 . 5
1 . 8

C r y p t oC r y p t oC r y p t o

DT
W

t (m s)

(c) SHA512

0 2 0 4 0 6 0 8 0 1 0 0 1 2 0 1 4 0 1 6 0
0 . 0
0 . 3
0 . 6
0 . 9
1 . 2
1 . 5
1 . 8

C r y p t oC r y p t oC r y p t o

DT
W

t (m s)

(d) 3DES

0 2 0 4 0 6 0 8 0 1 0 0 1 2 0 1 4 0 1 6 0
0 . 0
0 . 3
0 . 6
0 . 9
1 . 2
1 . 5
1 . 8

C r y p t oC r y p t oC r y p t o

DT
W

t (m s)

(e) AES

0 2 0 4 0 6 0 8 0 1 0 0 1 2 0
0 . 0
0 . 3
0 . 6
0 . 9
1 . 2
1 . 5
1 . 8

C r y p t oC r y p t oC r y p t o

DT
W

t (m s)

(f) HMAC

Fig. 2: DTW distances of different cryptographic programs. The lowest distance
indicates a signature match.

signature match. We defer a more systematic evaluation of the signature-based
cryptographic program detection technique to Sec. 7.

5 Anomaly Detection of Side-channel Activities

The cache use patterns that CloudRadar monitors for anomaly detection are
characterized by the cache hit count and the cache miss count measured by
the performance counters: In Prime-Probe side-channel attacks, the attacker
Probes certain cache sets and measures if there are cache miss via timing the
accesses to this set after the victim executes. It is expected that cache misses
will be higher than normal when the protected VM executes the cryptographic
operations, since cache misses will be the tell-tale signal for the attacker to detect
these operations in the first place. In Flush-Reload side-channel attacks, the
attacker Reloads certain cache lines and tries to detect a cache hit. Cache hits
should occur more frequently during the protected VM’s sensitive operations.

To validate this hypothesis, we conducted a set of experiments to show
that abnormal cache activities in the untrusted VM can be correlated with
the protected VM’s sensitive operations. We first consider a Prime-Probe at-
tack against the ElGamal cipher [21]. Figure 3 shows the DTW distance (low
distance indicates a signature match) between the runtime sequence and the
signature sequence observed on the protected VM (top figure), correlates with
the attacker VM’s high cache miss counts (bottom figure). We next consider
a Flush-Reload attack against the RSA cipher [42]. Figure 4 shows the low
DTW distance of the protected VM correlates with the high cache hit counts
of the attacker VM. We align the top figures and the bottom figures according
to timestamps. Strong correlation can be observed in both set of experiments,
which suggest that this method can be used for side-channel attack detection.

12 Tianwei Zhang, Yinqian Zhang, and Ruby B. Lee

0 4 0 , 0 0 0 8 0 , 0 0 0 1 2 0 , 0 0 0 1 6 0 , 0 0 0 2 0 0 , 0 0 00 . 0
0 . 3
0 . 6
0 . 9
1 . 2
1 . 5
1 . 8

0 4 0 , 0 0 0 8 0 , 0 0 0 1 2 0 , 0 0 0 1 6 0 , 0 0 0 2 0 0 , 0 0 0
0

2 0 0
4 0 0
6 0 0
8 0 0

1 0 0 0

DT
W

t (u s)

o
f c

ac
he

 m
iss

es

t (u s)

Fig. 3: Prime-Probe attack

0 4 0 , 0 0 0 8 0 , 0 0 0 1 2 0 , 0 0 0 1 6 0 , 0 0 0 2 0 0 , 0 0 00 . 0

0 . 5

1 . 0

1 . 5

2 . 0

0 4 0 , 0 0 0 8 0 , 0 0 0 1 2 0 , 0 0 0 1 6 0 , 0 0 0 2 0 0 , 0 0 0
0

2 0 0
4 0 0
6 0 0
8 0 0

1 0 0 0

DT
W

t (u s)

o
f c

ac
he

 hi
ts

t (u s)

Fig. 4: Flush-Reload attack

To describe our detection algorithm more precisely, when CloudRadar de-
tects that the victim VM starts executing crypto applications (a low DTW dis-
tance), two short sub-sequences are selected from the entire monitored runtime
sequences in the untrusted VMs: S, data points of size w before the DTW dis-
tance reaches its minimum, and S′, data points of size w after the minimum
points of DTW distance, where w is a parameter of the detection system. If
CloudRadar detects that the difference between any value in S′ and any value in
S is larger than a pre-determined threshold T , CloudRadar will raise an alarm of
a possible side-channel attack. This rule can be formally expressed in Equation
1. We will further evaluate this side-channel detection method in Sec. 7.

Alarm: v′ − v > T, ∀v ∈ S, v′ ∈ S′ (1)

6 Implementation

6.1 System Architecture Overview

CloudRadar is provided by the cloud operator as a security service to the cus-
tomers who are willing to pay extra cost for better security, as in Security-on-
Demand cloud frameworks [16,44]. Figure 5 shows the architecture of CloudRadar ,
and the workflow of detecting side-channel attacks. We implement CloudRadar
in the opensource cloud software OpenStack platform. Two types of servers, the
Cloud Controller and regular Cloud Servers, are relevant to our discussion.

The Cloud Controller is a dedicated server to manage the provided security
services and coordinate the interaction between service users (cloud customers
paying to use the side-channel detection service) and the Cloud Servers. The
Signature Database is used to store signatures of crypto programs. The Con-
troller Server is built upon the OpenStack Nova module. We modified the Nova
API to enable the customers to request for the side-channel detection services.

CloudRadar ’s functionality within a Cloud Server is tightly integrated with
the host OS. As shown in Figure 5, CloudRadar consists of three modules, with
each one running on a dedicated core. The Victim Monitor is responsible for

CloudRadar: A Real-Time Side-Channel Attack Detection System in Clouds 13

HPCs

Hardware

Host OS

Hypervisor

PMU kernel

Victim
Monitor

Attacker
Monitor

Signature Detector

Guest OS Guest OSGuest OS

Crypto Attack Apps

Step 1 Step 2
Step 3

Cloud Controller

Step 4

Cloud ServerCustomer

Signature
Database

New modules

Fig. 5: Architecture Overview of CloudRadar

collecting the protected VM’s runtime events, which will be fed to Signature

Detector to detect the cryptographic programs using our signature-based tech-
nique; The Attacker Monitor is responsible for collecting cache activities of the
other VMs, using anomaly-based detection approach to identify side-channel at-
tackers. We used the Linux perf event kernel API for the PMU to manage the
performance counters, therefore no change is needed to the hypervisor itself.

6.2 Operations

CloudRadar includes four steps, as shown in Figure 5 with different paths. Each
step is described below:

Step 1: generating cryptographic signature. In this step, the customer
who seeks side-channel detection services for his protected VM can indicate to
the Cloud Controller what sensitive applications to be protected, by providing
the signatures generated offline using performance counters (not necessarily on
the same hardware) or simply the executables. Then the Cloud Controller will
run these crypto programs on a dedicated server with the same configuration as
the Cloud Server that hosts the protected VM, and use performance counters
to generate the signatures for the customer. The signatures will be stored in the
Signature Database for future reference. They will also be sent to the Cloud
Server that hosts this VM.

Step 2: detecting cryptographic applications. This step takes place at
runtime. In this step, the Victim Monitor monitors the protected VM using
performance counters. It periodically (e.g., every 100µs) records the event counts
(e.g., branch instructions) as a time sequence, while the Signature Detector

keeps comparing the most recent window of data points in the sequence with the
signature. If a signature match is found, the Signature Detector can identify
the protected VM is performing a cryptographic application, and signal this
result to the Attacker Monitor.

Step 3: monitoring cache activities. This step happens concurrently with
Step 2. The Attacker Monitor exploits performance counters to monitor all
untrusted VMs simultaneously. One challenge is that not enough performance
counters are available on the servers to monitor all VMs, if this number is large:

14 Tianwei Zhang, Yinqian Zhang, and Ruby B. Lee

most of the Intel and AMD processors support up to six counters, and the number
of counters does not scale with the number of cores. So when there are a lot of
VMs on the server, the Attacker Monitor cannot monitor them concurrently.

To solve this problem, we use a time-domain multiplexing method: Attacker
Monitor identifies active vCPUs that share LLC with the protected VM as the
monitored vCPUs, and then measures each of them in turn. Specifically, in each
period, the Attacker Monitor uses a kernel module to check the state and
CPU affinity of each vCPU of each VM from its task struct in the kernel. The
Attacker Monitor marks the vCPUs in the running state that are sharing the
same LLC with the protected VM as monitored. Then it sets up performance
counters to measure each monitored vCPU’s cache misses and hits in turn. When
the Attacker Monitor is notified that a cryptographic application is happening
in the protected VM, it will compare each monitored vCPU’s cache misses and
hits before and during the cryptographic application, as specified in Sec. 5. If
one vCPU has an abrupt increase in the number of cache misses or hits during
the cryptographic application, the Attacker Monitor will flag an alarm.

Step 4: eliminating side channels. Once the Attack Monitor notices that
one co-tenant VM has abnormal cache behavior exactly when the protected VM
executes cryptographic applications, it will raise alarm for side-channel attacks.
It will migrate this malicious VM to a different processor socket which does
not share the Last Level Cache (LLC), or another cloud server (i.e., via VM
migration [25, 47], to cut off the cache side channels. In addition, the Cloud
Controller will report this incident to the cloud provider for further processing,
such as shut down the malicious VM or eventually block the attacker’s account.

7 Evaluation

We used four servers to evaluate the security and performance of CloudRadar .
A Dell R210II Server (equipped with one quad-core, 3.30GHZ, Intel Xeon E3-
1230v2 processor with 8GB LLC) is configured as the Controller Server. Two
Dell PowerEdge R720 Servers are deployed as the host cloud servers: one is
equipped with one eight-core, 2.90GHz Intel Xeon E5-2690 processor with 20GB
LLC; one is equipped with two six-core, 2.90GHz Intel Xeon E5-2667 processors
with 15GB LLC. We also use another Dell 210II server as the client machine
outside of the cloud system to communicate with cloud applications. Each VM
in our experiments has one virtual CPU, 4GB memory and 30GB disk size. We
choose Ubuntu 14.04 Linux, with 3.13 kernel as the guest OS.

7.1 Detection Accuracy

We measure the detection accuracy of cryptographic signature detection and
cache anomaly detection.

Accuracy of cryptographic operation detection. To detect a cryptographic
operation, we used the branch instruction counts as the signature. We consider

CloudRadar: A Real-Time Side-Channel Attack Detection System in Clouds 15

the detection of a cryptographic application as a binary classification, and mea-
sure its true positive rate and false positive rate. True positive happens when a
cryptographic application is correctly identified as such. We used the same six
cryptographic applications from Sec. 4.1. CloudRadar first generates a signature
for each application. In the detection phase, the victim VM generates a random
memory block and feeds it to the crypto application. We run the experiment
100 times, and measure the number of times CloudRadar can correctly identify
the cryptographic under different thresholds. False positive is defined as non-
cryptographic applications identified as cryptographic. We select 30 common
linux commands and utilities [26] which do not contain cryptographic opera-
tions. In each experiment the victim VM run these commands in a random
order. We repeated the experiment 100 times and measure the number of times
false positives take place under different thresholds. We plot the ROC (Receiver
Operating Characteristic) curves to show the relations between the true positive
rate and false positive rate.

We explored the effect of changing performance counter sampling granular-
ities (i.e., period with which performance counter value is taken) on detection
accuracy. We choose two different sampling granularities: 100µs and 1ms. Figure
6 shows the ROC curves of the six cryptographic applications under these two
granularities. From this figure we can see 100µs gives better accuracy than 1ms:
CloudRadar can achieve close to 100% true positive rate with zero false positive
rate when the DTW threshold is set between 0.3 and 0.4. For 1ms, Elgamal
and DSA application can be detected with less accuracy, while SHA512, AES,
HMAC and 3DES cannot be differentiated from non-cryptographic applications
with reasonable false positive and false negative at the same time.

The optimal sampling granularity depends on the length of the cryptographic
application’s initialization stage: if the sampling period is much shorter than the
initialization stage, the signature will contain more data points, thus yielding
more accurate results. In our experiments, the initialization stages of Elgamal,
DSA, SHA512, AES, HMAC and 3DES last for 10ms, 5ms, 1.6ms, 2ms, 2ms
and 2ms respectively. So a granularity of 100µs can give good results for all the
six applications, while 1ms granularity performs worse, especially for SHA512,
AES, HMAC and 3DES whose signatures only contain two data points.

Accuracy of cache side-Channel attack detection. We measure the true
positive rate and false positive rate of side-channel attack detection. True posi-
tive is the cases where side-channel attacks that are correctly identified. We test
the Prime-Probe attack [21] and Flush-Reload attack [42]. False positive
is defined as benign programs that are falsely identified as an attack. We se-
lect different common linux commands and utilities as benign applications. We
change the threshold and draw the ROC curves to show the relations between
true positive and false positive rate.

We first considered different window sizes w for S and S′ (Sec. 5). Figure
7 shows the attack detection accuracy under three window size: w = 1, 3 and
5. In these experiments, we set the sampling granularity as 1ms (this sampling
rate is different from that of signature detection). From these results we see

16 Tianwei Zhang, Yinqian Zhang, and Ruby B. Lee

0 . 0 0 . 2 0 . 4 0 . 6 0 . 8 1 . 0
0 . 0
0 . 2
0 . 4
0 . 6
0 . 8
1 . 0

tru
e p

os
itiv

e r
ate

f a l s e p o s i t i v e r a t e

 1 0 0 u s
 1 m s

(a) Elgamal

0 . 0 0 . 2 0 . 4 0 . 6 0 . 8 1 . 0
0 . 0
0 . 2
0 . 4
0 . 6
0 . 8
1 . 0

tru
e p

os
itiv

e r
ate

f a l s e p o s i t i v e r a t e

 1 0 0 u s
 1 m s

(b) DSA

0 . 0 0 . 2 0 . 4 0 . 6 0 . 8 1 . 0
0 . 0
0 . 2
0 . 4
0 . 6
0 . 8
1 . 0

tru
e p

os
itiv

e r
ate

f a l s e p o s i t i v e r a t e

 1 0 0 u s
 1 m s

(c) SHA512

0 . 0 0 . 2 0 . 4 0 . 6 0 . 8 1 . 0
0 . 0
0 . 2
0 . 4
0 . 6
0 . 8
1 . 0

tru
e p

os
itiv

e r
ate

f a l s e p o s i t i v e r a t e

 1 0 0 u s
 1 m s

(d) 3DES

0 . 0 0 . 2 0 . 4 0 . 6 0 . 8 1 . 0
0 . 0
0 . 2
0 . 4
0 . 6
0 . 8
1 . 0

tru
e p

os
itiv

e r
ate

f a l s e p o s i t i v e r a t e

 1 0 0 u s
 1 m s

(e) AES

0 . 0 0 . 2 0 . 4 0 . 6 0 . 8 1 . 0
0 . 0
0 . 2
0 . 4
0 . 6
0 . 8
1 . 0

tru
e p

os
itiv

e r
ate

f a l s e p o s i t i v e r a t e

 1 0 0 u s
 1 m s

(f) HMAC

Fig. 6: ROC curve of crypto detection under two sampling intervals.

0 . 0 0 . 2 0 . 4 0 . 6 0 . 8 1 . 0
0 . 0
0 . 2
0 . 4
0 . 6
0 . 8
1 . 0

tru
e p

os
itiv

e r
ate

f a l s e p o s i t i v e r a t e

 w = 1
 w = 3
 w = 5

(a) Prime-Probe attack

0 . 0 0 . 2 0 . 4 0 . 6 0 . 8 1 . 0
0 . 0
0 . 2
0 . 4
0 . 6
0 . 8
1 . 0

tru
e p

os
itiv

e r
ate

f a l s e p o s i t i v e r a t e

 w = 1
 w = 3
 w = 5

(b) Flush-Reload attack

Fig. 7: ROC curve of attack detection under different window lengths.

that CloudRadar has an excellent true positive rate: with appropriate thresholds
(100 ∼ 300 events per 1ms), the true positive rate can be 100%. However, it
also has false positives. When w = 1, the false positive rate can be as high
as 20% ∼ 30%. False positives are caused by the coincidence that a benign
application experiences a phase transition at exactly the same time as the victim
application executes a crypto operation. CloudRadar will observe changes in the
benign application’s cache behavior and think it is due to interference with the
victim. Then it will flag this benign VM as malicious. We can increase w to
reduce the false positive rate without affecting the true positive rate: when w =
5, the false positive rate is close to 0 while true positive rate is 100%.

We also tested different sampling granularities. Figure 8 shows the ROC
curves of detecting two attacks under two different sampling intervals: 1ms and
100µs. The window size is 5 data points. We can see the 1ms interval is better
than the 100µs. This is because when the sampling interval is small, the number
of cache events occurring within a sampling period is comparable to the mea-

CloudRadar: A Real-Time Side-Channel Attack Detection System in Clouds 17

0 . 0 0 . 2 0 . 4 0 . 6 0 . 8 1 . 0
0 . 0
0 . 2
0 . 4
0 . 6
0 . 8
1 . 0

tru
e p

os
itiv

e r
ate

f a l s e p o s i t i v e r a t e

 1 m s
 1 0 0 u s

(a) Prime-Probe attack

0 . 0 0 . 2 0 . 4 0 . 6 0 . 8 1 . 0
0 . 0
0 . 2
0 . 4
0 . 6
0 . 8
1 . 0

tru
e p

os
itiv

e r
ate

f a l s e p o s i t i v e r a t e

 1 m s
 1 0 0 u s

(b) Flush-Reload attack

Fig. 8: ROC curve of attack detection under different sampling intervals.

surement noise. So the measurements under this sampling granularity are not
very accurate. It is interesting to note that we need different granularities to
sample the victim’s CPU events (100µs) and attacker’s LLC events (1ms). This
is because victim’s CPU events occur more frequently than the attacker’s LLC
events. So at the granularity of 100µs, sampling the victim can give finer in-
formation, while sampling the attacker will introduce large Signal-to-noise ratio
(SNR), making the results less accurate.

7.2 Performance

Detection latency. Table 2 reports the detection latency of CloudRadar under
different window sizes w and sampling granularities. This detection latency is
defined as the period from the time the victim VM starts to execute sensitive
operations (i.e., start of the second stage in Figure 1) to the time an alarm for
side-channel attacks is flagged. We see that CloudRadar can identify the attack
on the order of milliseconds. Considering side-channel attackers usually need at
least several cryptographic operations to steal the keys, this small latency can
achieve our real-time design goal. We also observe that smaller window sizes
and finer granularity can effectively reduce the detection latency, at the cost of
slightly lower accuracy.

(µs)
granularity = 1ms granularity = 100µs

w = 1 w = 3 w = 5 w = 1 w = 3 w = 5

Prime-Probe 1021.41 3065.86 5110.04 120.49 361.97 603.03

Flush-Reload 1021.50 3064.38 5107.57 122.48 363.27 605.30

Table 2: Detection latency (µs) under different window sizes and sampling in-
tervals

Performance overhead. We select a mix of benchmarks and real-world ap-
plications to evaluate the performance of CloudRadar . Our benchmarks can be
categorized into three types: (1) crypto programs (AES, SHA, HMAC, BF and

18 Tianwei Zhang, Yinqian Zhang, and Ruby B. Lee

0 . 7

0 . 8

0 . 9

1 . 0

1 . 1

1 . 2

C l o u d S u i t eC P U b e n c h m a r k s

 1 m s
 1 0 0 u s

no
rm

ali
ze

d p
erf

or
ma

nc
e

s e r .s e a .t e s .s t r .a n a .s e r .c a c .a n a . w e bw e bs o f .m e d .g r a .d a t .d a t .d a t .s t r .c a n .l b m .s o p .a s t .o m n .g o b .m c fD S AR S AE L G .B FM D 5H M A .S H A .A E S

C r y p t o

Fig. 9: Performance of different benchmarks under CloudRadar

MD5 from OpenSSL; ElGamal, RSA and DSA from GnuPG); (2) CPU bench-
marks (mcf, gobmk, omnetpp, astar, soplex and lbm from SPEC2006; canneal
and streamcluster from PARSEC); (3) Cloud applications from CloudSuite [8]
(data analytics, data caching, data serving, graph analytics, media streaming,
software testing, web searching and web serving).

We test the performance penalty due to CloudRadar and show the normalized
run time of each of the benchmark applications in Figure 9 (results are average of
5 runs, error bars show one standard deviation). The results suggest CloudRadar
has little impact on the performance of the monitored VM: even in the worst
case, performance overhead is within 5%.

8 Discussions

8.1 Detecting Other Side Channels

One can extend CloudRadar to detect cache-based side-channel attacks in other
cloud models (e.g., PaaS [46]), or in non-virtualization environments. The only
change we need to make is to use performance counters to monitor the processes
or threads instead of VMs. Besides, this method can be applied to other micro-
architectural side-channel attacks that exploit resource contention. We can use
performance counters to count the corresponding events that the attacker uses
to retrieve information. For instance, we can monitor the DRAM bandwidth
event to detect the DRAM side-channel attacks in [38]. Generalization of this
method beyond cache-based side-channel attacks will be future work.

8.2 Potential Evasive Attacks

There can be potential evasive attacks against CloudRadar . To evade the detec-
tion of CloudRadar , a side-channel attacker can try to reduce the cache probing
speed, so the abnormal increase in cache misses or hits may not be observed
by CloudRadar . However, the attacker needs a much longer time to recover the
keys, making side-channel attacks more difficult and less practical. An attacker
can also try to evade the detection by adding noise to CloudRadar ’s observa-
tions. However, such noise can also blur the attacker’s observations, making it

CloudRadar: A Real-Time Side-Channel Attack Detection System in Clouds 19

more difficult to extract side-channel information. How to design efficient evasive
attacks and how to detect such attacks will be future work.

8.3 Limitations

CloudRadar may be limited in several aspects. First, each of its three mod-
ules (Victim Monitor, Attacker Monitor and Signature Detector) requires
an exclusive use of one physical CPU core as they keep conducting data collec-
tion and analysis at full CPU speed. This can potentially reduce the server’s
capacity for hosting VMs. However, as many cloud servers today are equipped
with dozens of CPU cores, the impact is not as big as one might imagine. Be-
sides, public clouds usually have low server utilization (< 20%) for preserving
VMs’ QoS [3, 22]. So using three cores will not affect VMs’ performance. Sec-
ond, due to the limited number of performance counters available in modern
processors, CloudRadar has to multiplex the monitoring for each VM using the
same counter. When the number of monitored vCPUs scales up, CloudRadar
may miss attacks. We expect future generations of processors will incorporate
more performance counters and CloudRadar can make use of different counters
to monitor different VMs at the same time.

9 Conclusions

This paper designs CloudRadar , a real-time detection system to detect cache-
based side-channel attacks in clouds. CloudRadar leverages the existing hardware
performance counter feature to both monitor a victim VM’s cryptographic op-
erations and capture a potential attacker VM’s abnormal behavior during this
time. CloudRadar is designed as a lightweight extension to the cloud system and
does not require new hardware, hypervisor/OS or application modifications. The
feasibility of CloudRadar is validated by our implementation on the open source
OpenStack cloud system. Our evaluation shows CloudRadar can detect cache-
based side-channel attacks with high fidelity, while introducing little overhead
to the cloud applications.

Acknowledgements. We thank Fangfei Liu and Dr. Yuval Yarom for providing
side-channel attack codes, and the anonymous reviewers for their feedback on
this work. This work was supported in part by the National Science Foundation
under grants NSF CNS-1218817 and NSF CNS-1566444. Any opinions, findings,
and conclusions or recommendations expressed in this work are those of the
authors and do not necessarily reflect the views of the NSF.

References

1. Y. Azar, S. Kamara, I. Menache, M. Raykova, and B. Shepard. Co-location-
resistant clouds. In ACM Workshop on Cloud Computing Security, 2014.

20 Tianwei Zhang, Yinqian Zhang, and Ruby B. Lee

2. M. Bahador, M. Abadi, and A. Tajoddin. Hpcmalhunter: Behavioral malware
detection using hardware performance counters and singular value decomposition.
In IEEE Intl. Conf. on Computer and Knowledge Engineering, 2014.

3. J. Barr. Cloud computing, server utilization &
the environment. https://aws.amazon.com/blogs/aws/

cloud-computing-server-utilization-the-environment/, 2015.
4. M. Chiappetta, E. Savas, and C. Yilmaz. Real time detection of cache-based side-

channel attacks using hardware performance counters. Cryptology ePrint Archive,
Report 2015/1034, 2015. http://eprint.iacr.org/.

5. J. Demme, M. Maycock, J. Schmitz, A. Tang, A. Waksman, S. Sethumadhavan,
and S. Stolfo. On the feasibility of online malware detection with performance
counters. In ACM Intl. Symp. on Computer Architecture, 2013.

6. L. Domnitser, A. Jaleel, J. Loew, N. Abu-Ghazaleh, and D. Ponomarev. Non-
monopolizable caches: Low-complexity mitigation of cache side channel attacks.
ACM Trans. Archit. Code Optim., 2012.

7. R. O. Duda, P. E. Hart, and D. G. Stork. Pattern Classification (2Nd Edition).
Wiley-Interscience, 2000.

8. EPFL. Cloudsuite. http://parsa.epfl.ch/cloudsuite/cloudsuite.html.
9. D. Gruss, C. Maurice, K. Wagner, and S. Mangard. Flush+flush: A fast and

stealthy cache attack. In Detection of Intrusions and Malware & Vulnerability
Assessment, 2016.

10. D. Gruss, R. Spreitzer, and S. Mangard. Cache template attacks: Automating
attacks on inclusive last-level caches. In USENIX Conf. on Security Symposium,
2015.

11. D. Gullasch, E. Bangerter, and S. Krenn. Cache games – bringing access-based
cache attacks on aes to practice. In IEEE Symp. on Security and Privacy, 2011.

12. Y. Han, T. Alpcan, J. Chan, and C. Leckie. Security games for virtual machine
allocation in cloud computing. In Decision and Game Theory for Security. 2013.

13. N. Herath and A. Fogh. These are not your grand daddys cpu performance coun-
ters: Cpu hardware performance counters for security. In Black Hat USA, 2015.

14. G. Irazoqui, T. Eisenbarth, and B. Sunar. S$a: A shared cache attack that works
across cores and defies vm sandboxing – and its application to aes. In IEEE Symp.
on Security and Privacy, 2015.

15. G. Irazoqui, M. S. Inci, T. Eisenbarth, and B. Sunar. Wait a minute! a fast,
cross-vm attack on aes. In Research in Attacks, Intrusions and Defenses. Springer,
2014.

16. P. Jamkhedkar, J. Szefer, D. Perez-Botero, T. Zhang, G. Triolo, and R. B. Lee. A
framework for realizing security on demand in cloud computing. In IEEE Conf.
on Cloud Computing Technology and Science, 2013.

17. T. Kim, M. Peinado, and G. Mainar-Ruiz. Stealthmem: System-level protection
against cache-based side channel attacks in the cloud. In USENIX Conf. on Secu-
rity Symposium, 2012.

18. P. Li, D. Gao, and M. K. Reiter. Stopwatch: A cloud architecture for timing
channel mitigation. ACM Trans. Inf. Syst. Secur., 2014.

19. F. Liu, Q. Ge, Y. Yarom, F. Mckeen, C. Rozas, G. Heiser, and R. B. Lee. Catalyst:
Defeating last-level cache side channel attacks in cloud computing. In IEEE Intl.
Symp. on High Performance Computer Architecture, 2016.

20. F. Liu and R. B. Lee. Random fill cache architecture. In IEEE/ACM Intl. Symp.
on Microarchitecture, 2014.

21. F. Liu, Y. Yarom, Q. Ge, G. Heiser, and R. B. Lee. Last-level cache side-channel
attacks are practical. In IEEE Symposium on Security and Privacy, 2015.

CloudRadar: A Real-Time Side-Channel Attack Detection System in Clouds 21

22. H. Liu. A measurement study of server utilization in public clouds. In IEEE Intl.
Conf. on Dependable, Autonomic and Secure Computing, 2011.

23. C. Malone, M. Zahran, and R. Karri. Are hardware performance counters a cost
effective way for integrity checking of programs. In ACM Workshop on Scalable
Trusted Computing, 2011.

24. J. D. McCalpin. Stream: Sustainable memory bandwidth in high performance
computers. http://www.cs.virginia.edu/stream/.

25. S.-J. Moon, V. Sekar, and M. K. Reiter. Nomad: Mitigating arbitrary cloud side
channels via provider-assisted migration. In ACM Conf. on Computer and Com-
munications Security, 2015.

26. R. Natarajan. 50 most frequently used unix/linux commands (with ex-
amples). http://www.thegeekstuff.com/2010/11/50-linux-commands/?utm_

source=feedburner.
27. C. Percival. Cache missing for fun and profit. In Proc. of BSDCan, 2005.
28. T. Ristenpart, E. Tromer, H. Shacham, and S. Savage. Hey, you, get off of my cloud:

Exploring information leakage in third-party compute clouds. In ACM Conf. on
Computer and Communications Security, 2009.

29. H. Sakoe and S. Chiba. Dynamic programming algorithm optimization for spoken
word recognition. Acoustics, Speech and Signal Processing, IEEE Transactions on,
1978.

30. T. Sherwood, E. Perelman, G. Hamerly, S. Sair, and B. Calder. Discovering and
exploiting program phases. Micro, IEEE, 2003.

31. J. Shi, X. Song, H. Chen, and B. Zang. Limiting cache-based side-channel in
multi-tenant cloud using dynamic page coloring. In IEEE/IFIP Intl. Conf. on
Dependable Systems and Networks Workshops, 2011.

32. A. Tang, S. Sethumadhavan, and S. J. Stolfo. Unsupervised anomaly-based mal-
ware detection using hardware features. In Research in Attacks, Intrusions and
Defenses. 2014.

33. V. Varadarajan, T. Ristenpart, and M. Swift. Scheduler-based defenses against
cross-vm side-channels. In Usenix Conf. on Security Symposium, 2014.

34. V. Varadarajan, Y. Zhang, T. Ristenpart, and M. Swift. A placement vulnerability
study in multi-tenant public clouds. In USENIX Security Symp., 2015.

35. B. C. Vattikonda, S. Das, and H. Shacham. Eliminating fine grained timers in xen.
In ACM Workshop on Cloud Computing Security, 2011.

36. X. Wang and R. Karri. Numchecker: Detecting kernel control-flow modifying rootk-
its by using hardware performance counters. In ACM/EDAC/IEEE Design Au-
tomation Conference, 2013.

37. X. Wang, C. Konstantinou, M. Maniatakos, and R. Karri. Confirm: Detecting
firmware modifications in embedded systems using hardware performance counters.
In IEEE/ACM Intl. Conf. on Computer-Aided Design, 2015.

38. Y. Wang, A. Ferraiuolo, and G. E. Suh. Timing channel protection for a shared
memory controller. In IEEE Intl. Symp. on High Performance Computer Archi-
tecture, 2014.

39. Z. Wang and R. Lee. A novel cache architecture with enhanced performance and
security. In IEEE/ACM Intl. Symp. on Microarchitecture, 2008.

40. Z. Wang and R. B. Lee. New cache designs for thwarting software cache-based side
channel attacks. In ACM Intl. Symp. on Computer Architecture, 2007.

41. Y. Xia, Y. Liu, H. Chen, and B. Zang. Cfimon: Detecting violation of control flow
integrity using performance counters. In IEEE/IFIP Intl. Conf. on Dependable
Systems and Networks, 2012.

22 Tianwei Zhang, Yinqian Zhang, and Ruby B. Lee

42. Y. Yarom and K. Falkner. Flush+reload: A high resolution, low noise, l3 cache
side-channel attack. In USENIX Conf. on Security Symposium, 2014.

43. L. Yuan, W. Xing, H. Chen, and B. Zang. Security breaches as pmu deviation:
Detecting and identifying security attacks using performance counters. In Asia-
Pacific Workshop on Systems, 2011.

44. T. Zhang and R. B. Lee. Cloudmonatt: An architecture for security health moni-
toring and attestation of virtual machines in cloud computing. In ACM Intl. Symp.
on Computer Architecture, 2015.

45. Y. Zhang, A. Juels, M. K. Reiter, and T. Ristenpart. Cross-vm side channels and
their use to extract private keys. In ACM Conf. on Computer and Communications
Security, 2012.

46. Y. Zhang, A. Juels, M. K. Reiter, and T. Ristenpart. Cross-tenant side-channel
attacks in paas clouds. In ACM Conf. on Computer and Communications Security,
2014.

47. Y. Zhang, M. Li, K. Bai, M. Yu, and W. Zang. Incentive compatible moving
target defense against vm-colocation attacks in clouds. In Information Security
and Privacy Research. 2012.

48. Y. Zhang and M. K. Reiter. Düppel: Retrofitting commodity operating systems
to mitigate cache side channels in the cloud. In ACM Conf. on Computer and
Communications Security, 2013.

