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Abstract
The invention of Ethereum smart contract has enabled the
blockchain users to customize computing logic in transactions.
However, similar to traditional computer programs, smart con-
tracts have vulnerabilities, which can be exploited to cause
financial loss of contract owners. While there are many soft-
ware tools for detecting vulnerabilities in the smart contract
bytecode, few have focused on transactions. In this paper,
we propose TXSPECTOR, a generic, logic-driven framework
to investigate Ethereum transactions for attack detection. At
a high level, TXSPECTOR replays history transactions and
records EVM bytecode-level traces, and then encodes the
control and data dependencies into logic relations. Instead
of setting a pre-defined set of functionalities, TXSPECTOR
allows users to specify customized rules to uncover various
types of attacks in the transactions. We have built a prototype
of TXSPECTOR and evaluated it for the detection of three
Ethereum attacks that exploit: (i) the Re-entrancy vulnerabil-
ity, (ii) the UncheckedCall vulnerability, and (iii) the Suicidal
vulnerability. The results demonstrate that TXSPECTOR can
effectively detect attacks in the transactions and, as a byprod-
uct, the corresponding vulnerabilities in the smart contracts.
We also show how TXSPECTOR can be used for forensic anal-
ysis on transactions, and present Detection Rules for detecting
other types of attacks in addition to the three focused Ethereum
attacks.

1 Introduction

Ethereum is one of the largest public decentralized comput-
ing platform built atop blockchain technology. Compared
to Bitcoin network [34], Ethereum not only supports simple
transactions, but also features Turing-complete computing,
in the form of smart contracts. Like many other software
programs, smart contracts can be developed using high-level
programming languages, such as Solidity [22], and then com-
piled into bytecode, which are executed in the Ethereum Virtual
Machines (EVM) for each node of the peer-to-peer (P2P) net-
work. The capability of executing complex smart contract has
become a critical feature of Ethereum compared to the first
generation blockchain network.
∗These authors contributed equally.

However, greater usability also comes with greater risks.
Two features have made smart contracts more vulnerable
to software attacks than traditional software programs. (i)
Smart contracts are immutable once deployed. This feature
is required by any immutable distributed ledgers. As a result,
vulnerabilities in smart contracts cannot be easily fixed as they
cannot be patched. (ii) Ethereum is driven by cryptocurrency;
many popular smart contracts also involve transfers of cryp-
tocurrency. Therefore, exploitation of smart contracts often
leads to huge financial losses. For instance, in the notorious
DAO attack, the attacker utilized the re-entrancy vulnerability
in The DAO contract and stole more than $50 million [27,42].
As another example, a vulnerability in the Parity Multisig
Wallet [47] has led to over $30 million losses. Many such
attack instances have caused serious concerns regarding the
security of smart contracts in Ethereum.

Due to the popularity of Ethereum, efforts have been made
to understand and detect these smart contract vulnerabilities
such as re-entrancy, and integer overflow [1], using techniques
such as symbolic execution to analyze smart contracts [3,7,31,
43, 44] or formal verification to verify its correctness [2, 29].
However, using static or symbolic analysis on smart contracts
to identify vulnerabilities has its limitations for two reasons.
First, these tools are difficult to achieve completeness and
accuracy simultaneously. For instance, tools using symbolic
execution [31, 44] suffer from path explosion problems, and
existing tools do not detect vulnerabilities involving multiple
smart contracts. Second, these tools could not be used to
inspect and understand real-world Ethereum attacks. Forensic
information, such as the pattern and statistics of the attacks,
addresses used by attackers, and addresses of victims, can only
be learned from transactions. As such, a tool that can perform
bytecode-level analysis on the transactions may bring together
the best of the two worlds, enabling effective detection and
analysis of attacks and vulnerabilities in Ethereum.

In this paper, we present TXSPECTOR, a generic analysis
framework for Ethereum transactions to identify real-world
attacks against smart contracts in transactions and enable the
forensic analysis of the attacks. The key idea of TXSPECTOR
is to detect attacks against smart contracts using logic-driven
program analysis on Ethereum transactions, and this design
is inspired by VANDAL [3], which is a Soufflé-based static



analysis tool for EVM bytecode. The challenges to perform
logic-driven analysis on transactions, however, are twofold:
First, new methods need to be developed to extract data and
control dependencies in Ethereum transactions and encode
them into logic relations. Second, while the number of smart
contracts are small, transaction volumes can be huge. There-
fore, tracing and analyzing Ethereum transactions requires
innovative approaches to optimize the performance.

TXSPECTOR addresses these challenges as follows. First, it
replays transactions on the blockchain and records bytecode-
level traces of the transaction execution. The transaction re-
play can be achieved all at once or incrementally as new
transactions are appended to the blockchain. To avoid re-
peated efforts, a database of bytecode-level execution traces
is built, which can be reused. Second, it constructs Execu-
tion Flow Graphs (EFGs) to encode the control and data de-
pendencies. Third, it extracts logic relations from the EFGs
and stores them into databases. Fourth, it uses user-specific
logic rules (dubbed Detection Rules) to query the databases.
TXSPECTOR supports arbitrary Detection Rules defined by
users, which enables them to study any aspect of their inter-
ests. To the best of our knowledge, TXSPECTOR is the first
generic framework to perform bytecode-level, logic-driven
analysis on Ethereum transactions.

As proof of concept, we apply TXSPECTOR to detect
Ethereum attacks that exploit (i) the Re-entrancy vulnerability,
(ii) the Unchecked Call vulnerability, and (iii) the Suicidal
vulnerability. Our empirical evaluation results on real-world
Ethereum transactions show that TXSPECTOR can detect at-
tacks from transactions with a low false positive rate. We
also perform a forensic study on the transactions flagged by
TXSPECTOR, which reveals several interesting findings of
these attacks. In addition to the three focused vulnerability ex-
ploits, we also present a number of Detection Rules for readers
of interest in Appendix A for other vulnerabilities, such as the
Timestamp Dependence vulnerability, the Misuse-of-origin
vulnerability, and the FailedSend vulnerability.

Contributions. In short, we make the following contributions
in this paper:

• New framework. We present TXSPECTOR, the first
generic and logic-driven framework for inspecting the
real-world attacks in Ethereum transactions at bytecode
level.

• Comprehensive evaluation. We evaluate TXSPEC-
TOR’s effectiveness in detecting three types of
attacks that exploit the corresponding smart contract
vulnerabilities.

• Novel application. We demonstrate a number of
use cases of TXSPECTOR as a forensic analysis tool
and perform detailed security analysis on real-world
Ethereum transactions.

• Open source. To ease the follow-up research for trans-
action related analysis, we make TXSPECTOR available
to the research community under an open-source license
at https://github.com/OSUSecLab/TxSpector.

2 Background and Related Work

In this section, we first provide the necessary background
(§2.1) related to Ethereum including smart contracts and trans-
actions, and then present the corresponding related work
(§2.2) to motivate our research.

2.1 A Primer on Ethereum Smart Contract
A smart contract is a program of general purpose and
executed on a blockchain. It can utilize three memory regions
to perform data operations during execution: stack, memory,
and storage. A (data) stack is a virtual stack that can be
used to store data. Note that EVM also has a call stack,
which is different from the data stack. The memory is a
byte-addressable region allocated at run-time. Storage is a
key-value store that maps 256-bit words to 256-bit words.
The stack and memory are both volatile, meaning that the
data stored are cleared after each execution. However, the
storage is persistent, which can be used to store data across
transactions. As a result, the gas price for storage operations
are much higher than stack and memory operations.

Currently, EVM supports over 150 OPCODEs [18, 46].
They can be classified into five categories [4] based on the
target the instruction operates:

• Category 1: OPCODEs that do not operate on any data
structures (e.g., JUMPDEST).

• Category 2: OPCODEs that perform stack operations
(e.g., PUSHx) or operate on existing values in the stack
(e.g., ADD).

• Category 3: OPCODEs that retrieve information from
the blockchain (e.g., TIMESTAMP) or the current transac-
tion (e.g., ORIGIN).

• Category 4: OPCODEs that read/write the memory (e.g.,
MSTORE).

• Category 5: OPCODEs that read/write the storage (e.g.,
SSTORE).

Similar to Bitcoin, Ethereum also has a P2P network main-
tained by Ethereum workers (nodes). To submit a transaction,
the user needs to pay a fee called gas as an incentive for
Ethereum workers to execute the transaction. The gas is mea-
sured by Ether, the cryptocurrency associated with Ethereum.
The amount of gas needed for each transaction is calculated
based on the OPCODEs it includes [46]. If there is not
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enough gas for executing the transaction, the execution will
abort and all the changes will be reverted. However, the Ether
used during the process will not be refunded. The adoption
of gas also prevents malicious transactions (e.g., transactions
with infinite loops) from jeopardizing the network.

There are two types of accounts in Ethereum: Externally
Owned Accounts (EOAs) and Contract (i.e., smart contracts)
Accounts [10]. Both types of accounts have the ability to
perform Ether transfers. The main difference between them
is that smart contracts have the associated bytecode that may
be executed, while EOAs do not have any code. In Ethereum,
transactions are triggered by EOAs. There are three types of
transactions:

• Type 1: Transferring Ether between EOAs;

• Type 2: Deploying a new smart contract on Ethereum;

• Type 3: Executing a function of a deployed contract.

The Ether transferring transactions do not involve smart
contracts; i.e., there is no code execution when processing
these transactions. However, to deploy a new smart contract
or execute a function of a smart contract, the EVM needs to
execute the related bytecode.

Similar to traditional computer programs, smart contracts
also contain bugs. Some of them might be exploited by
malicious attackers; these bugs are called vulnerabilities.
There are a number of vulnerabilities identified on smart
contracts [1]. To take advantage of these vulnerabilities,
attackers need to craft smart contracts and issue transactions
targeting the vulnerable ones. Therefore, attacks are related
to specific transactions, while the root causes of the attacks
are the vulnerabilities of smart contracts.

2.2 Related Work

Analysis of transactions. Very few prior studies have per-
formed transaction-based security analysis on Ethereum [24,
37, 38]. SEREUM [38] performs dynamic taint tracking dur-
ing the execution of transactions to detect a variety of re-
entrancy attacks (e.g., cross-function re-entrancy, delegated
re-entrancy, and create-based re-entrancy). It only focuses on
re-entrancy attacks, which motivates TXSPECTOR to support
customized Detection Rules for the detection of various other
attacks. ECFCHECKER [24] is another transaction analysis
tool that detects if the execution of a smart contract is Effec-
tively Callback Free (ECF), a property that holds for smart
contracts that are not vulnerable to re-entrancy attacks. The
focus of ECFCHECKER is the re-entrancy vulnerability in
smart contracts, while TXSPECTOR is a tool to uncover at-
tacks in transactions. Perez et al. [37] recently performed a
survey on 21,270 vulnerable smart contracts and their related
transactions. While a Datalog-based approach is also adopted,
which has inspired TXSPECTOR, the focus of their study was
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OYENTE [31] N N N N

ZEUS [29] N N N N N N N

SECURIFY [44] N N N N

VANDAL [3] N N N N N

GIGAHORSE [23] N N N

MAIAN [35] N N

SLITHER [20] N N N N N N N

MYTHRIL [7] N N N N N N N N

ETHBMC [21] N N

SEREUM [38] F

ECFCHECKER [24] F

TXSPECTOR F F F F F F F F

Table 1: Comparison of TXSPECTOR and related works.
N: vulnerabilities in smart contracts; F: attacks in
transactions.

the survey of smart contract vulnerabilities; they only ana-
lyzed the transactions related to the smart contracts flagged
by other tools. TXSPECTOR instead is a tool that performs
attack detection and forensic analysis on transactions, which
does not rely on smart contracts. Moreover, TXSPECTOR
supports customized rules which goes beyond the existing
vulnerabilities and attacks.

Analysis of smart contracts. Symbolic execution tools,
such as OYENTE [31], MAIAN [35], SECURIFY [44],
TEETHER [30], MYTHRIL [7] and MANTICORE [43], have
been developed to detecting specific vulnerabilities and bugs
in smart contracts. While symbolic execution is a powerful ap-
proach for discovering bugs, it suffers from the path explosion
problem and does not scale well. Although not using sym-
bolic execution, SLITHER [20] performs data flow analysis
and taint analysis to detect vulnerabilities in solidity programs.
SLITHER also suffers from the limitations of other static tools.
Closest to ours is VANDAL [3], a static analysis framework
extracting logic relations from smart contract bytecode for
logic-based analysis. While VANDAL studies the smart con-
tracts, TXSPECTOR analyzes the transactions. To study the
dynamic information contained in transactions, TXSPECTOR
has to overcome a number of technical challenges (e.g., trac-
ing real values of arguments), which are presented in detail
in the following sections. Most recently, ETHBMC [21] was
proposed to check the smart contract code using bounded
model checking based on symbolic execution. EthBMC can
capture inter-contract relations, cryptographic hash functions,
and memcopy-style operations, and it can be used to detect
suicidal and unsecured balance vulnerabilities.

Formal verification of smart contracts. Bhargavan et al. [2]
presented EVM* and Solidity*, which can translate smart
contract source sode and bytecode into F* [40] programs



that can be formally verified. ZEUS [29] is a framework for
analyzing safety properties of smart contracts. It translates
smart contracts to LLVM IR, adds verification predicates, and
feeds them to a verification engine for verification. KEVM
[26] is the first fully executable formal semantics of the EVM,
which is implemented using the K framework. Park et al. [36]
extended KEVM and added a few optimizations.

Summary. Table 1 compares TXSPECTOR with these related
works. While static tools like OYENTE [31] and ZEUS [31]
are able to identify one or multiple vulnerabilities in smart
contracts, none could be applied to all of them. Moreover,
they are not capable of detecting attacks in transactions. Dy-
namic tools such as SEREUM [38] and ECFCHECKER [24]
can detect Ethereum attacks, but they only target re-entrancy at-
tacks. In contrast, TXSPECTOR is capable of detecting various
attacks and performing forensic analysis on Ethereum transac-
tions. The dynamic information is crucial in TXSPECTOR, and
it is the biggest difference between TXSPECTOR and other
static analysis tools. However, TXSPECTOR cannot detect
some attacks/vulnerabilities, which will be discussed in §7.4.

3 TXSPECTOR Overview

Objectives. TXSPECTOR is a software framework for
performing logic-driven analysis on Ethereum transactions
to uncover attacks and vulnerabilities with three objectives.
First, it is designed to be a generic analysis framework
for Ethereum transactions, rather than tailored to detect
specific attacks in Ethereum. To this end, it gradually converts
transactions into abstractions, without losing important
information of the original transactions. Second, it is flexible
and can be extended to analyze transactions in multiple
aspects including even non-security related analysis by
customizing the Detection Rules. Third, TXSPECTOR is
also designed to be performant. Although it is impossible
to perform generic attack detection in real-time using
the logic-driven framework, efforts have been made to
significantly reduce both storage and performance overheads
of conducting analysis using TXSPECTOR.

Scope. The focus of TXSPECTOR is to detect attacks from
Ethereum transactions based on the given Detection Rules. Since
executing a transaction is basically executing bytecode snip-
pets from multiple smart contracts, TXSPECTOR can also
reveal vulnerabilities of smart contracts as a byproduct. There-
fore, TXSPECTOR is able to identify attacks that happened
in the blockchain through transactions, as well as the vulner-
able smart contracts related to those transactions. However,
TXSPECTOR is not designed to detect vulnerabilities in smart
contracts, which is aimed by most static analysis tools.

Overview. TXSPECTOR consists of four components
(Figure 1). Trace Extractor (§4) executes Ethereum transactions
and generates bytecode-level traces, which are stored
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Figure 1: Components and the workflow of TXSPECTOR.

in the Trace Database (DB) for further processing. The
bytecode-level traces are then parsed by Execution Flow Graph
Generator (§5) for the construction of Execution Flow Graphs
(EFGs). Logic Relation Builder (§6) traverses this EFG to extract
data and control dependencies and then expresses them into
logic relations, which are stored in the Logic Relation DB.
Finally, Attack Detector (§7) takes user-specified Detection
Rules as inputs to query the Logic Relation DB and outputs
the final attack report.

4 Trace Extractor

Trace Extractor executes Ethereum transactions inside the
Ethereum Virtual Machine (EVM) and records the bytecode-
level traces during the execution. A bytecode-level trace is a
sequence of 3-tuples. For each OPCODE of the bytecode
that is executed by the EVM, Trace Extractor logs its pro-
gram counter (PC) in the EVM, OPCODE, and its arguments
(ARGS) into a 3-tuple, {<PC>; <OPCODE>; <ARGS>},
where the PCs are used to identify OPCODEs by their rela-
tive locations in the bytecode. To reduce the data redundancy,
Trace Extractor only records the arguments that are not gener-
ated from the stack. Because one transaction may indirectly
invoke multiple smart contracts, a single bytecode-level ex-
ecution trace may be generated from the execution of one
or more smart contracts. Metadata of the transaction is also
recorded, such as the address of the transaction receiver and
the timestamp of the transaction.

To replay Ethereum transactions and collect the traces, we
modified the Go-Ethereum EVM (version 1.8.0) to extract
the transaction traces and store them with related metadata
in Trace DB. Not all OPCODEs need to be recorded. Type 1
transactions (defined in §2.1) are transactions between EOAs,
and there is no bytecode associated with them. Therefore,
Trace Extractor only records Type 2 and Type 3 transactions.



Modifications for Go-Ethereum EVM. To record the
transaction traces as shown in Listing 1, we modified the Go-
Ethereum EVM to log related information of the OPCODEs.
More specifically, the modified EVM logs the arguments of
the following three types of OPCODEs:

• Blockchain/transaction related operations (Cate-
gory 3 defined in §2.1). This type includes OPCODEs
that need to fetch data from the blockchain or the cur-
rent transaction. For example, TIMESTAMP fetches the
Unix timestamp of the current block; CALLER retrieves
the address of the caller.

• Memory/Storage related operations (Category 4 and
5). Here, Trace Extractor only records OPCODEs that read
data from memory/storage, i.e., MLOAD and SLOAD. Note
that there is no need to record the arguments of MSTORE
and SSTORE, since they only require data from the stack,
which can be obtained from other parts of the trace.

• PUSH operations. This type includes all PUSH OP-
CODEs, i.e., PUSHi, i = 1, · · · ,32.

For the rest OPCODEs, it only records the PC values and the
OPCODEs, since there is no need to log the arguments.

Example traces. The trace logged by Trace Extractor is similar
to the disassembled EVM bytecode. Specifically, a trace is a
sequence of 3-tuples, {<PC>; <OPCODE>; <ARGS>}. One
transaction trace snippet is shown in Listing 1. The major
difference between the traces and the disassembled bytecode
is that the recorded traces also contain the real values used in
the transaction.

0; PUSH1; 0x60
2; PUSH1; 0x40
4; MSTORE
5; CALLDATASIZE; 0x144
6; ISZERO
7; PUSH2; 0x20e

10; JUMPI

Listing 1: Trace Snippet

0: V0 = 0x60
2: V1 = 0x40
4: M[0x40] = 0x60
5: V2 = 0x144
6: V3 = ISZERO 0x144
7: V4 = 0x20e

10: JUMPI 0x20e 0x0

Listing 2: IR Snippet

Trace DB. The trace DB stores the recorded bytecode-level
traces and related metadata while executing the transactions.
Specifically, each trace of a transaction can involve more than
one smart contract since multiple smart contracts may be
invoked, and the metadata includes the information of (i) the
transaction sender (i.e., the sending party of a transaction),
(ii) the transaction receiver (i.e., the receiving party), and (iii)
the timestamp (i.e., the date and time at which a transaction
is included in a block) of the transaction.

5 Execution Flow Graph Generator

To express the control-flow more explicitly, Execution Flow
Graph Generator builds Execution Flow Graphs (EFGs) that en-
code the control and data-flow information of the traces into

  0; PUSH1; 0x60
  2; PUSH1; 0x40

…
532; CALL; 1,0 

  0; PUSH1; 0x60
  2; PUSH1; 0x40

…
267; RETURN; 0   

 

  533; ISZERO;
  534; PUSH1; 0x1

…
 1003; STOP;

Type I
Node a

Type II
Node b Node c

Figure 2: An example of Execution Flow Graph.

graphs. Since the bytecode-level traces are generated from
transactions, there is no unresolved branch in the EFG. There-
fore, the execution flow is sequential in each smart contract. A
node in an EFG represents the execution of one smart contract,
which contains the bytecode-level execution trace generated
by this contract. An edge in an EFG represents a control-flow
transfer from one smart contract to another.

The Execution Flow Graph Generator parses the bytecode-level
traces to construct the Execution Flow Graphs (EFG). Since the
trace is dynamically generated, there is no unresolved branch
and each JUMP only has one destination. The nodes and edges
in the EFGs are created in the following ways:

• Node. Execution Flow Graph Generator generates a new
node when the execution flow is altered from one Smart
contract to another. Specifically, when a CALL-related
OPCODE is encountered, i.e., CALL / DELEGATECALL /
CALLCODE / STATICCALL or a STOP-related OPCODE is
encountered, i.e., STOP / REVERT / RETURN, a new node
is generated.

• Edge. When the execution flow transfers from one
smart contract to another, Execution Flow Graph Generator
will generate the edge that represents the control flow
between two nodes. There are two types of edges: Type
I edge is an edge from a caller contract to a callee
contract. Type II edge is an edge from a callee contract
to a caller contract.

An EFG example that involves three smart contracts is
shown in Figure 2: smart contract A (Node a) first calls smart
contract B (Node b), generating a Type I edge, which transfers
the execution flow to smart contract B. When smart contract
B finishes execution, it returns to smart contract A (Node c),
generating a Type II edge. The EFG ends in Node c.

To analyze execution traces involving multiple smart con-
tracts, each 3-tuple in the original trace is augmented to a
6-tuple: {<PC>; <OPCODE>; <ARGS>; <idx>; <depth>;
<callnum>}. We define idx, depth and callnum as follows:

• Idx. Because there are identical PC values in different
contracts, it is not possible to tell which OPCODE is
executed first solely from their PC values. Therefore, the
idx parameter is introduced for each opcode to represent
the index of the current OPCODE in the EFG.

• Depth. When dealing with a trace with a lot of exter-
nal calls, it is important to know which call-level each



OPCODE is in. To this end, we introduce depth, which
describes the call depth of each OPCODE in an EFG.
Whenever there is a call-related OPCODE encountered,
the depth increases by 1; when it returns, the depth
decreases by 1.

• Callnum. The callnum represents the number of calls
happened before each OPCODE in the EFG. It is a non-
decreasing value: it increments by 1 when encountering
a call-related OPCODE.

6 Logic Relation Builder

The Logic Relation Builder first parses the EFGs to construct
intermediate representation (IR) suitable for our analysis, then
extracts the logic relations that express the semantics of the
transactions by defining logic rules. After that, the logic rela-
tions are stored in the database. Particularly, logic rules are
defined to express control-flow and data-flow information, in
order to obtain the control and data dependencies in transac-
tions. For instance, some rules dictate the execution order of
opcodes, which is related to the control-flow; some rules track
how arguments of OPCODEs are defined and used, which
is related to the data-flow. To achieve this, the Logic Relation
Builder generates logic relations for each OPCODE, such as
the registers representing their operands, and their PC values.
Meanwhile, it associates the real values in the transaction
with the registers, so that the dynamic information is captured.
As such, the control and data dependencies are encoded into
logic relations, which are then organized and stored in the
database.

Converting Trace-based EFG to IR. TXSPECTOR adopts
the IR specification in VANDAL [3]. This IR is a register-
based language, which is another form of expressing data
and control dependencies. IR replaces the stack operations
with registers. For example, the corresponding IR of the
example trace snippet in Listing 1 is shown in Listing 2. We
thus have extended VANDAL in the following two aspects:
First, we need to deal with real values rather than symbolic
ones. This is achieved in Logic Relation Builder by simulating
the EVM stack operations using the registers with real values,
so that the values of registers are updated accordingly, and
all of the intermediate values are properly recorded. This is
a crucial step to capture all the dynamic information during
transaction execution, which cannot be achieved by static
analysis tools. For example, when processing TIMESTAMP,
the real timestamp value recorded in the bytecode-level
trace is pushed into stack and assigned to its related register.
Second, we need to deal with inter-contract calls. For Type-I
edges in the EFG, the current stack is sealed and an empty
stack is created. For Type-II edges in the EFG, the current
stack is deleted and the last sealed stack is resumed.

1 .type Variable

2 .type Opcode

3 .type Value

4 .decl def(var:Variable, pc:number, idx:number,
depth:number, callnum:number)↪→

5 .decl use(var:Variable, pc:number, i:number, idx:number,
depth:number, callnum:number)↪→

6 .decl op(pc:number, op:Opcode, idx:number)
7 .decl value(var:Variable, val:Value)
8 .decl op_OPCODE(pc:number, registers:Variable, idx:number,

depth:number, callnum:number)↪→

9 .input def, use, op, value, op_OPCODE

Figure 3: The logic rules used by Logic Relation Builder.

PC Register Idx Depth Callnum
0 V1 1 1 0
2 V2 2 1 0
0 V89 245 2 1
2 V90 246 2 1
534 V285 1,072 1 1

Table 2: An example of PUSH1 logic relations.

Generating logic relations from IR. Inspired by VANDAL,
TXSPECTOR adopts and extends its logic rules to deal with
real values and traces with multiple smart contracts. The rules
used in TXSPECTOR are shown in Figure 3. For example, the
relation op associates an OPCODE with a pc and its idx.
The real values used in a transaction are extracted by the
value relation, which records the registers and the related
values. Every OPCODE and its related registers are also ex-
tracted into logic relations. For example, the logic relation
of SSTORE documents all SSTOREs in the EFG and the tuples
({pc,registers, idx,depth,callnum}) related to them.

One example of the logic relations is listed in Table 2,
which represents the PUSH1 OPCODE from the EFG shown
in Figure 2. In particular, Row 1 and 2 in the table come from
Node a; row 3 and 4 come from Node b and their depth has
been changed from 1 to 2 and callnum from 0 to 1. Row
5 comes from Node c. Its depth has changed from 2 to 1
since the call returns, but its callnum remains the same as
the number of calls has not changed.

7 Attack Detector

Attack Detector is the key component of TXSPECTOR that takes
user-specified query rules (dubbed Detection Rules) as inputs
and queries the Logic Relation DB generated by Logic Relation
Builder to reason about a specific security property of the
transactions. Once the Logic Relation DB is generated, it can
be used for different types of analysis; there is no need to
reconstruct a new DB for every Detection Rule. The outputs
are not simple yes or no answers for a specific query; instead,
detailed information regarding the attacks, if detected, is also
provided to allow further analysis.



Victim A Attacker B Victim A’

Phase 1.1

Phase  1.2 Phase  1.3
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Phase 3.1Phase 3.2

Phase 4
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Return
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Figure 4: An example of inconsistent state.

We choose to build Attack Detector using Soufflé [28],
which is a state-of-the-art Datalog query tool with high
performance. Therefore, in TXSPECTOR, Detection Rules
are written in Soufflé, which is a variant of the Datalog
language. In this section, we show how to construct Detection
Rules to detect attacks in transactions using three exam-
ples: Re-entrancy, UncheckedCall, and Suicidal. We also
present three other Detection Rules for detecting Timestamp
Dependence, Misuse-of-origin and FailedSend attacks in the
Appendix A for readers of interest.

7.1 Rules for Re-entrancy Attacks

Description. Being one of the most severe attacks, re-
entrancy attack targets the Ethereum smart contracts since the
re-entered smart contract may transfer Ether multiple times.
When contract A calls contract B, contract B may re-enter
contract A again in the same transaction. If contract B is mali-
cious, it may take advantage of contract A’s intermediate state
(e.g., obsolete account balance) to steal Ether from A. This
type of attacks is called re-entrancy attacks, since they are
caused by re-entering the caller contract (contract A) in the
same transaction. The most infamous re-entrancy attack is the
DAO attack [27,42], in which the attacker stole a large amount
of Ether (worth over $50 million) from the DAO contract.

Our goal is to design Detection Rules to detect the advanced
re-entrancy attacks mentioned in SEREUM [38]. If there is
a state change (i.e., updates of a storage variable) after the
Victim Contract is re-entered and returned, and this storage
variable affects a control-flow decision when re-entering the
Victim Contract, it will result in an inconsistent state.

Requirements. Suppose that contract A is the Victim and
contract B is the Attacker. We define four phases:

• Phase 1: A executes its code (Phase 1.1) and calls B
(Phase 1.2); B calls A again to re-enter A (Phase 1.3).
The re-entered A is denoted as A’;

• Phase 2: A’ executes its code, before returning to B;

• Phase 3: A’ returns to B (Phase 3.1), and B returns to A
(Phase 3.2);

• Phase 4: A continues its execution.

The transaction should at least have all these four phases in
order to perform a re-entrancy attack, and having at least one
inconsistent state is a necessary condition of a re-entrancy
attack. An example with the four phases is shown in Figure 4.
Given the four phases, there are two requirements for the
inconsistent state: (i) SLOAD-JUMPI dependency: In Phase
2, A’ loads (using SLOAD) a storage variable (V ) for a control-
flow decision (i.e., condition for a JUMPI instruction); (ii)
SLOAD-SSTORE dependency: In Phase 4, A updates (using
SSTORE) the storage variable V . If a transaction satisfies both
requirements, it is clear that in Phase 2, A’ loads V from an
inconsistent state for the control-flow decision. As a result,
B is able to manipulate the control flow by re-entering A,
thereby launching a re-entrancy attack.

Detection Rules. We define our Detection Rules based on the
requirements for the inconsistent state. More specifically, we
define the following Detection Rules (shown in Figure 5):

The Detection Rules first check the SLOAD-JUMPI Depen-
dency. If a value loaded by the SLOAD (sloadVal) is used
in the condition of a JUMPI, the SLOAD address (sloadAddr)
is obtained. The SLOAD and JUMPI should have the same
depth and callnum (defined in §5), and the condition of
JUMPI ( jumpiCond) should depend on the value of SLOAD
(sloadVal), which is enforced by the depends Detection Rule.
The depends(A, B) Detection Rule checks whether there is a
data flow from A to B.

Next, the Detection Rules check the SLOAD-SSTORE Depen-
dency. First, they check whether there is an SSTORE working
on an address (sloadAddr). If so, they check (i) whether this
address is already used by an SLOAD that satisfies the first con-
dition via the checkSameAddr Detection Rule, (ii) whether
the SSTORE is executed after the SLOAD, and after an external
call returns (by checking the idx and depth via the filter-
ByDepth Detection Rule and the filterByIdx Detection Rule,
respectively). The checkSameAddr Detection Rule checks
whether SSTORE and SLOAD have the same address. The fil-
terByDepth Detection Rule keeps SLOAD and SSTORE pairs in
which sloadDp is larger than sstoreDp. The filterByIdx De-
tection Rule keeps SLOAD and SSTORE pairs where sloadIdx is
less than sstoreIdx. In addition, they check whether SLOAD,
SSTORE, and JUMPI are in the same contract (via the check-
Samecontract Detection Rule). If so, then an inconsistent state
is detected, which indicates a re-entrancy attack.

7.2 Rules for UncheckedCall Attacks

Description. An UncheckedCall attack can be exploited to
steal Ether [25] due to the lack of checks on the return value of
an external call. Specifically, in Ethereum smart contracts, the
CALL OPCODE is used frequently for inter-contract commu-
nications and cryptocurrency transfers (i.e., send function).



1 Reentrancy(args):-
2 % SLOAD-JUMPI Dependency
3 op_SLOAD(_, sloadAddr, sloadVal, sloadIdx, sloadDp, cn),
4 op_JUMPI(_, _, jumpiCond, _, sloadDp, cn),
5 depends(jumpiCond, sloadVal),
6

7 % SLOAD-SSTORE Dependency
8 op_SSTORE(_, sstoreAddr, _, sstoreIdx, sstoreDp, _),
9 filterByDepth(sloadDp, sstoreDp),

10 filterByIdx(sloadIdx, sstoreIdx),
11 checkSameAddr(sloadAddr, sstoreAddr),
12 checkSameContract(sloadAddr, jumpiCond, sstoreAddr).

Figure 5: The Detection Rules for detecting Re-entrancy.

During an external call, exceptions might happen, which will
cause the callee contract to revert its execution and return.
Ideally, the caller should check the return value of the call. If
it is zero (e.g., caused by exception during the call), it should
take actions (e.g., revert its execution) to handle the exception
properly. However, many developers do not perform such
checks. As a result, these contracts have the UncheckedCall
vulnerability and cause the money stolen.

Requirements. We adapt the detection criteria of a byte-
code analysis tool, SECURIFY [6, 44], to define the require-
ments of UncheckedCall attacks. The transaction that contains
the UncheckedCall attack should meet the following require-
ments: (i) External call: There is at least one external call
(CALL-related OPCODE) in the transaction. (ii) Unchecked
call return value: There is at least one external call whose
return value is not used by any JUMPI.

Having at least one unchecked return values is a necessary
and sufficient condition of an UncheckedCall attack. To be
more specific, at bytecode-level, checking the return value is
done with a JUMPI depending on the return value of the CALL.
Therefore, if in a transaction, there is the call return value not
used by any JUMPI, it means that this value is not checked
and this transaction is under UncheckedCall attack.

Detection Rules. To detect the UncheckedCall attack, we de-
fine our Detection Rules in Figure 6. The UncheckedCall Detec-
tion Rules first extract all the call return values in a transaction
(line 7), and check whether there is a JUMPI depending on
each of the call return values, using the jumpiDep Detection
Rule. If there is a call return value not being used by any
JUMPI, the transaction is flagged as UncheckedCall. Note that
a transaction may include OPCODEs from multiple contracts.
The depth of both CALL and JUMPI in our Detection Rules are
set to 1, so that only the UncheckedCall attack targeting the
Receiver contract is detected.

7.3 Rules for Suicidal Attacks
Description. A “Suicidal” attack can cause the smart contract
killed by anyone, rather than the contract owner, due to the
lack of proper permission check. Specifically, Ethereum pro-
vides smart contracts with the ability to remove themselves
from the blockchain via the SELFDESTRUCT OPCODE. While

1 jumpiDep(jumpiIdx, jumpiDepth, depIdx, depVal) :-
2 op_JUMPI(_, _, jumpiCond, jumpiIdx, jumpiDepth, _),
3 jumpiIdx > depIdx,
4 depends(jumpiCond, depVal).
5

6 UncheckedCall(args) :-
7 op_CALL(_, _, _, callRet, callIdx, 1, _),
8 !jumpiDep(jumpiIdx, 1, callIdx, callRet).

Figure 6: The Detection Rules for detecting UncheckedCall.

1 Suicidal(args) :-
2 op_SELFDESTRUCT(_, _, sdIdx, 1, _),
3 op_CALLER(_, callerAddr, callerIdx, 1, _),
4 !jumpiDep(jumpiIdx, 1, callerIdx, callerAddr).

Figure 7: The Detection Rules for detecting Suicidal.

the design of SELFDESTRUCT is for contract owners to manage
the life cycles of their smart contracts, some smart contracts
fail to add proper permission checks before calling SELFDE-
STRUCT. Since TXSPECTOR examines transactions instead
of smart contracts, it detects the attacks where unauthorized
users trigger the SELFDESTRUCT of smart contracts. Each con-
tract can at most be detected once, as it has been destroyed
afterwards.

Requirements. The Suicidal attack can be detected by check-
ing whether there is a permission check (i.e., JUMPI) before
executing SELFDESTRUCT. There are two requirements: (i)
SELFDESTRUCT: There is at least one SELFDESTRUCT in the
transaction. (ii) No permission check on CALLER: There is
no JUMPI that depends on CALLER.

If there is no CALLER-JUMPI dependency in a transaction,
it means that it does not check the msg.sender (CALLER)
before executing SELFDESTRUCT, which further indicates the
contract can be killed by anyone, i.e., a Suicidal attack.

Detection Rules. The Detection Rules to detect the Suicidal at-
tack are shown in Figure 7. The Detection Rules first make
sure that there is at least one SELFDESTRUCT in the transac-
tion, then examine whether the msg.sender is checked before
SELFDESTRUCT via jumpiDep Detection Rule (line 3-4).

7.4 Rules for Other Attacks

Besides attacks exploiting the three vulnerabilities mentioned
above, we also demonstrated the use of TXSPECTOR to de-
tect other types of attacks, such as the Timestamp Depen-
dence (§A.1), the Misuse-of-origin (§A.2) and the FailedSend
(§A.3). However, not all known attacks/vulnerabilities can be
detected by TXSPECTOR. For instance, the transaction order
dependence involves multiple transactions, but TXSPECTOR
performs analysis on a single transaction; the restricted trans-
fer is not observable in transactions; detecting the integer
overflow/underflow requires source code level information
(e.g., types), which is missing in the bytecode. Note that we
have summarized these attacks/vulnerabilities in Table 1.



8 Evaluation

In this section, we first explain the setup of our evaluation,
and evaluate TXSPECTOR when applying the 3 Detection Rules
mentioned in §7 to detect attacks in transactions.

8.1 Experiment Setup

Trace collection. The traces were collected on an L8s v2
instance on the Microsoft Azure Cloud [32], with 8 VCPUs,
64GB RAM and 2TB SSD, running Ubuntu 18.04. Trace Ex-
tractor ran a full Ethereum node to collect bytecode-level traces,
from the 0-th block to the 7,200,000-th block. Note that
Ethereum has around 10180000 number of blocks (as in June
1st 2020) and it keeps growing exponentially. We cannot col-
lect all of them for our experiment because it takes a huge
amount of storage and also processing time. We therefore
stop collecting at 7,200,000-th block, which has resulted in
the size of 1,577 GB, containing 397,269,533 transactions
in total. We store them in a Trace DB (implemented atop
MongoDB [33]) by Trace Extractor.

Dataset. Having collected the traces of the transactions of
blocks, we then derive the transactions from them, which are
the input to TXSPECTOR. Given the huge volume of blocks
we have, we cannot take all of them to derive the transac-
tions because a block may contain multiple transactions. We
therefore decide to only focus on the transactions starting
from the 7,000,000-th block as our dataset, which contains
16,485,279 transactions, covering the transactions between
January 2019 to February 2019. With such 16 million transac-
tions, we believe it is representative to cover various situations
for our experiment.

Logic relation generation. Our dataset related to logic
relation generation contains 9,661,593 transactions, which is
acquired through two steps. First, the dataset originally con-
tained 16,485,279 transactions. However, not all transactions
have traces; that is, they do not invoke the execution of smart
contracts. We have to filter them out, because our logic rela-
tion generation process only takes transactions with trace as
inputs. After filtering, there were 9,662,675 transactions left.
Second, the raw traces were processed to generate the logic
relations. However, not all the transactions can be processed
due to the timeout. We therefore set the timeout threshold to
be 60 seconds and processed each of these traces through the
Execution Flow Graph Generator and the Logic Relation Builder to
generate the logic relations. Unfortunately, 1,082 transactions
(0.01%) did not finish logic relations generation on time.
As such, eventually our final dataset contains 9,661,593
transactions. The Logic Relation DB takes 2,949 GB space.

The majority of the logic relations is generated in a very
short time window. Specifically, there are only 94,277 (1.0%)
transactions that have a processing time larger than 4s. We
plotted the processing time distribution of the transactions

0.0 0.5 1.0 1.5 2.0 2.5 3.0 3.5 4.0
Time (s)

0.0

0.2

0.4

0.6

0.8

1.0

C
D

F

Figure 8: Time distribution on generating logic relations.

that finished processing within 4s (99.0% of the 9,662,675
transactions) in Figure 8. About 60% transactions finished
generating logic relations within 1s. If we set the timeout
threshold to 2s, logic relations of about 90% transactions can
be generated. It took 1.03s on average to generate the logic
relations for one transaction. Note that for each transaction,
we only need to generate the logic relations once, no matter
how many Detection Rules to be applied in the Attack Detector,
since different Detection Rules use the same logic relations.

After generating the logic relations, we applied the Detection
Rules to detect attacks and vulnerabilities in transactions. The
timeout threshold was set to 1s in the Attack Detector. We
studied the reasons of the Logic Relation timeouts and the
Detection Rule timeouts in §8.6.

Evaluation steps and criteria. We made several steps during
the evaluation and also compared our results other static analy-
sis tools. We first applied TXSPECTOR to flag the transactions
based on the Detection Rules. For the flagged transactions, if
the source code of the receiver smart contract is available,
we then performed manual inspection to check if they are
vulnerable to the specific attack. Next, if a smart contract is
vulnerable, the flagged transactions related to these contracts
are considered true positives. Otherwise, the related transac-
tions are considered false positives. Due to the large volume
of transactions, we have no means to analyze negative results.
The same issue was also faced by other related works (e.g.,
SEREUM). Finally, we also compare TXSPECTOR with three
Datalog-based static analysis tools: SECURIFY, VANDAL and
GIGAHORSE, if the specific vulnerabilities can be detected
by these tools.

8.2 Results of Re-entrancy Attacks

First, we present the detection results of re-entrancy attacks.
We applied the re-entrancy Detection Rules to the 9,661,593
transactions in our dataset. 336,909 transactions (3.5%) did
not finish due to timeout. For the 9,321,684 transactions
that had a verdict, TXSPECTOR flagged 3,357 transactions
(0.04%) as re-entrancy attacks. These 3,357 transactions were
related to 30 smart contracts, and 22 of them were open-
source. We decompiled the 8 closed-source contracts using
the online Solidity decompiler [19]. After our manual inspec-
tion, we confirmed that 10 of the 22 open-source contracts
and 7 of the 8 closed-source contracts contained re-entrancy



vulnerabilities. There are two main reasons why TXSPECTOR
mis-flagged 13 smart contracts: (i) It fails to detect the lock
that prohibits unauthorized reentering the re-entrant function;
(ii) The mis-flagged contracts can be re-entered, but it is not
possible to steal Ether or token from them. One example of
false positives is transaction 0xd32496 [17]. A code snippet
of the related functions is shown in Listing 3, which uses a
lock to prevent unauthorized re-entrancy attempts. The lock
variable (reentrancyLock) is checked before the call and up-
dated after the call, which allows the contract to be re-entered
only once. As such, a practical attack is prevented, but the
execution of the transaction meets our requirements of re-
entrancy attacks (§7.1). As a result, it is a false positive.

function nonReentrant() {
require(!reentrancyLock);
reentrancyLock = true;
call(...);
reentrancyLock = false;

}

Listing 3: A false positive example of re-entrancy.

The detection results are on par with SEREUM [38], which
flagged incorrectly 46,743 out of 49,080 transactions (among
the total 77,987,922 transactions), rendering a false positive
rate of 0.06%. Following the same criteria, TXSPECTOR mis-
flagged 3,072 transactions (related to the 13 smart contracts),
yielding a false positive rate of 0.03%. However, we believe
these values are only approximation of the detection accuracy,
as it is impossible to count true negatives.

In order to compare the detection results of TXSPECTOR
with other tools, we either reached out to the corresponding au-
thors for help and clarification, or ran the open-sourced tools
with the same dataset. The results are summarized in Table 3.
We present the comparisons in detail below.

Comparison with SEREUM. There is no open-sourced re-
lease of SEREUM; but we reached out to the authors of
SEREUM and obtained their evaluation result for compari-
son purposes. For the same dataset, SEREUM flagged 10,278
transactions as re-entrancy attacks, 2,732 of which were also
marked by TXSPECTOR. For the remaining 7,546 transac-
tions, we found that 7,271 of them did not have a result in our
dataset due to timeout1. There are 625 transactions that are
flagged by TXSPECTOR but not SEREUM. While our manual
inspection suggests they lead to inconsistent state, we do not
understand why they are not identified by SEREUM.

Comparison with SECURIFY. We performed a comparison
with static analysis tool SECURIFY. Note that SECURIFY aims
to detect re-entrancy vulnerabilities on smart contracts, while
our focus is the transaction. We first extracted all receiver
smart contracts of the transactions in our dataset and then

1We believe because there are deep recursions in re-entrancy transactions,
their traces are extremely long and complex, and have a higher probability of
causing timeouts in TXSPECTOR. We analyze the reasons of timeouts in §8.6.

applied SECURIFY on these smart contracts. The total number
of receiver smart contracts in our dataset is 105,535. For the
3,327 transactions flagged by TXSPECTOR, there were only
30 receiver smart contracts. We ran the open-sourced version
of SECURIFY [14] on the 105,535 receiver smart contracts.
The timeout threshold is set to 60s for analyzing each contract.
1,315 of them did not finish due to timeout; 6,226 of them
did not have result due to run-time errors. For the remaining
97,994 smart contracts, SECURIFY flagged 1,196 of them as
re-entrancy, and none of them were flagged by TXSPECTOR.

After reading the source code of SECURIFY, we found that
it defined two kinds of re-entrancy, “Gas-dependent Reen-
trancy” [12] and “Reentrancy with Constant Gas” [13]. But
in our definition, we check the inconsistent state, which re-
quires the state update after call. Therefore, we conclude
TXSPECTOR leads to different detection results from SECU-
RIFY as they have a different criterion of detecting re-entrancy.
Detection Rules can also be defined to detect these types of re-
entrancy attacks using TXSPECTOR (details are in §A.4). It is
worth noting that SEREUM [38] also mentioned that “Securify
defines a very conservative violation pattern for re-entrancy
detection that forbids any state update after an external call”
and, as a result, leads to “a very high false positive rate”.

Comparison with VANDAL. We used the open-sourced ver-
sion of VANDAL [45] for comparison. The timeout threshold
was set to 60s for analyzing each contract. When analyzing
the 105,535 receiver smart contracts, 1,206 of them (1.1%)
did not finish within 60s; 225 (0.2%) did not have result due
to some runtime errors. For the remaining 104,104 smart con-
tracts, VANDAL flagged 85,721 (82.3%) as reentrant, which
is clearly not reasonable. We randomly selected some of the
detected smart contracts and found they were all false posi-
tives. Because the number of flagged contracts are huge, we
cannot perform manual inspection on all of them.

By checking the rules provided by VANDAL, we found that
the rules are much more relaxed than ours. According to their
paper, “A call is flagged as reentrant if it forwards sufficient
gas and is not protected by a mutex”. As a result, any call
with sufficient gas and no lock will be marked as reentrant
by VANDAL, which is a much relaxed criterion. Among the
30 smart contracts marked by TXSPECTOR, 27 were also
flagged by VANDAL. For the remaining 3, VANDAL did not
finish analyzing them due to timeout. Therefore, TXSPECTOR
outperforms VANDAL in that it leads to low FP rate.

Comparison with GIGAHORSE. There is no open-source
release of GIGAHORSE, but there is a website [8] for users
to query the results of GIGAHORSE. We extracted all results
of the “Reentrancy” from their website. Among the 105,535
receiver smart contracts in our dataset, 3,310 (3.1%) of them
are flagged as reentrant by GIGAHORSE. 18 out of 30 smart
contracts detected by TXSPECTOR are also flagged by GI-
GAHORSE; the remaining 12 are not considered vulnerable
by GIGAHORSE. According to the explanation on the FAQ



Vulnerability System # Total
# Timeout

or Error
# Remaining # Flagged

Reentrancy

TXSPECTOR 9,661,593 336,909 9,321,684 3,357
SEREUM 9,661,593 N/A N/A 10,278
SECURIFY 105,535 7,541 97,994 1196
VANDAL 105,535 1,431 104,104 85,721
GIGAHORSE 105,535 N/A N/A 3,310

UncheckedCall
TXSPECTOR 9,661,593 323,772 9,337,821 178,303
SECURIFY 105,535 6,494 99,041 2,380
VANDAL 105,535 1,151 104,384 92,379

Suicidal
TXSPECTOR 9,661,593 327,208 9,334,385 23
VANDAL 105,535 1,187 104,348 349
GIGAHORSE 105,535 N/A N/A 383

Table 3: Comparing reentrancy, uncheckedcall, and suicidal
results with other tools. The numbers for TXSPECTOR and
SEREUM are transactions numbers, while others represent
numbers of contracts. ‘N/A’ means that the tool is not open-
sourced, so we cannot run it and get the timeout/error results.

page [9], a smart contract is considered re-entrant by GIGA-
HORSE only if “the contract makes an external call, which
can itself re-enter the contract before the first call updates
storage”. Therefore, it has a much more restrictive standard
than inconsistent state defined by TXSPECTOR. For the 3,292
smart contracts flagged by GIGAHORSE but not by TXSPEC-
TOR, the main reason is that there is no transaction showing
the inconsistent state in our dataset.

Case study of the DAO contract. Although TXSPECTOR
falls short in detecting some types of re-entrancy attacks (com-
pared to SEREUM), we show it is still effective in detecting the
most prominent ones, such as the DAO attack [27]. The DAO
contract is where the re-entrancy attack originally happened.
It is the No.1 victim of re-entrancy attacks. Over $50 million
worth of Ether was stolen from DAO [27]. To avoid the loss,
the Ethereum community decided to perform a hard fork on
the blockchain to return the stolen money, which led to the
split of Ethereum blockchain [5].

To inspect the transactions that might have attacked the
DAO contract, simply extracting the transactions with DAO
as the receiver does not work, since a malicious contract is
not the receiver. Instead, we scanned through the raw trace
collected by Trace Extractor for each transaction from block
0 to block 7,200,000, and only kept the transactions whose
traces contain the address of the DAO contract. There are
98,914 transactions left after this filtering process.

We applied TXSPECTOR with the re-entrancy Detection Rule
on the 98,914 transactions to see how many times the DAO
contract has been attacked. We used the same process men-
tioned before to generate the logic relations and applied the
re-entrancy Detection Rule. Since the re-entrancy transactions
are more complex than the regular transactions, we increased
the Logic Relation timeout threshold to 200s and the Detec-
tion Rule timeout threshold to 60s. After this process, there

are still 3,665 transactions that do not have result due to time-
out. Among the remaining 95,249 transactions, TXSPECTOR
flags 2,108 of them as re-entrancy attacks.

To compare TXSPECTOR with SEREUM, we check how
many of these 98,914 transactions are flagged by SEREUM.
In particular, SEREUM flagged 2,112 transactions, 2,108 of
which are also flagged by TXSPECTOR. That is, all attacks de-
tected by TXSPECTOR are also flagged by SEREUM. There are
4 transactions flagged by SEREUM but not TXSPECTOR. We
manually inspected the 4 transactions to see why TXSPECTOR
did not flag them. We checked the logic relations of SSTORE,
SLOAD and JUMPI to see if there were dependencies that the
TXSPECTOR missed. After examination, we confirmed that
in these 4 transactions, there were pairs of (SLOAD, SSTORE)
operating the same storage address. However, these pairs have
the same depth, meaning that they do not meet the condition
of inconsistent state. Therefore, TXSPECTOR did not flag
them as re-entrancy attacks.

8.3 Results of UncheckedCall Attacks
Next, we present the detection results of UncheckedCall
attacks. After applying the UncheckedCall Detection Rules
to our dataset, 323,772 transactions (3.4%) did not finish
due to timeout. In the 9,337,821 (96.6%) transactions that
had results, TXSPECTOR flagged 178,303 transactions
as UncheckedCall, and there were 1,430 related receiver
contracts. 216 of them were open-sourced, and they were
related to 28,377 transactions. We manually inspected the
216 smart contracts, and found 213 of them did have the
UncheckedCall vulnerability. We further investigated why
TXSPECTOR mis-flagged the remaining 3 contracts. We
found that these 3 contracts have checks on external calls,
but in the transactions, the check was not performed due to
“out of gas” failure, so TXSPECTOR flagged them. The 3 mis-
flagged smart contracts were related to only 4 transactions.
It is worth noting that for the remaining 1,214 closed-source
smart contracts, we were not able to perform the manually
analysis on the contracts. But we did confirmed that at least
one {CALL POP} was found in their traces, or they did not
use at least one of the call return values, which suggest they
are indeed attacks according to our detection rules. We also
compare the results with those of SECURIFY and VANDAL.
The comparison results are summarized in Table 3.

Comparison with SECURIFY. We used SECURIFY to de-
tect attacks abusing the UncheckedCall vulnerability of the
105,535 receiver smart contracts in our dataset. When analyz-
ing these smart contracts, 2,993 of them (2.8%) did not finish
within 60s. Moreover, the analysis of another 3,501 (3.3%)
smart contracts does not finish due to some run-time errors
(e.g., index out of bound), so there is no result for them. After
processing, SECURIFY generates results of 99,041 (93.9%)
smart contracts, and flagged 2,380 of them as having the
UncheckedCall vulnerability.



We further looked into the 178,303 transactions flagged
by TXSPECTOR. We extracted the receiver contracts of these
transactions (1,404 in total), and compared them with the de-
tection result of SECURIFY. There are 1,183 (84.3%) receiver
contracts flagged by TXSPECTOR that are also marked by
SECURIFY; another 142 (10.1%) are flagged by TXSPECTOR,
but SECURIFY does not finish execution due to timeout or
run-time errors; there are 79 smart contracts that are flagged
by TXSPECTOR, but marked as Safe by SECURIFY. In the
bytecode-level traces generated by executing these 79 con-
tracts, the call return values are popped by the caller contract,
so there is no JUMPI-CALL dependency in the traces. We con-
jecture that the reason why SECURIFY does not flag these
contracts might be issues related to the symbolic execution
approach it uses.

There are about 1,200 smart contracts only flagged by
SECURIFY, but not by TXSPECTOR. We inspected some of
them and found that there are UncheckedCall vulnerabilities
in the smart contracts, but the vulnerable functions are not
included in the transactions. Therefore, TXSPECTOR did not
detect them.

Comparison with VANDAL. When analyzing the 105,535
receiver smart contracts using VANDAL, 1,151 (1.1%) of
them did not finish within 60s. For the 1,403 smart contracts
flagged by TXSPECTOR, 1,367 of them (97.4%) are also
marked by VANDAL; the remaining 36 of them are not
identified by VANDAL. Through our manual inspection, we
found that these 36 smart contracts have the UncheckedCall
vulnerability. One example is the contract 0x99ECA32. In this
contract, the return value of the transfer() function is not
checked, which indicates the UncheckedCall vulnerability.
Therefore, TXSPECTOR is able to identify vulnerable smart
contracts that are missed by VANDAL.

VANDAL flagged another 91,012 smart contracts as
UncheckedCall vulnerability. TXSPECTOR did not detect
these smart contracts due to coverage: the vulnerable func-
tions are not included in the transactions of our dataset.

8.4 Results of Suicidal Attacks

Finally, we present the detection results of Suicidal attacks.
After applying the Suicidal Detection Rules to our dataset,
327,208 transactions (3.4%) did not finish due to timeout.
In the 9,334,385 (96.6%) transactions that have results,
TXSPECTOR flagged 23 transactions as Suicidal. Among
them, there were only 18 receiver smart contracts, since 5 of
the transactions had a receiver address of 0x0, meaning that
they were killed immediately after creation. We were not able
to study the source code of them since their bytecode and stor-
age were erased from the blockchain when they were killed.
From the traces of the 23 transactions, we confirmed that there

20x99ECA38B58cEEaf0FeD5351DF21D5B4C55995314

was no permission check on the caller (msg.sender). There-
fore, TXSPECTOR did not produce false positives. We also
compare the results with those of VANDAL and GIGAHORSE.
The comparison results are summarized in Table 3.

Comparison with VANDAL. We ran VANDAL on all 105,535
smart contracts in our dataset to check how many of them have
the Suicidal vulnerability. VANDAL marked 349 of them as
vulnerable. 13 out of 18 smart contracts flagged by TXSPEC-
TOR were also marked by VANDAL. For the 5 smart contracts
not flagged by VANDAL, VANDAL failed to analyze them due
to run-time errors and timeout. For the 336 smart contracts
flagged by VANDAL only, the main reason is that these smart
contracts have the Suicidal vulnerability, but they were not
killed yet (i.e., function not called). Therefore, TXSPECTOR
did not detect them.

Comparison with GIGAHORSE. To compare with GIGA-
HORSE, we retrieved their result of “Accessible selfdestruct”
from their website. Among the 105,535 receiver smart con-
tracts in our dataset, GIGAHORSE flagged 383 smart contracts,
only one of which was in common with the result of TXSPEC-
TOR. The reason why GIGAHORSE did not flag the other 17
contracts is that their bytecode were missing after being killed
when GIGAHORSE was deployed, so GIGAHORSE cannot an-
alyze them. For the smart contracts flagged by GIGAHORSE
only, we found that they have a much relaxed criterion: as
long as the SELFDESTRUCT is reachable from public entry
point [9], it would be flagged as True, even if there are checks.
However, TXSPECTOR only detects Suicidal vulnerability
that has no check at all, which is stricter than GIGAHORSE.

8.5 Comparison with Other Tools

In addition to the three Datalog-based tools, we also per-
formed a comparison with three other static analysis tools:
MYTHRIL [7], OYENTE [31] and MAIAN [35]. For MYTHRIL,
we compared it with TXSPECTOR on all three vulnerabili-
ties; we compared OYENTE on re-entrancy and MAIAN on
suicidal, respectively. The results are summarized and pre-
sented in Table 4. To summarize, the detection results varied
a lot for different tools. The main reason is that there are no
golden rules for detecting these vulnerabilities and different
tools use different detection rules. In addition to making our
source code open, we have also released our comparison re-
sults so that others in the community can use the data for their
research.

8.6 Timeout Analysis

Timeout due to generating logic relations. When generat-
ing logic relations, 1,082 transactions failed to finish within
60s. We manually inspected these transactions to understand



Tool # Reentrancy # UncheckedCall # Suicidal
TXSPECTOR 30 1,430 18

SECURIFY 1,196 (0) 2,380 (1,183) N/A

GIGAHORSE 3,310 (18) N/A 383 (1)

VANDAL 85,721 (27) 92,379 (1,367) 349 (13)

MAIAN N/A N/A 21 (7)

OYENTE 9,556 (6) N/A N/A

MYTHRIL 19,854 (6) 52 (31) 1(1)

Table 4: Comparison with static analysis tools. a(b) means
the tool flags a contracts, and b of them are in common with
the result of TXSPECTOR.

the reasons of the timeout. We found that most of these trans-
actions got stuck in the Logic Relation Builder (§6), which con-
verts trace-based EFGs to IR and performs arithmetic opera-
tions with real values. The arithmetic operations may at times
be too complex to compute on-the-fly (e.g., exp(a,b)), which
is the main reason of timeout due to logic relation generation.
One example is transaction 0xf9de18 [16], which has 6,945
OPCODEs. Also, it has an exp operation with a large number
as the exponent, which causes the timeout.

Timeout due to applying Detection Rules. We analyzed the
transactions that exceed the timeout threshold when applying
UncheckedCall Detection Rules. We found that most of the
transactions got stuck when finding the dependencies between
call return values and JUMPI. Assume that the number of
JUMPI is m and the number of CALL is n in a transaction
trace, there will be m∗n (CALL, JUMPI) pairs. For each pair,
TXSPECTOR tries to check whether the call return value is
used by the JUMPI by finding the dependencies between them,
possibly through many intermediate variables. When m∗n is
large and the trace is long, it would take a lot of time validating
the dependencies of all m∗n pairs. One example is transaction
0xb513f5 [15], which has 11,664 JUMPI and 299 CALL. For
about 3.5 million (CALL, JUMPI) pairs, TXSPECTOR needs to
go over all potential intermediate variables to confirm whether
there is a dependency, which is unbearable.

Optimizations. For optimizing the logic relation generation,
we can fetch these intermediate results from the Ethereum
node, since they should be present during transaction execu-
tion. To speed up the Detection Rule application process, we
can add stricter pruning rules to filter out pairs that are impos-
sible to have dependencies, before trying to find them. Also,
we may add some helper functions to store dependencies of
certain nodes so that it does not have to be re-computed every
time. We leave these optimizations as our future work.

9 Application

In this section, we demonstrate how TXSPECTOR can be used
to perform forensic analysis of attacks against Ethereum.
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Figure 9: Distribution of NIS in transactions flagged as re-
entrancy attacks. Note that there is one transaction that has
575 NIS not presented in this figure.

9.1 Forensic Analysis of Re-entrancy

First, we focused on the 3,327 transactions flagged by
TXSPECTOR as re-entrancy attacks. We inspected these trans-
actions closely to study the following aspects:

The number of inconsistent state (NIS). We defined NIS
in a transaction as the number of inconsistent state reported
in the query result by TXSPECTOR, which is the number of
different (SLOAD, SSTORE) pairs that operate the same storage
address in a transaction. The distribution of the NIS in the
3,327 flagged transactions is shown in Figure 9. In this figure,
the X-Axis shows the number of NIS and the Y-Axis indicates
the number of transactions whose NIS falls in the correspond-
ing range. We can see that there are 3,245 transactions with
an NIS smaller than 15. Over 15 transactions have more than
100 inconsistent state; there is one transaction with 575 NIS.

Victim smart contracts. After studying the real-world trans-
actions that are involved in re-entrancy attacks, we found that
the typical attack workflow is as follows: (i) An externally
owned account (A) calls a function in a smart contract (B).
Both A and B are controlled by the attacker; (ii) B calls an-
other smart contract (C), which is the victim; (iii) C calls the
fallback function of B. In this fallback function, B re-enters
C, and the attack repeats until an exception happens.

In this workflow, B is the malicious smart contract, and C
is the victim smart contract. In Ethereum, the sender (from
address) of the attack transaction is A, and the receiver (to
address) is B. Therefore, the receiver of the transaction is not
the victim; the actual victim (C) is hidden in the bytecode or
storage of B. This finding is slightly counter-intuitive.

To investigate deeply of our findings, we constructed a new
Detection Rule to extract the address of the contract who is the



Address NIS Count
0xdf18880a02c7f3eb4f40fdf515fce31c1cb7ef66 4,803
0x1806b3527c18fb532c46405f6f014c1f381b499a 3,815
0xd7a14019aeeba25e676a1b596bb19b6f37db74d2 2,839
0x533bafa16aa76218ec4a365ad71bf8816cf21bbb 675
0x431d77f50803d31b090e86740b1d5848af54fad0 582

Table 5: Top 5 victim contracts in re-entrancy attacks.
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Figure 10: Distribution of re-entrancy attacks on DAO.

owner of the storage address in an inconsistent state. For a
single transaction, if it contains bytecode from multiple smart
contracts that have inconsistent state, the Detection Rule reports
the addresses of these smart contracts, as well as their NIS
numbers, respectively. After the query, Attack Detector reports
318 unique victim addresses, the top 5 of which are shown
in Table 5. The top victim smart contract accounts for 4,803
NIS. The top 2 smart contracts combined contribute to over
8,600 NIS counts, which is more than half of the total NIS
counts of all 318 victim smart contracts together.

Case Study – The DAO contract. A well-known re-entrancy
attack is the DAO attack. We therefore performed a case study
on the DAO smart contract, focusing on the time of the de-
tected attacks and their NIS numbers. As mentioned in §8.2,
there are 98,914 transactions related to DAO. TXSPECTOR
flags 2,108 of them as re-entrancy attacks. The distribution
of these 2,108 transactions is shown in Figure 10. From this
figure, it is clear that most of the re-entrancy attacks on DAO
happened in summer 2016, which is consistent with the news
report on the infamous DAO attack [27]. We further studied
the NIS of the re-entrancy transactions targeting the DAO
contract. The distribution of NIS is shown in Figure 11. Not
surprisingly, re-entrancy transactions on DAO have much
larger NIS counts. We can see that there are more than 1,700
transactions with an NIS larger than 100; Over 850 transac-
tions have more than 500 inconsistent state; there are even
512 transactions with an NIS larger than 1,700.

9.2 Forensics Analysis of UncheckedCall
TXSPECTOR flagged 178,229 transactions as attacks exploit-
ing the UncheckedCall vulnerability, and they have 1,404
unique receiver addresses and 4,125 unique caller addresses.

Receiver Address. We listed the top 5 receiver addresses of
UncheckedCall transactions in Table 6. The top receiver smart
contracts account for more than 30,000 transactions. The top
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Figure 11: NIS in re-entrancy transactions on DAO.

3 receiver smart contracts combined contributed to about 50%
of all UncheckedCall transactions. The No.3 smart contract
belongs to HybridExchange [11], which is a crypto wallet as
well as an exchange platform.

Caller Address. We listed the top 5 caller addresses of
UncheckedCall transactions Table 6. The top caller was re-
sponsible for sending over 24,000 UncheckedCall trans-
actions. The No.2 to No.5 callers each sent over 7,500
UncheckedCall transactions.

9.3 Forensic Analysis of Suicidal
TXSPECTOR flagged 23 transactions as Suicidal. We first
investigated the reasons behind the 23 Suicidal transactions.
Recall that the main requirement for Suicidal is no permission
check before SELFDESTRUCT. After our investigation, we
found that the reasons can be categorized into two classes:

• No permission check at all: There is no check at all in
the transaction. 20 transactions fall into these category,
meaning that they can be killed by anyone, as expected.

• Mistakes in checks: There are checks in the transaction,
but it does not check the msg.sender. We find that there

Category Address Tx Count
0x827727b4c3f75ea6eb6bd2cc256de40db2b13665 30,705

Top 5 0x896b516eb300e61cfc96ee1de4b297374e7b70ed 28,912
Receiver 0x2cb4b49c0d6e9db2164d94ce48853bf77c4d883e 24,254

Addresses 0x0000002c2155eb1aaa8809e93f88873ddcf40c55 9,102
0x3d374d549f78503f3252fa18cc02237da008c9f7 8,524

0x49497a4d914ae91d34ce80030fe620687bf333fd 24,254
Top 5 0x17528a9314b090a13a97b4f167d7d525625c398d 7,735
Caller 0xe8a576d484c10bed29aed74d16d6958aa05f94aa 7,703

Addresses 0x62460a5567d2823781604dc938e0eaf073d24d9d 7,662
0x682ed78859e2235e03535e11d2396e1e200bf0d4 7,605

Table 6: Top 5 Receiver addresses and Caller addresses in
UncheckedCall transactions.



Beneficiary Address Tx Count
0x3a91b432b27eb9a805c9fd32d9f5517e9dd42aa4 3
0x6e226310db63ac3701f657bcc62c153c1aaa3004 2
0x15202d3d183708649451878f50982d5c1bb4d01b 2

Table 7: Common beneficiary addresses.

are 3 transactions containing checks, but they only check
the origin, rather than the msg.sender, which is actually
a Misuse-of-origin vulnerability. As a result, they can be
killed by arbitrary caller.

Next, we inspected the flagged 23 transactions to study the
caller address and the beneficiaries of the attacks:

• Caller Address. We checked whether these transactions
were triggered by the same caller by clustering them
based on the caller address. There were 4 sets of trans-
actions having the same caller address, which have 3,
2, 2, 2 transactions in each set, respectively. We further
checked the bytecode of the smart contracts in each set,
and confirmed that they were actually identical. Con-
tracts in each set are created by the same creator.

• Beneficiaries. When a smart contract (A) executes
SELFDESTRUCT, it needs to specify an address of an-
other account (B). The remaining Ether of A will be
transferred into B. Therefore, we call B the beneficiary.
We further checked the beneficiary address of these 23
transactions, and the common beneficiaries are shown
in Table 7. There were 3 sets of transactions having the
same beneficiary, respectively; the top one is the benefi-
ciary of 3 Suicidal transactions.

10 Discussion

Time cost. As shown in §8.1, it takes 1.03s on average to
generate the logic relations for one transaction. Considering
the amount of transactions in Ethereum, processing them in
real-time would be very challenging. TXSPECTOR is designed
as a forensic analysis framework on transactions, but not
intended to be used as a real-time attack detection tool for
Ethereum. Nevertheless, there are several ways to improve the
performance of TXSPECTOR when generating logic relations.
For example, multi-threading can be applied to generate logic
relations of multiple transactions in parallel, since there is no
dependency among the transactions.

Storage cost. It takes a lot of space to store the Logic Relation
DB. To save space, TXSPECTOR can take measures to shrink
the size of the Logic Relation DB. For example, standard
serialization or compression libraries (e.g., gzip) can be used
when generating the logic relations. Moreover, TXSPECTOR
can choose a subset of OPCODEs and only generate logic
relations for these OPCODEs, instead of all of them, if the

OPCODEs of interest are known before going through the
Logic Relation Builder.

Transaction vs. bytecode. The benefit of studying transac-
tions is that transactions contain information of how smart
contracts interact with each other. Nevertheless, the bytecode-
level trace of a transaction only contains partial information
of smart contracts; it only involves the functions that are in-
voked during this transaction. If a function in a smart contract
is never invoked by others, there is no transaction associated
with it. In this case, transactions cannot reveal any vulnerabili-
ties related to this function of the smart contract. Nevertheless,
if a smart contract is never involved in any transaction, the
vulnerabilities are not exploited, either. Therefore, for foren-
sic analysis, analyzing transactions is more meaningful than
studying smart contract bytecode.

Reactive approach vs. proactive approach. As an attack
detection and forensic analysis tool, TXSPECTOR examines
transactions, which is reactive in nature, meaning that attacks
can only be detected after they have occurred on the Ethereum
blockchain. Unlike the proactive approaches (e.g., static anal-
ysis) that detect vulnerabilities in smart contracts which may
never be triggered, however, studying transactions can reveal
true attacks happened in the past, and learn from them in a
forensic perspective. On the other hand, static analysis tools
complement TXSPECTOR since TXSPECTOR can only see
parts of the smart contract bytecode. After TXSPECTOR un-
covers an attack from a transaction, static analysis tools can
be used to study the victim smart contract to identify other
potential attack surfaces, as well as the attacker smart contract
to learn about the attack mechanisms.

Efforts needed to design new rules. TXSPECTOR can only
be used to perform forensic analysis on known attacks/vulner-
abilities. In order to come up with the Detection Rules, the user
needs to have some knowledge of the attacks/vulnerabilities
she wants to detect, as well as the basic understanding of
constructing the Detection Rules. In the open-source release of
TXSPECTOR, we have provided rules of existing vulnerabili-
ties for the users to choose from, so that they do not have to
reinvent the wheel. Moreover, to minimize the effort that the
user needs to put to develop a customized Detection Rule, we
have also provided a list of APIs, as well as documentation-
s/READMEs to help the user get on-board.

Other applications. In this paper, we show that TXSPECTOR
can be used to detect 6 different kinds of attacks. However,
the applications of TXSPECTOR are beyond detecting attacks
and vulnerabilities; it can be used to perform forensic analysis
on many other aspects from the transactions. For example, as
shown in §9.1, TXSPECTOR can be used to check whether a
specific address is involved in a transaction, and, if so, perform
certain analysis on the transaction. Also, it can be used to
retrieve certain intermediate results to learn about transaction
failure reasons.



11 Conclusion

We have presented TXSPECTOR, the first generic, open source,
and logic-driven framework for studying Ethereum transac-
tions at the bytecode level. TXSPECTOR supports customized
Detection Rules defined by the users to detect Ethereum attacks.
We present the design and implementation of TXSPECTOR,
and demonstrate the construction of Detection Rules for de-
tecting attacks in transactions. Our evaluation suggests that
TXSPECTOR is effective. We also demonstrate how to use
TXSPECTOR to perform forensic analysis on transactions.
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A Other Detection Rules

A.1 Timestamp Dependence

Description. When a smart contract’s control flow depends
on the states of the block or the transaction, it can be abused
by a miner who may manipulate these states. For example,
a contract may use the TIMESTAMP OPCODE to obtain the
timestamp of the current block, and perform certain actions
based on the result. However, the TIMESTAMP may be manipu-
lated by the miners. If a smart contract contains a conditional
jump which contains such OPCODEs in the condition, it has
the Timestamp Dependence vulnerability.

Requirements. We adapt the detection criteria of another
bytecode analysis tool, SMARTCHECK [39, 41], to define the
requirements of Timestamp Dependence attacks in transac-
tions. There are two requirements: (i) TIMESTAMP: There
is at least one TIMESTAMP OPCODE in the transaction. (ii)
TIMESTAMP-JUMPI dependency: there is a JUMPI which

1 TimestampDependence(args):-
2 % TIMESTAMP-JUMPI dependency
3 op_TIMESTAMP(_, tsVal, tsIdx, 1, _),
4 jumpiDep(jumpiIdx, 1, tsIdx, tsVal).

Figure 12: Timestamp Dependence Detection Rules.

depends on the result of the TIMESTAMP OPCODE. If a trans-
action satisfies the requirements, it means that the current
timestamp is used in a control-flow decision, which leads to
the Timestamp Dependence attacks.

Detection Rules. The goal of the Detection Rules is to detect the
TIMESTAMP-JUMPI dependency. Similar to the Re-entrancy
Detection Rules shown in Figure 5, we define the Detection Rules
for detecting Timestamp Dependence attacks in Figure 12.
The Detection Rules extract all TIMESTAMP and JUMPI in the
transaction, and check whether there is a TIMESTAMP-JUMPI
dependency. The depth of them is set to 1 to capture the
attack of the receiver smart contract only.

A.2 Misuse of Origin

Description. Let tx.origin denote the original sender of
a transaction and msg.sender denote the immediate sender.
The tx.origin (ORIGIN OPCODE) returns the address of
the first message sender of the transaction, rather than the
caller of current function, i.e., msg.sender (CALLER OP-
CODE). When a smart contract mistakenly use the ORIGIN to
check its caller, it contains the Misuse-of-origin vulnerability,
which can be exploited by a malicious contract that relay
transactions.

Requirements. To check Misuse-of-origin attacks, TXSPEC-
TOR needs to examine the following two requirements: (i)
ORIGIN: The transaction contains a ORIGIN OPCODE. (ii)
ORIGIN-JUMPI dependency or ORIGIN-SSTORE depen-
dency: There is a conditional jump or a storage write that
depends on the result of ORIGIN. Note that if it is a conditional
jump, it should not come from a comparison between tx.origin
and msg.sender (e.g., tx.origin == msg.sender), which
is a legitimate usage of tx.origin.

When a conditional jump or a storage write depending
on the tx.origin, and it is not a comparison between
tx.origin and msg.sender, it means that the ORIGIN is
misused, thus a Misuse-of-origin attack.

Detection Rules. The Detection Rules for detecting Misuse-of-
origin are shown in Figure 13. The Detection Rules first extract
all the ORIGIN OPCODEs in the transaction. Then the De-
tection Rules check the two conditions, respectively: For the
ORIGIN-JUMPI dependency, they find all JUMPIs that depend
on ORIGIN (line 5), and remove those comparisons between
tx.origin and msg.sender via the cmpOrigin Detection
Rule (line 6); For the ORIGIN-SSTORE dependency, they find
all SSTOREs (line 9) and check whether any of them depends
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1 MisuseOfOrigin(args) :-
2 op_ORIGIN(_, originRet, originIdx, 1, _),
3

4 % ORIGIN-JUMPI dependency
5 ((jumpiDep(jumpiIdx, 1, callIdx, originRet),
6 !cmpOrigin(jumpiIdx));
7

8 % ORIGIN-SSTORE dependency
9 (op_SSTORE(_, sstoreAddr, _, sstoreIdx, 1, _),

10 depends(sstoreAddr, originRet))).

Figure 13: Misuse-of-origin Detection Rules.

1 FailedSend(args) :-
2 op_CALL(_, ether, _, callRet, callIdx, 1, _),
3 !value(ether, "0x0"), value(callRet, "0x0"),
4 jumpiDep(jumpiIdx, 1, callIdx, callRet),
5 op_REVERT(_, _, _, revertIdx, 1, _).

Figure 14: The Detection Rules for detecting FailedSend.

on ORIGIN (line 10). The two conditions are concatenated
with a ‘;’, which means the OR operator.

A.3 FailedSend

Description. The FailedSend vulnerability is similar to the
UncheckedCall vulnerability, but the smart contract throws
an exception when the call fails. This may cause problems
as well. For example, when smart contract A sends money to
smart contract B, the fallback function of B will be called. If B
is malicious, it can do something to make the money-transfer
operation fail, e.g., put a long sequence of OPCODEs in its
fallback function to make it cost more than the gas limit (2300
wei by default). As a result, the fallback function can never
succeed and the transaction will be reverted.

Requirements. To check the FailedSend attacks, there are 3
requirements: (i) Failed Send(): The transaction should con-
tain a CALL-related OPCODE, and the Ether to be transferred
is greater than 0, indicating a Send() operation. Moreover, the
result of this CALL should be False, meaning that it fails. (ii)
Checked call return value: There is a JUMPI that depends
on the return value of the CALL. (iii) REVERT: The caller
reverts the transaction.

If a transaction satisfies all the requirements, it means that
the caller failed to send Ether to the callee. Also, after check-
ing the return value (via JUMPI), the transaction is reverted
by the caller. Therefore, they are necessary and sufficient
conditions of a FailedSend attack.

Detection Rules. The Detection Rules for detecting the Failed-
Send attacks is shown in Figure 14, which are very similar
to the Detection Rules for UncheckedCall. First, the Failed-
Send Detection Rules extract all external calls in a transaction
(line 2), then check the Ether amount (line 3) and the re-
turn value (line 4). After that, The Detection Rules try to find
whether there is a REVERT after the JUMPI (line 5-6). Note
that the depth of both CALL and JUMPI in our Detection Rules
is set to 1 as well, the same as in UncheckedCall. Since the

REVERT will always be the last OPCODE in the transaction,
there is no need to compare revertIdx and jumpiIdx.

A.4 Gas-dependent Reentrancy and Reen-
trancy with Constant Gas

The Detection Rules for Gas-dependent Reentrancy [12] and
Reentrancy with Constant Gas [13] defined by SECURIFY [44]
are presented in Figure 15. There are three requirements for
them: (i) there is an Ether transfer; (ii) there is a state change
(SSTORE) after the call returns; (iii) the value of Ether trans-
ferred depends on the storage variable. By utilizing the above
conditions, we can find those reentrancy attack transactions
as defined in SECURIFY. If the gas of the Send() is a constant,
then the attack is related to Reentrancy with Constant Gas;
otherwise, the attack is related to Gas-dependent Reentrancy.

A.5 Generic Detection Rules
Generic rules, instead of rules targeting specific attacks, can
also be expressed in TXSPECTOR, as long as the information
needed is all present in the transaction traces. Although we
only present rules for detecting specific attacks in this paper,
generic rules can also be defined. For example, in Figure 16,
we show Detection Rules to detect transactions that involve at
least n smart contracts, and transactions that run out of gas.

1 Requirements(gas) :-
2 op_CALL(_, ether, gas, callRet, callIdx, callDepth, _),
3 !value(ether, "0x0"), value(callRet, "0x1"),
4 op_SSTORE(_, sstoreAddr, _, sstoreIdx, sstoreDepth, _),
5 sstoreDepth = callDepth, sstoreIdx > callIdx,
6 depends(ether, sstoreAddr).
7

8 ReentrancyGasConst(args) :-
9 Requirements(gas), isConst(gas).

10

11 ReentrancyGasDep(args) :-
12 Requirements(gas), !isConst(gas).

Figure 15: The Detection Rules for detecting reentrancy
with constant gas and gas-dependent reentrancy.

1 CallAddress(callAddr) :-
2 op_CALL(callAddr, _, _, _, _, _, _).
3

4 InvolveNContracts(args) :-
5 total = count:{CallAddress(callAddr)},
6 % n is a constant
7 total >= n.
8

9 OutOfGas(args) :-
10 % Last returns the max idx and the related OP
11 Last(lastIdx,lastOp),
12 lastOp != "STOP", lastOp != "SELFDESTRUCT",
13 lastOp != "RETURN", lastOp != "REVERT",
14

15 % CurrentGas returns the remaining gas
16 CurrentGas(lastIdx, gas),
17 value(gas, "0x0").

Figure 16: Examples of generic Detection Rules.
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