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Abstract—Security is a major barrier to enterprise adoption
of cloud computing. Physical co-residency with other tenants
poses a particular risk, due to pervasive virtualization in the
cloud. Recent research has shown how side channels in shared
hardware may enable attackers to exfiltrate sensitive data
across virtual machines (VMs). In view of such risks, cloud
providers may promise physically isolated resources to select
tenants, but a challenge remains: Tenants still need to be able
to verify physical isolation of their VMs.

We introduce HomeAlone, a system that lets a tenant verify
its VMs’ exclusive use of a physical machine. The key idea in
HomeAlone is to invert the usual application of side channels.
Rather than exploiting a side channel as a vector of attack,
HomeAlone uses a side-channel (in the L2 memory cache) as
a novel, defensive detection tool. By analyzing cache usage
during periods in which “friendly” VMs coordinate to avoid
portions of the cache, a tenant using HomeAlone can detect the
activity of a co-resident “foe” VM. Key technical contributions
of HomeAlone include classification techniques to analyze cache
usage and guest operating system kernel modifications that
minimize the performance impact of friendly VMs sidestepping
monitored cache portions. Our implementation of HomeAlone
on Xen-PVM requires no modification of existing hypervisors
and no special action or cooperation by a cloud provider.

Keywords-Cloud computing, Infrastructure-as-a-Service
(IaaS), co-residency detection, side-channel analysis

I. INTRODUCTION

With its massive pooling and multiplexing of computing

resources, the cloud offers enterprises the prospect of lower

IT costs, lighter administrative burdens, and rapid scaling of

resources. Security, however, is a widely cited impediment

to enterprise adoption of public clouds, i.e., clouds admin-

istered by third parties [45]. By relinquishing control over

their IT resources, cloud tenants expose themselves to the

security choices—and mistakes—of their providers. Because

many tenants share common pools of hardware, the cloud

makes strange bedfellows. Businesses may find themselves

sharing adjacent or overlapping computing resources with

partners, suppliers, competitors, or attackers.

Strong isolation among tenants is therefore a pillar of

secure cloud computing. Logical isolation of computing

resources can help protect against poorly or inadequately

implemented or conceived access-control policies. However,

other potential sources of information leakage often remain.

Virtual Machines (VMs) that execute on the same physical

machine share a range of hardware resources—computing,

memory, and so forth. Even when solid logical isolation

ensures against abuse of explicit logical channels, shared

hardware creates vulnerabilities to side-channel attacks, i.e.,

data leakage through implicit channels. Recent research

has demonstrated how hostile VMs can potentially extract

sensitive data, such as passwords and cryptographic keys,

from other VMs resident on the same physical machine by

using memory caches (L2) as side channels [38].

For such reasons, enterprises often demand physical iso-

lation for their cloud deployments. For example, NASA

and Amazon negotiated a cloud service contract for seven

months, due to wrangling over NASA’s rights to hard-

ware inspection [39]. (Ultimately, Amazon introduced a

new cloud service with physically isolated, tenant-specific

hardware.)

While cloud providers may promise physical isolation,

and even commit to it in service-level agreements (SLAs),

enforcement by tenants and auditors is a challenge. Cloud

systems make heavy use of virtualization to abstract away

underlying hardware for simplicity and flexibility. They are

architected to be hardware opaque, not hardware transparent,

and thus sit at odds with the goal of verifying physical

isolation.

A. HomeAlone

In this paper we introduce HomeAlone, a new tool that

allows a tenant or auditor to remotely verify that the ten-

ant’s VMs are physically isolated, i.e., that the tenant has

exclusive use of a given physical machine. Our implemen-

tation of HomeAlone for the Xen paravirtualization (PVM)

architecture permits such verification with no hypervisor

modification, and with no explicit action on the part of the

cloud provider. The provider need not even be aware that

HomeAlone is in operation.

The key insight behind HomeAlone is that side channels

aren’t just vulnerabilities: They can aid defensive detection.

HomeAlone exploits side channels (via the L2 memory

cache) to detect undesired co-residency.

The basic idea in HomeAlone is for the tenant to coordi-

nate its VMs (called friendly VMs) so that they silence their

activity in a selected cache region for a period of time. The

tenant then measures the cache usage during the resulting



quiescent period and checks that there is no unexpected

activity. Any such activity suggests the presence of a foe

VM—our generic term for another tenant’s VM—running

on the same physical machine.

B. Technical Challenges and Contributions of HomeAlone

In practice, HomeAlone requires an approach more com-

plicated than simple silencing of friendly VMs and listening

for foe cache activity. Even without friendly VM activity, the

L2 cache in a virtualized environment is never entirely quiet,

and measurement of its activity (via techniques described

below) is error-prone. The timing channel by which Home-

Alone measures cache activity is subject to many forms

of noise, including scheduling interruptions, coarse timer

readings, and core migration in a multi-core environment.

Even more challenging is the background noise created by

low-level system activity (e.g., that of the hypervisor and

Dom0 in Xen), which our classifier needs to distinguish from

foe VM activity.

Consequently, a major challenge in the design of Home-

Alone is the construction of an effective classifier that can

distinguish normal cache activity in a friendly environment

from the activity introduced by a foe. This classifier in

HomeAlone is carefully designed to address complications

such as core migration and the impact of friendly-VM and

Dom0 activity on the cache.

Another major technical challenge in HomeAlone is

performance overhead: It is desirable in practice that si-

lencing friendly VMs doesn’t substantially degrade their

performance. HomeAlone thus silences VMs in a selective

manner. During detection periods, friendly VMs coordinate

avoidance of just a small, randomly selected region of the

cache, set aside for foe detection.

Selective cache avoidance is challenging, and requires

kernel modifications in the guest operating system (OS)

of the friendly VMs. By taking advantage of the double

indirection layer in memory virtualization in Xen-PVM, we

build an address remapper that remaps a set of physical

memory pages (corresponding to the cache region avoided

by friendly VMs) to a reserved pool of available pages. We

show that the impact of selective cache avoidance on the

performance of several realistic workloads is modest. For

this reason, and because HomeAlone requires no hypervisor

modification or cloud-provider support, tenants can use

HomeAlone undisruptively and as often as desired to verify

isolation policies.

We demonstrate that HomeAlone effectively detects foe

VMs whose activities are significantly evidenced in the L2

cache during their execution. We believe that HomeAlone

will most commonly detect policy misconfigurations or cost

cutting by a service provider that produces undesired co-

residency. We further show, however, that HomeAlone can

impose significant obstacles even to hostile foe VMs that

attempt to use the L2 cache as an avenue for attack. So,

while the L2 cache has been demonstrated to be an easily

exploitable side-channel attack vector, it is one whose abuse

HomeAlone is well-positioned to detect.

Paper organization: In Section II, we describe the

cloud scenarios envisaged for use of HomeAlone and the

accompanying threat model. We explain the characteristics

of the L2-cache as a side channel in Section III. We detail the

design of HomeAlone in Section IV and its implementation

in Section V. In Section VI, we evaluate the detection

accuracy of HomeAlone on demonstration workloads and

the performance impact of HomeAlone. We discuss in

Section VII a number of issues that bear on the use of

HomeAlone in practice. Section VIII reviews related work.

We conclude in Section IX.

II. BACKGROUND AND SYSTEM MODEL

A. Cloud Infrastructure Service

Cloud services are often taxonymized—based on the ab-

straction layer they export—as Platform as a Service (PaaS),

Software as a Service (SaaS), or Infrastructure as a Service

(IaaS). PaaS offers an application-development environment

but abstracts away lower software layers such as the OS.

SaaS presents an application-level interface to the tenant.

Our focus in this paper is on IaaS.

In an IaaS system, computing resources are generally

made available to tenants in the form of VM instances.

Tenants essentially have complete control of these VMs

but no visibility into the lower layers of the infrastructure,

e.g., hypervisors (virtual machine monitors) and data-center

management consoles. The tenant VM instances may be

configured with operating systems from a catalog but are

also typically custom-configurable. (Supporting network and

storage are often bundled with computing instances but can

also be purchased separately.) Amazon’s Elastic Compute

Cloud (EC2), IBM Computing on Demand, and Rackspace

Cloud are well-known examples of IaaS offerings.

Cloud services can also be categorized as public or

private. Public clouds are operated for the benefit of mul-

tiple, organizationally distinct tenants—i.e., are multi-tenant

environments—and generally available as dynamically pro-

visioned, self-service offerings. Private clouds are operated

for the benefit of a single tenant, often within a facility

owned and/or managed by the tenant itself.

The security concerns surrounding cloud computing arise

primarily in public clouds. (They carry over, however, to

private clouds that support disparate organizational func-

tions.) Multi-tenancy in public clouds creates sharing of

resources by organizations that have potentially competing

or conflicting interests and thus motivation to exfiltrate data

from one another and/or disrupt one another’s operations.

While public clouds enforce logical isolation among tenants,

they often multiplex tenants across hardware. This common

practice presents a realistic threat of data theft or covert

intelligence gathering in public clouds [38].



Such concerns—and interest by organizations in extend-

ing their private clouds into public clouds (creating so-

called hybrid clouds)—have prompted some tenants, e.g.,

U.S. federal agencies, to demand physical isolation as part

of their SLAs [18]. Others use only resource instances that

are meant to provide such isolation, such as full-physical-

machine instances with Amazon Web Services [11].

Even for tenants whose cloud providers offer assurances

of physical isolation, however, a problem remains. How

can these tenants verify that their computing resources (and

VMs, in particular) are actually physically isolated?

Given this challenge, HomeAlone is designed to provide

two benefits in public clouds. First, the system allows tenants

(or auditors acting on their behalf) to detect hardware co-

residency with foe VMs. Thus HomeAlone enables tenants

to detect and remediate the presence of potentially dangerous

side channels in cloud computing environments. Second—

and of perhaps equal importance—by merit of its detection

of unexpected co-residency, HomeAlone can give insight

into possible policy violations or system misconfigurations

by cloud administrators. In other words, by way of detect-

ing physical-isolation breaches, HomeAlone can serve as a

sentinel for potentially broader and more serious systemic

security lapses.

B. Threat Model

We consider an IaaS tenant that operates a collection

of one or more (friendly) VMs co-resident on a given

physical server. (Confirmation of friendly co-residency is

obtainable via techniques outlined in, e.g., [38].) The tenant

presumes—on the basis of a service agreement with the

cloud provider, for instance—that its VMs have exclusive

use of the physical server. The tenant’s goal is to disprove

or confirm its hypothesis via the detection or non-detection

of foe VMs.

The tenant has no control over or visibility into the

functioning of the hypervisor. That is, its only view into

platform resource allocation is the one presented by its VMs.

We model the cloud provider as neutral. The provider

does not facilitate foe-VM detection by the tenant by, e.g.,

giving hypervisor access to the tenant. At the same time, the

provider does not modify software or hardware specifically

to disable the tenant’s detection tools.1 We consider two

scenarios: (1) The “foe” VM is benign, i.e., oblivious to its

co-residency, or at least not attempting to exploit it to attack

friendly VMs; and (2) the foe VM is an active adversary

seeking to exfiltrate data from friendly VMs.

Benign “foe VMs”: Co-residency with a benign foe

VM may arise due to an unintentional policy violation or

a configuration error by the cloud provider (or perhaps

an intentional, cost-cutting violation, but not one that the

1A cloud provider has little incentive to actively enable foe VMs to
exfiltrate data via side channels: Its control of the infrastructure means that
it can simply exfiltrate data via the hypervisor if it so chooses.

cloud provider compounds via active cover-up). Indeed, we

anticipate that such errors will be more common in the cloud

than targeted exfiltration attacks via co-residency.

The ability to detect policy violations that lead to non-

adversarial co-residency is important for two reasons. The

first is regulatory compliance. Server isolation is an estab-

lished best practice, for instance, for PCI (Payment Card

Industry) DSS (Data Security Standards) compliance [21].

The second is the vulnerability that co-residency evidences.

Even if foe VMs are not actively targeting co-resident

friendly VMs, their existence highlights an isolation breach

that can ultimately lead to a true compromise.

As we demonstrate, HomeAlone effectively detects the

presence of a benign foe VM whose activities are sig-

nificantly evidenced in the L2 cache during its execution.

HomeAlone can thus serve as an early warning of accidental

co-residency and potentially even as an index into more

systemic security vulnerabilities.

Adversarial foe VMs: An adversarial foe VM is one

that attempts to exploit its co-residency to exfiltrate sensitive

data from friendly VMs. The benefit of HomeAlone in

detecting such foe VMs is clear.

As a countermeasure to detection by HomeAlone, a foe

VM could attempt to minimize its L2 cache footprint.

Wholesale avoidance of the L2 cache for an actively ex-

ecuting foe VM would be challenging, as it would severely

curtail use of memory (and necessitate avoidance of services,

e.g., network transmission, that induce an L2 footprint).

Specific avoidance of the region monitored by HomeAlone

would also be challenging. As we shall see, this region is

composed of a random selection of cache sets, and a foe VM

attempting to map this region would ostensibly generate L2

activity that would itself facilitate detection by HomeAlone.

Moreover, the L2 cache is a side-channel attack vector of

choice in server environments. Thus, a foe VM of particular

concern is one that tries to exfiltrate data by actively probing

this cache. As we demonstrate in our experiments, the L2-

cache footprint produced by such a foe VM renders it more

easily detectable by HomeAlone. Conversely, cornering the

attacker into avoiding the L2 cache in whole or in part would

be a success: It would strip a foe VM of a major adversarial

benefit of co-residency.

Alternatively, to evade detection, a foe VM might attempt

to limit its operation to short bursts or low-level activity over

a prolonged period. This approach, however, would constrain

exfiltration opportunities for critical, transient-use data such

as cryptographic keys.

C. Alternative Approaches

Of course, with the cooperation of the cloud provider, it

is possible for a tenant to detect foe VMs more directly

(and reliably) than HomeAlone permits. For example, given

control of the hypervisor, the tenant could list or enumerate

the set of currently executing VMs on a physical machine.



Such functionality, however, would require modification of a

service provider’s hypervisor software or management plane

to permit queries from tenants remotely or from tenant VMs

locally. Extensions of this type, while technically possible,

introduce their own access-control challenges and would

require adoption by cloud providers, which there is no reason

at present to anticipate in public clouds. As such, we focus

on solutions that do not require cloud provider support.

III. CACHE-BASED SIDE CHANNELS IN VIRTUALIZED

INFRASTRUCTURES

A. Caches in Modern Architectures

Modern processors benefit from multi-level caches to re-

duce latencies incurred by accesses to main memory. While

current main memory latencies are on the order of several

hundred nanoseconds, the fastest L1 cache has latency as low

as several nanoseconds, resulting in a difference of two to

three orders of magnitude. To amortize the cost of L1 cache

misses, current processors include larger L2 and sometimes

even L3 caches with slightly higher access latencies.

Cache sizes range from several KB to several MB. They

are organized as a sequence of blocks denoted cache lines,

with fixed size between 8 and 512 bytes. Typical caches are

set-associative. A w-way set-associative cache is partitioned

into m sets, each with w lines. Each block in the main

memory can be placed into only one cache set to which it

maps, but can be placed in any of the w lines in that set. The

spectrum of set-associative caches includes two extremes:

direct-mapped caches in which a memory block has a unique

location in the cache (corresponding to w = 1), and fully

associative caches in which a memory block can be mapped

to any location in the cache (corresponding to m = 1).

Increasing the degree of associativity usually decreases the

cache miss rate, but it increases the cost of searching a block

in the cache.

B. Cache-based Timing Channel

Cache-based timing channels have been widely studied

in various contexts (see Section VIII). In spite of different

methodologies employed in constructing these channels,

they all exploit the timing difference in access latencies

between the cache and main memory.

In our study, we consider the cache-based timing channel

constructed by measuring the cache load of a monitored

entity V that shares a common cache with the monitoring

entity U . A basic construction of such a timing channel is

what we call the PRIME-PROBE protocol:

PRIME: Entity U fills an entire cache set S by reading

memory region M from its own memory space.

IDLE: Entity U waits for a prespecified PRIME-PROBE

interval while the cache is utilized by monitored entity V .

PROBE: Entity U times the reading of the same memory

region M to learn V ’s cache activity on cache set S.

If there is much cache activity from V during U ’s PRIME-

PROBE interval, then U ’s data is likely to be evicted from

the cache set and replaced with data accessed by V . This

will result in a noticeably higher timing measurement in U ’s

PROBE phase than if there had been little activity from V .

Cache-based side channels are typically dependent on the

processor architecture and the cache level utilized. In this

paper we focus on last-level caches on x86 platforms; for

our experimental platforms, these are L2 caches. There are

several hardware features that impact the cache-based timing

channel we consider.

TLB misses: Most CPUs implement virtual memory

as a method of providing a contiguous address space to

processes. To speed up address translation, translation looka-

side buffers (TLBs) cache recently used page table entries

containing virtual-to-physical memory mappings. With the

hardware-based TLBs implemented by the x86 architecture,

TLB misses are expensive (as high as 100 cycles). Upon

a TLB miss, the CPU itself walks the page tables to look

for a mapping of the virtual address not found in the TLB.

Thus, the TLB can add significant noise to the timing

measurements of the PROBE phase.

Hardware prefetching: Modern CPUs implement sev-

eral optimizations: they reorder accesses to the cache and

prefetch several cache lines from a memory page that incurs

several cache misses. To obtain accurate timing measure-

ments in the PROBE phase, one technique is to access the

buffer in pseudo-random order in the PROBE phase [38].

Collisions from the instruction cache: The L2 cache is

shared by data and instructions, and thus data blocks can be

evicted in favor of instructions. Instruction caching generally

has a small effect on the timing measurements [35].

Multi-core architectures: On multi-core hosts, different

cores may or may not share a cache. For example, in the

four-core Intel Extreme processor, each core has its own L1

cache and each of the two L2 caches is shared by two cores.

Simultaneous multithreading (SMT): CPUs supporting

SMT allow multiple threads to execute simultaneously on

the same CPU core and share the same cache hierarchy.

This feature enables the monitoring entity to execute while

the monitored entity is running and to detect the activity of

the monitored entity with a finer time resolution.

C. Implications of Virtualization

Virtualization has been widely adopted in cloud comput-

ing for its flexibility, elasticity and ease of management.

While virtualization provides logical isolation of virtual

machines running on the same physical machine, it has been

shown that the cache-based timing channels are still viable

in virtualized environments [38], [36], albeit with reduced

bandwidth. In this section we discuss several implications of

the Xen paravirtualization (PVM) architecture to the cache

timing channel, as our implementation of HomeAlone is

based on Xen-PVM. Many of these features are common



to hardware-assisted virtual machine (HVM) functionality

as supported by the Intel VT-x/VT-i [32] and AMD-V

technologies, as well.

Background activity: Xen offers a paravirtualized vir-

tual machine abstraction that requires some changes to

the guest operating systems running in each VM. Xen

implements a thin hypervisor that controls only basic opera-

tions, and a control management virtual machine, dubbed

Dom0. To perform privileged operations, guest VMs can

issue software traps into the hypervisor, called hypercalls.

Dom0 is responsible for creating and terminating other VMs,

configuring some of their parameters, and handling virtual

network interfaces and block devices.

Both the hypervisor and Dom0 produce cache activity that

introduces noise when measuring cache load. For example,

to ensure secure partitioning of VMs, Xen validates modifi-

cations to guest page tables. Updates to page tables trigger

hypercalls into Xen, and thus they induce hypervisor activity

that leaves a pattern in the cache. In the PRIME-PROBE

protocol, noise from the hypervisor might evict cache lines

primed by the monitoring VM and so increase the timings

observed in the PROBE phase, even when no foe VM is

present.

Processor virtualization: Virtual machines time-share

a physical machine and they run as scheduled by the

hypervisor scheduler. Xen implements multiple scheduling

algorithms (e.g., BVT, the credit scheduler). The default

credit scheduler uses a fixed 30ms time slice to allocate

VMs. Whether a monitoring VM U can observe the cache

activity of another, targeted VM V through the PRIME-

PROBE protocol depends on being scheduled on a core that

shares a cache with V and on both U and V remaining there

for sufficiently long.

I/O virtualization: In a virtualized environment, a guest

OS does not have direct control of I/O devices. In the

Xen architecture, Dom0 is responsible for multiplexing I/O

devices across different virtual machines. Dom0 implements

all device drivers and has access to the network and physical

hard drives. All other VMs transfer data through Dom0

using an asynchronous buffering mechanism. Thus, an I/O

intensive application triggers significant activity in Dom0,

resulting in a modification of cache access patterns.

IV. DESIGNING A CO-RESIDENCY DETECTOR

The PRIME-PROBE timing channel described in Sec-

tion III-B potentially provides a method for a monitoring

VM to discover a foe VM on its machine by analyzing

PROBE results for evidence of the foe. In this section, we

develop a classifier for PRIME-PROBE readings that yields

a classification of “foe present” or of “foe absent”. In Sec-

tion IV-A, we consider the effectiveness of a simple classifier

for a single PRIME-PROBE reading. Based on that experi-

ence, we design a multi-probe classifier in Section IV-B and

discuss training this multi-probe classifier in Section IV-C.

We perform a cursory evaluation of the classifier’s detection

capability in Section IV-D; this evaluation will be augmented

with additional evaluations in Section VI.

Much of our discussion in this section is informed by

experiences with the platform on which we performed the

experiments reported in this paper. This platform is a 3GHz
Intel Core 2 Quad computer (without SMT) with 8GB of

physical memory and two L2 caches, each serving two cores.

Each L2 cache is 24-way set-associative (w = 24) with

m = 4096 cache sets and a line size of l = 64B, yielding

a cache size of c = 6MB. The virtualization technology is

Xen. Unless otherwise specified, VMs use Ubuntu 10.04 as

their guest OS. We will often motivate our design decisions

based on our experiences on this platform, but we see no

reason that our framework should not extend to several other

platforms, as well.

A. A Single-Probe Classifier

In this section we consider a simple classifier for a single

PRIME-PROBE trial. This classifier works by averaging the

PROBE timings observed in the trial (i.e., averaging over the

cache sets utilized) and comparing this average to a thresh-

old. If the average PROBE timing is less than the threshold,

then this implies low baseline activity in the system, and thus

results in a foe-absent classification. Otherwise, the PROBE

timing implies high activity, and the classification returned

is foe-present.

A factor that impacts the detection accuracy is the fraction

of the cache examined in a PRIME-PROBE trial. It should be

more accurate to PROBE the entire cache to detect a foe

VM, but it is more desirable to utilize only a portion of the

cache, so friendly VMs can utilize the remainder of the cache

and, in particular, can continue execution during PRIME-

PROBE trials. (An implementation for achieving this property

is described in Section V.) Thus, in this section we evaluate

our classifier when using PROBE results from only a portion

(specifically, 1/16th) of the cache that friendly VMs avoid.

The successful detection probability is also a function of

the foe VM activity. To allow us to examine our classifier

under a range of foe VM cache activity levels, we developed

a toy application inducing a random memory access pattern

with a frequency that we can tune. This toy application

allocates a buffer of size much larger than the cache size

and then periodically selects a random location in the buffer

to read. The frequency of reads can be tuned to adjust its

memory access frequency. We utilize this toy application to

simulate a range of foe activities.

On multi-core cloud computing platforms, VMs are usu-

ally allowed to run simultaneously and their virtual cores

to migrate among physical cores. Moreover, these physical

cores may or may not share a cache, depending on the

hardware architecture of the host. As a first step toward

evaluating our classifier, though, we consider a simplified

situation to test the potential of foe detection using a single



PRIME-PROBE trial. In this simplified setting, the foe VM

was pinned on one of the cores that shares a common cache

with another core where the monitoring VM was pinned.

Dom0 and other VMs were pinned away from the shared

cache so that the cache activity of the foe VM could be

sensed by the monitoring VM without interference.

In this simplified scenario, we measured the true detection

rate of our classifier as a function of the memory access rate

of the foe. In these tests, the detection threshold was set to

allow a false detection rate of 1%, i.e., we set this threshold

to be the 99th percentile of results from 1000 PRIME-PROBE

trials without foes present. The PRIME-PROBE interval was

30ms, and each true detection rate was computed using

1000 PRIME-PROBE trials (with a foe present). A high true

detection rate (100%) was achieved even when the memory

access rate of the foe was as low as 1000 per second.
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Figure 1. True detection rate of the
single-probe classifier when false de-
tection rate is configured to α = 1%.
Four friendly VMs and one foe VM.
All VMs unpinned. (Section IV-A)

While the results of

these experiments are en-

couraging, they unfortu-

nately did not persist

when the VMs were un-

pinned and allowed to

move from one physical

core to another, which is

typical in modern cloud

computing environments.

Figure 1 shows that when

all VMs were unpinned,

this classifier was not

nearly as effective in detecting foe VMs. In this experiment,

four friendly VMs were run on a shared platform, one of

which was an apache2 web server and three of which

were unloaded; each was given 1GB of memory. The web

server was driven by traffic generated by httperf from

clients external to our “cloud.” The apache2 server was

subjected to a workload consisting of requests for a 1MB
file at a rate sampled uniformly at random between 1 and 64
requests per second, and re-sampled every 5 seconds. The

monitoring VM (one of these four VMs) attempted to detect

the foe using the PRIME-PROBE protocol, using 1/16th of

the cache. Again, the toy application ran as the foe VM. As

shown in Figure 1, the maximum true detection rate achieved

was roughly only 6.5%.

The reasons behind this low true detection rate are

twofold. First, the Xen scheduler balances the workload

via core migration and, in doing so, varies the view of the

monitoring VM. Second, because there was significant I/O

activity in these tests, when the monitoring VM and Dom0

shared a cache, there was significant cache noise induced

by Dom0 due to this friendly I/O. That is, the friendly I/O

activity increased Dom0 activity, making it appear similar to

that of a foe when it shared a cache with the monitoring VM.

The amount of noise in cache timings introduced by Dom0

dynamically changes according to the I/O workload to/from

VMs. While we are able to modify friendly guest operating

systems at will (see Section V), it appears to be impossible

to control the cache activity of Dom0 from within a VM.

B. A Multi-Probe Classifier

In light of the difficulties in interpreting the results of

a single PRIME-PROBE trial discussed in Section IV-A, in

this section we design a classifier that works using n trials

for n > 1. For simplicity, we first describe our classifier

assuming that friendly-VM activities (mainly I/O activity),

as well as the number of friendly VMs, are constant and

known a priori, and then we relax these assumptions to

present a general solution.

Constant friendly-VM activity: Assuming a constant

and known number of friendly VMs and level of friendly-

VM activity, a PRIME-PROBE trial yields a result—namely,

the PROBE time, averaged over all cache sets probed. Recall

that the result of the timing measurement should be largely

(though, as we will discuss in Section V, not completely)

independent of friendly VM memory activity, since friendly

VMs will have been instructed to avoid the parts of their

caches on which the monitoring VM conducts its PRIME-

PROBE trials.
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Figure 2. Distribution of timing results of PRIME-PROBE trials with no
foe present.

As a first step towards our goal of detecting a foe VM

based on the results of PRIME-PROBE trials, we plot in

Figure 2 the distribution of timing results for 2000 PRIME-

PROBE trials when no foe VM is present. The trial results

exhibit a bimodal distribution, which is roughly a mixture

of two normal distributions. The first normal distribution

characterizes the (low) level of activity that the monitoring

VM registers when running on a different cache than Dom0

during the PRIME-PROBE trial. The second normal distribu-

tion characterizes the (moderate) level of activity observed

when the monitoring VM shares a cache with Dom0. Based

on these findings, we define two overlapping classes for trial

results. The first includes the majority of readings from the

first normal distribution, and the second consists of the large



majority of readings from both normal distributions. This

design is motivated by the observation that the presence of

a foe VM will tend to decrease the number of readings that

fall into either class, as will be described below.

To determine if a given PRIME-PROBE trial result r be-

longs to one of these two classes, we empirically determine

two thresholds tc and td, where tc < td, such that the cache

timing measurements from the first class fall into [0, tc] and

those from the second class are in the range [0, td] (Figure 2).

We next experimentally measure the empirical probability

with which r actually falls into each of the two classes

over many PRIME-PROBE trials for the friendly workload

(assumed constant for the present discussion). Assuming

independent trials—we revisit this assumption below—we

let πc denote the empirical probability with which r falls

into the first class and πd be the empirical probability with

which it falls into the second class. Given n independent

trials, we expect r to land in the first class c = πcn times,

and the second class d = πdn times.

Let us then consider an actual execution of our detection

algorithm: A sequence of n monitoring trials that aim to

determine whether a foe is present. Let c denote the number

of times that r actually belongs to the first class, and d
denote the number of times it belongs to the second class.

In any of several ways, the presence of a foe VM might

cause c to deviate from its expected value c (and d from d).

The foe VM could induce what would be a rare event under

a friendly workload, namely a measurement r that lands

above td and so outside of the second class. Alternatively,

even if the foe VM induces only moderate cache activity

(i.e., similar to that of Dom0), the presence of the foe could

perturb the scheduling of VMs so as to decrease the odds

that the monitoring VM observes a quiet cache, either by

pushing the monitoring VM onto the same cache as Dom0

or by registering cache activity itself, causing lower c than

expected.

Our detection strategy, then, is to presume a foe’s presence

if either c or d is substantially lower than expected. More

precisely, we treat a sequence of n PRIME-PROBE trials as

independent events. We choose α as a desired upper bound

on the rate of false detection of a foe VM. In each trial, we

can view the hit/miss of the first class (i.e., r ∈ [0, tc] or

r 6∈ [0, tc]) as a Bernoulli trial with Pr[r ∈ [0, tc]] = πc. It

is then straightforward to compute the maximum threshold

Tc < c such that Pr[c < Tc] ≤ α/2 when no foe is present.

We can similarly compute Td < d such that Pr[d < Td] ≤
α/2. Summarizing, then, our basic strategy is to suspect a

foe’s presence if in n PRIME-PROBE trials, either c < Tc or

d < Td. The probability of false detection of a foe over this

combined test is at most ∼ α.

Arbitrary friendly-VM activity: The preceding descrip-

tion assumed that during the n PRIME-PROBE trials, the

number of friendly VMs and the I/O activity levels of those

friendly VMs were constant. In practice, this will generally

not be the case, since for realistic values of n (e.g., n ≈ 25)

and for realistic times to conduct n trials (in particular, with

delays between them, as will be discussed below), the total

time that will elapse during the n trials would be more than

long enough to witness potentially large swings in load due

to fluctuations in inbound requests, for example.

As such, in practice it is necessary to compute the

thresholds tc and td per trial as a function of the set F
of activity profiles of the friendly VMs during that trial.

That is, F includes a profile for each of the friendly VMs’

activities during the PRIME-PROBE trial. Each VM’s entry

could include its level of I/O and amount of computation,

for example. We give details of what we included in F at

the end of Section IV-C.

The monitoring VM collects this information F after each

PRIME-PROBE trial. (We will discuss how in Section V.) It

uses this information to select tFc and tFd , and then evaluates

whether the trial result r satisfies r ∈ [0, tFc ] (in which case

it increments c) and whether it satisfies r ∈ [0, tFd ] (in which

case it increments d).

Besides adjusting tFc and tFd as a function of F, we

have found it helpful to adjust πc and πd as a function

of F, as well. So, henceforth we denote them πF
c and πF

d .

Specifically, we take πF
c to be the fraction of training trials

(see Section IV-C) with friendly-VM activity as described

by F in which r ∈ [0, tFc ], and πF
d to be the fraction of

training trials with friendly-VM activity as described by F
in which r ∈ [0, tFd ].

For n detection trials, we denote the profile characterizing

the activity of the ith trial by Fi. Define binary indicator

random variables

γi =

{

1 if ri ∈ [0, tFi

c ]
0 otherwise

and δi =

{

1 if ri ∈ [0, tFi

d ]
0 otherwise

where ri denotes the result of a testing trial with friendly-

VM activity characterized by Fi. We treat the observations

γ1 . . . γn and δ1 . . . δn as Poisson trials. Training data sug-

gest that under the foe-absent hypothesis, Pr[γi = 1] = πFi

c

and Pr[δi = 1] = πFi

d . Under this hypothesis, we can

then calculate probability distributions for c =
∑n

i=1
γi and

d =
∑n

i=1
δi (e.g., [19]) and maximum thresholds Tc and

Td such that Pr[c < Tc] ≤ α/2 and Pr[d < Td] ≤ α/2 for

a chosen false detection rate of α. As such, by detecting a

foe if c < Tc or d < Td we should achieve a false detection

rate of at most roughly α.

We reiterate that the thresholds Tc and Td are computed

during testing as a function of F1, . . ., Fn, using values

πFi

c and πFi

d obtained from training (see Section IV-C). The

thresholds tFc and tFd are similarly determined using training,

but which ones are used during testing is determined by the

profile sets F1, . . ., Fn actually observed.

On independence: The test outlined above requires

trials that are independent, in the sense that the probability of

the trial result r satisfying r ∈ [0, tFc ] or r ∈ [0, tFd ] is a func-



tion only of F and foe activities (if any), and is otherwise

independent of the results of preceding trials. Achieving this

independence is not straightforward, however. In practice,

an effective scheduler does not migrate virtual cores across

physical cores randomly. In fact, in our experience, if the

number of virtual cores is fewer than the number of physical

cores, then Xen will not migrate virtual cores at all. This

behavior clearly can impact achieving independent trials—

in this example, if the monitoring VM is the same VM each

time and if Dom0 does not share a cache with this monitoring

VM, then it never will.

For this reason, in our detector we take steps to make trials

as independent as possible. Most importantly, we assign

the monitoring VM randomly for each PRIME-PROBE trial

from among the available friendly VMs. In addition, we

employ random delays between trials to increase the like-

lihood that two trials encounter different virtual-to-physical

core mappings (provided that friendly VMs include enough

virtual cores to induce changes to these mappings). As

we will show below, we believe that these steps increase

the independence between trials sufficiently to construct an

effective foe detector.

C. Training the Multi-Probe Classifier

The need to determine tFc and tFd as a function of F
introduces a training requirement for our classifier. In this

paper we presume it is possible to train on a hardware

platform that is similar, in terms of numbers of cores and

caches, the arrangement of caches to cores, cache sizes, etc.,

to that on which the friendly VMs will eventually be run,

and that this hardware platform can be equipped with the

same virtualization substrate (i.e., Xen for the purposes of

our discussion here) for training purposes. Of course, one

way to accomplish this is to train on the cloud machines

themselves, trusting that the interval in which training occurs

is absent of any foes—a well-known “trust on first use”

(TOFU) approach that is (unfortunately) common today in

intrusion detection, key exchange, and many other contexts.

A safer approach would be to replicate a machine from

the cloud and use it for training, though this may require

cooperation from the cloud provider.

While precisely determining tFc requires ground truth as

to the cores (and thus caches) that Dom0 utilized during a

PRIME-PROBE trial, such ground truth would typically not

be available if training were done using the first (TOFU)

approach described above. To leave room for both possi-

bilities, we employ a training regimen that does not rely

on such knowledge. Specifically, we collect PRIME-PROBE

trial results for fixed F in the (assumed or enforced) absence

of a foe and then model these results using a mixture of

two normal distributions. Intuitively, one normal distribution

should capture readings when Dom0 is absent from the

cache observed by the monitoring VM, and one normal

distribution should represent readings when Dom0 is present.

As such, we compute a best fit of the training trial results

to a Gaussian mixture model of two normal distributions,

and call one normal distribution (with the smaller mean) the

quiet distribution and the other the like-Dom0 distribution

for F. We then use these two distributions to generate values

for tFc and tFd . Specifically, we choose tFc to be the mean

plus the standard deviation of the quiet distribution, and we

choose tFd to be the the mean plus the standard deviation of

the like-Dom0 distribution.

As described previously, each element of F describes

the relevant activities of a distinct friendly VM during the

PRIME-PROBE trial from which the result will be tested using

tFc and tFd . Moreover, F includes a distinct such descriptor

for each friendly VM. To train our classifier, it is necessary

to incorporate training executions that match the profiles

F likely to be seen in practice. The extensiveness of this

data collection depends in large part on the features that are

incorporated into the VM activity descriptors in F and on

the granularity at which these features need to be captured.

The training executions should also range over the possible

number of VMs on the same computer, which we assume

the party deploying the VMs can determine (c.f., [38]).

While our framework permits building a detector based on

a variety of features included in the friendly VM profiles,

we found in our experiments that the most relevant feature

to capture is the level of I/O activity in each friendly VM.

As already discussed, the I/O activity of friendly VMs is

highly correlated with Dom0’s activity evidenced in the

cache. Fortunately, capturing this information at only a

coarse granularity is sufficient to build an effective detector.

Specifically, in the experiments we report in this paper,

we compute the aggregate number of bytes of I/O activity

involving friendly VMs during the PRIME-PROBE trial (as

measured in sys_read and sys_write calls). We bin

the total friendly-VM I/O activity during the PRIME-PROBE

trials into one of 20 bins. Any two profiles F and F ′ falling

into the same bin are treated as equivalent for our purposes.

D. Multi-Probe Detection Capability

In this section we provide a cursory evaluation to confirm

that our multi-probe detector overcomes the limitations of

the single-probe detector of Section IV-A. Our results here

are not intended to be exhaustive; we will consider detection

in the context of additional workloads in Section VI.

Recall that the shortcoming of our single-probe detec-

tor was revealed when we unpinned VMs, allowing them

to migrate among the available cores. We consider only

this case here; all VMs are unpinned. We introduced four

friendly VMs on our platform, the configurations of which

were exactly the same as those in experiments for Figure 1,

namely one apache2 server and three unloaded VMs.

We first collected the results of 20,000 PRIME-PROBE tri-

als employing 1/16th of the cache with no foe present. The

delay between PRIME-PROBE trials was chosen uniformly



at random between 1 and 5 seconds. To confirm our ability

to configure the false detection rate, we conducted a 10-

fold cross-validation, in which we partitioned these 20,000

results into 10 equally sized sets and then tested on each set

after training on the remainder (with α = 1%). Each testing

set was broken into non-overlapping windows of n PRIME-

PROBE trials (n ∈ {25, 50, 100}), each window yielding a

foe or no-foe classification. The false detection rate that we

observed was indeed less than 1% for each value of n.
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Figure 3. True detection rate of
multi-probe detector of Section IV-B
with four friendly VMs (α = 1%).

We then added a foe,

using the same toy pro-

gram as in Section IV-A.

Figure 3 shows the true

detection rate for testing

performed in the same

fashion, after training on

the previously collected

20,000 trials with α =
1%. For each value of n,

the sum of all n-trial win-

dows was 2000 PRIME-

PROBE trials, meaning that the curves for smaller values

of n show averages over a greater number of windows. In

this figure, the memory access rate of the foe application is

indicated on the x-axis. Our multi-probe classifier improves

substantially over the single-probe classifier, for the same

false detection rate. The tradeoff is that our multi-probe

classifier takes longer to evaluate, due to its use of multiple

PRIME-PROBE trials separated by random intervals.

V. IMPLEMENTATION

Coordinator

Co-Residency

Detector

Address

Remapper

System Call

Hypercall
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User
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Figure 4. Architecture of our imple-
mentation within one guest VM

In order to execute

the detection technique

described in Section IV,

the cloud customer must

modify the VMs that

it deploys to the cloud

(the “friendly VMs”). In

this section we describe

our proof-of-concept

implementation, which

we developed within

64-bit PVOps Linux

kernel 2.6.32.16 for Xen.

Our modifications have

been tested with the Xen

4.0.1-rc2 hypervisor.

Our implementation consists of a suite of tools that is

installed within each friendly VM. As shown in Figure 4,

this suite includes a user-level coordinator and two kernel

extensions in each guest OS kernel, namely an address

remapper and a co-residency detector.

A. Coordinator

Each friendly-VM coordinator works in user space and is

responsible for coordinating the detection task with coordi-

nators in other friendly VMs residing on the same physical

cloud host. We presume that coordinators can determine the

friendly VMs residing on the same physical host, either

because this has been configured by the cloud customer

deploying these VMs or by detecting which friendly VMs

do so (e.g., see [38]).

A detection period is begun by one coordinator, here

called the initiator for the detection period, sending com-

mands (in our implementation, using TCP/IP) to the other

friendly-VM coordinators. This command indicates a ran-

domly selected color that defines the cache sets in each

cache on the host that will be used during this detection

period for executing PRIME-PROBE trials. A coordinator that

receives this message must invoke its local address remapper

(via a system call) to vacate use of those cache sets (to

the extent that it can; see Section V-B), so that execution

of this VM will minimize pollution of those cache sets

during the detection period. We note that each coordinator

makes no effort to determine whether it is presently on

the same cache as the initiator (if the host has multiple

caches), either during initiation or at any point during the

detection period. Rather, each coordinator uses its address

remapper to vacate the cache sets of the color indicated by

the initiator, for any cache used by its VM for the duration

of the detection period. Upon receiving confirmation from

its address remapper that those cache sets have been vacated,

the local coordinator sends a confirmation to the initiator.

Once the initiator has received confirmation from the

friendly VMs on the host, it creates a token, selects a friendly

VM on the host uniformly at random, and passes the token to

the selected VM. The selected VM now becomes the token

holder and will act as the monitoring VM for one PRIME-

PROBE trial. More specifically, the token holder alerts the

other coordinators of its impending trial and then contacts

its local co-residency detector to perform the PRIME-PROBE

trial. Once the co-residency detector has completed the trial

and returned the trial result r, the token holder collects an

activity profile F from the friendly VMs. Each entry of this

activity profile characterizes the I/O activity (bytes passed

through sys_read or sys_write) of the friendly VM

from which the entry was received, since that VM received

the alert preceding the PRIME-PROBE trial. Finally, the token

holder induces a random delay (to improve independence

of trials; see Section IV-B) and then selects the next token

holder uniformly at random (again, for independence) from

the friendly VMs on the host. When passing the token to the

new token holder, the sender includes all trial results r and

corresponding activity profiles F collected in this detection

period so far.

After n trials have been performed, the new token holder



can evaluate the results and activity profiles to determine

whether to declare that a foe is present on the machine,

using the technique described in Section IV.

B. Address Remapper

The address remapper is provided a color, which defines

cache sets that need to be avoided due to their planned use in

the pending detection period. To avoid the use of these cache

sets, the address remapper colors each physical memory

page (c.f., [31], [17]) by the (unique, in our implementation)

color of the cache sets to which its contents are mapped,

and then causes its VM to avoid touching cache sets of the

designated color by causing it to avoid accessing physical

memory pages of the same color.

A straightforward way of causing its VM to avoid these

memory pages would be to to alter the view of memory that

the guest OS perceives. For instance, we can “unplug” the

memory pages that need to be avoided, by indicating that

such pages are unusable in the page descriptor structure in

the guest OS. A drawback of this approach is that it breaks

up physical memory as perceived by the OS, so that the

OS no longer has access to a large, contiguous memory

space. For example, the buddy memory allocator used in

Linux maintains an array of lists, the j-th entry of which

collects a list of free memory blocks of size 2j pages, where

j = 0, 1, . . . , 10. Therefore, “unplugging” memory pages of

one color will result in empty lists for j ≥ 6 in the case of

64 page colors, since a block of 26 = 64 pages (or larger)

will contain one page of each color. Others have cautioned

against this in other contexts, due to serious performance

issues that it may cause [20].

Instead, we take advantage of the additional indirection

layer in the mapping from virtual to physical memory

introduced by virtualization. The Xen hypervisor provides a

pseudo-physical address space to each guest virtual machine

and maintains the mapping from pseudo-physical to physical

memory. Because physical memory is allocated at page

granularity in Xen, the memory allocated to each VM is

not guaranteed to be actually contiguous, but the contiguous

pseudo-physical address space in each guest virtual machine

provides the illusion to the guest OS that it is running on an

intact physical memory. In paravirtualized virtual machines,

whereas the pseudo-physical address space is the one that

is used across the operating system, the guest OS is also

aware of the corresponding machine address of each page,

which is embedded in the page table entry for the hardware

MMU to look up during translation (i.e., translation is

done directly from guest virtual address to real machine

address). This design leaves us an opportunity to modify

the pseudo-physical-to-machine-address mapping to avoid

touching certain physical pages while keeping the guest

OS’ view of memory layout unchanged. In particular, to

remap the machine address of a single pseudo-physical page,

the address remapper issues a hypercall to the hypervisor

indicating the new machine address and then modifies the

guest OS’ copy of this mapping. So as to prevent accesses

to these mappings while they are being reconfigured, the

address remapper disables interrupts and preemption of its

virtual core and suspends its guest OS’ other virtual cores

(if any) prior performing the remapping.

In the process of address remapping to avoid using

physical pages of the specified color, the address remapper

needs to copy page contents out of pages that need to be

avoided and then update page tables accordingly. To provide

a destination for these copies, a pool of memory pages is

reserved when the guest OS is booted. This pool should

be large enough to hold an entire color of memory. During

the remapping process, the address remapper copies each

physical page of the specified color to a page in the reserved

memory pool of a different color, and then updates the page

tables accordingly by issuing hypercalls to the hypervisor.

One caveat is that if a page of the specified color corresponds

to a page table or page directory that is write protected by

the hypervisor, then this page cannot be exchanged and has

to be left alone. These pages, and a few other pages that

cannot be moved, are the primary cause of the remaining

cache noise in our PRIME-PROBE trials.

To summarize, the remapper performs the following steps.

It enumerates the pseudo-physical pages that are visible

from the guest OS. For each page P , the machine address

of the page is determined to figure out whether it is the

designated color. If so, in which case this page would

ideally be remapped, the remapper examines the page table

entries pointing to P and also the page descriptor structure.

In several cases—e.g., if P is reserved by HomeAlone,

write-protected by the hypervisor, or a kernel stack page

currently in use—then the remapper must leave the page

alone. Otherwise, the remapper identifies a new page (of a

different color) from its pool and exchanges the machine

address of P with that of this new page (via a hypercall).

Prior to doing so, it copies P ’s content to this new page if

P was in use. The remapper updates the kernel page table

(also by hypercall) and, if P was used in user space, then

the remapper updates the user-space page tables. The per-

formance of this algorithm will be evaluated in Section VI.

This implementation constrains the number of colors in

our scheme and thus the granularity at which we can select

cache sets to avoid. Let w denote the way-associativity of

the cache; m be the number of cache sets; c be the size of

the cache in bytes; l be the size of a cache line in bytes; p
be the size of a page in bytes; and k denote the maximum

number of page colors. Each l-sized block of a page can

be stored in a distinct cache set, and avoiding a particular

cache set implies avoiding every page that includes a block

that it could be asked to cache. Since the p/l blocks of the

page with index i map to cache set indices {i(p/l) mod
m, . . . , (i+1)(p/l)− 1 mod m}, the most granular way of

coloring cache sets is to have one color correspond to cache



sets with indices in {i(p/l) mod m, . . . , (i+1)(p/l)−1 mod
m} for a given i ∈ {0, . . . , m

p/l − 1}. Since m = c/(w× l),
the number k of colors that our implementation can support

is

k =
c/(w × l)

p/l
=

c

w × p

On our experimental platform, an Intel Core 2 Quad pro-

cessor, the L2 cache is characterized by c = 6MB, w = 24,

and l = 64B, and Linux page size is p = 4KB. Thus the

number of page colors in our system is k = 64.

C. Co-Residency Detector

The co-residency detector, which is implemented as a

Linux kernel extension, executes the PRIME-PROBE protocol

for measuring L2 cache activity. To PRIME the cache sets to

be used in the PRIME-PROBE trial (i.e., of the color specified

by the coordinator), the co-residency detector must request

data from pages that map to those cache sets. To do so,

at initialization the co-residency detector allocates physical

pages sufficient to ensure that it can PRIME any cache set.

When invoked by the coordinator, the co-residency detec-

tor PRIMEs the cache sets of the specified color, and then

waits for the PRIME-PROBE interval. In our experiments, this

interval is configured empirically to be long enough for a

reasonably active foe to divulge its presence in the cache

but not so long that core migration of the monitoring VM

becomes likely. In our experiments we use a PRIME-PROBE

interval of 30ms.
The co-residency detector is tuned to improve its detection

ability in several ways. First, on our experimental platform,

every cache miss causes one line to be filled with the re-

quested content and another to be filled through prefetching;

i.e., a cache miss fills two cache lines in consecutive cache

sets. As such, our co-residency detector PROBEs only every

other cache set. Second, to eliminate noise due to the TLB,

the co-residency detector flushes the TLB before its PROBE

of each cache set, so as to ensure a TLB miss. Third,

the co-residency detector disables interrupts and preemption

during the PRIME-PROBE protocol to limit activity that might

disrupt its detection.

VI. EVALUATION

In this section, we deploy HomeAlone on a small private

cloud in which four friendly VMs are running on one

physical host virtualized with Xen. The host is the same

as that employed in the experiments of Section IV.

The applications that we employ in our VMs are taken

from the PARSEC benchmarks [12], [13]. PARSEC is distin-

guished from most other suites in focusing on multithreaded

benchmarks representative of diverse, emerging workloads,

and so we take it as representative of future cloud com-

puting workloads. In particular, we utilized the following

benchmarks from PARSEC.

1) blackscholes: This benchmark simulates financial

analysis and, in particular, calculates the prices of

a portfolio of options using Black-Scholes partial

differential equations.

2) bodytrack: This computer vision application tracks

a 3D pose of human bodies and represents video

surveillance and character animation applications.

3) canneal: This is a benchmark using cache-aware

simulated annealing to design chips that minimize

routing costs; it is representative of engineering ap-

plications.

4) dedup: This benchmark is short for “deduplication”,

which is a compression approach that combines global

and local compression in order to obtain a high com-

pression ratio; it is used to simulate next-generation

backup storage systems.

5) facesim: This benchmark simulates human faces

and is representative of applications like computer

games that employ physical simulation to create vir-

tual environments.

6) streamcluster: This benchmark was developed

for solving online clustering problems and is included

for its representation of data mining algorithms.

7) x264: This is an H.264/AVC video encoder that can

be used to simulate next-generation video systems.

Each benchmark was provided the “native” input des-

ignated for the benchmark. In addition to these PARSEC

benchmark applications, in some tests we employed an

apache2 web server on which we induced a workload as

described in Section IV-A.

A. Detection

To test the effectiveness of our co-residency detector,

we trained our classifier on a workload that included

four friendly VMs, one running apache2, one running

facesim, one running streamcluster, and one run-

ning blackscholes. Each VM was given one 1GB of

memory and one virtual core. We do not claim that this

request profile, or that this mix of applications, is represen-

tative of any particular cloud tenant workload. We simply

used this mix of applications to capture a broad range of

reasonably intensive activities.

Training consisted of collecting results from 20,000

PRIME-PROBE trials on 1/16th of the cache, each pair

separated by an interval chosen independently and uniformly

from between 1 and 5 seconds. Training was performed as

prescribed in Section IV-C and tuned to a false detection rate

of α = 1%. We confirmed this false detection rate using a

10-fold cross validation as in Section IV-D with n = 25.

Detecting benign foe VMs: After training, we con-

ducted seven runs with the same friendly workload and one

foe VM. In each of the seven runs, the foe executed one

of the seven PARSEC benchmark applications. Each run

yielded 2000 PRIME-PROBE trials on 1/16th of the cache,
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each pair again separated by a random interval between 1
and 5 seconds. Nonoverlapping subsequences of n = 25 tri-

als were then classified using our detector. The true detection

rates observed are shown in Figure 5. As shown there, for

the single-core foe VMs, true detection rates ranged from

roughly 84% (bodytrack) to 100% (streamcluster).

Except for dedup, true detection rates improved slightly

when the foe VM employed two cores. The improvement of

detection rates during the foe VM’s use of multiple cores is

possibly due to increased contention for the physical CPU

resources. We believe that the variation in true detection rates

across foe applications is caused by the different features of

these applications, e.g., their CPU usage patterns and I/O

intensities. Future research may help determine the relation-

ship between detection rates and application properties.

An interesting limiting case for detecting benign foe VMs

is a foe VM that runs nothing more than a guest OS. We

briefly experimented with the possibility of detecting such a

foe VM. In particular, we ran HomeAlone against an “idle”

Linux foe VM (Ubuntu 10.04) and an “idle” Windows 7

foe VM, i.e., VMs with no actively running applications.

HomeAlone proved effective even in this challenging setting:

It achieved almost a 15% true detection rate against the

Linux foe, and a 70% true detection rate for the Windows

foe. (In both cases, α = 1% and n = 25.) While further

experimentation is warranted, these preliminary results per-

haps provide rough lower bounds for the true detection rates

of benign foe VMs of these types.

Detecting adversarial foe VMs: We further evaluated

HomeAlone by studying its effectiveness against adversarial

foe VMs, as described in section II-B. The adversarial foe

VMs we considered actively attempted to exfiltrate data

from friendly VMs by themselves running the PRIME-PROBE

protocol on portions of the L2 cache. Furthermore, the

adversary’s targeted collection of cache sets was fixed, as we

expect an adversary would generally need to target the same

cache sets for a substantial duration to exfiltrate meaningful

 0

 0.1

 0.2

 0.3

 0.4

 0.5

 0.6

 0.7

 0.8

 0.9

0.000001
0.00001

0.0001
0.001

0.01

T
ru

e 
d

et
ec

ti
o

n
 r

at
e

False detection rate

256 sets
128 sets
64 sets
32 sets

(a) True detection rates for an ad-
versarial foe VM executing con-
tinuous PRIME-PROBE cycles.
Each curve represents a different
number of cache sets overlap-
ping with HomeAlone.

 0

 0.05

 0.1

 0.15

 0.2

 0.25

 0.3

0.000001
0.00001

0.0001
0.001

0.01

T
ru

e 
d

et
ec

ti
o

n
 r

at
e

False detection rate

1 second
2 seconds
4 seconds

(b) True detection rates for an ad-
versarial foe VM, where the
number of cache sets overlap-
ping with HomeAlone is fixed
at 256. Each curve corresponds
to a different delay between ad-
versarial PRIME-PROBE trials.

Figure 6. ROC curve for detecting adversarial foe VMs with different
aggressiveness (n = 25, α = 1%).

information from friendly VMs.

The detection accuracy of HomeAlone depends on how

frequently the foe VM executes PRIME-PROBE trials and

on the number of cache sets in the intersection between the

regions probed by HomeAlone and by the foe VM. Figure 6

shows the true and false detection rates over a range of

adversarial foe VM PRIME-PROBE frequencies and amounts

of cache-set overlap. The experimental parameters used for

detection (e.g., n, α, PRIME-PROBE interval, total number

and time between PRIME-PROBE trials by HomeAlone) were

selected as in our detection experiments above.

As illustrated in Figure 6(a), for an adversary that per-

forms PRIME-PROBE protocols back-to-back with a minimal

intervening delay, detection accuracy improved as the over-

lapping cache region grew. With as few as 32 overlapping

cache sets, HomeAlone achieved a 20% true detection rate

with a false detection rate of 1%. When the full 1/16th

of the cache monitored by HomeAlone overlapped with

the foe VM’s region of activity, the true detection rate

rose to 85%. As seen in Figure 6(b), the true detection

rate of HomeAlone increased, as expected, with the foe

VM’s PRIME-PROBE frequency. Such detection is possible,

however, only when the foe VM executes PRIME-PROBE

protocols with sufficient frequency and scope. A sufficiently

inactive foe VM, i.e., one probing a small portion of the

cache (e.g., 32 cache sets) with low frequency (e.g., every

10 seconds) will likely escape detection. The bandwidth of

the resulting side-channel, though, would render meaningful

data exfiltration challenging.

Responding to detections: When co-residency is de-

tected by HomeAlone, the customer whose friendly VMs

are at risk has several options available to respond. If the

customer is not immediately concerned about attacks on

friendly VMs (e.g., if the customer employs HomeAlone

primarily to detect service-provider misconfigurations as

opposed to truly hostile foe VMs), the customer might

simply attempt to confirm the detection to a higher degree



of assurance. For example, the friendly VMs could increase

the portion of the cache they use for detection, increase

n, or leverage multiple n-sized tests as described below.

If this additional testing confirms the presence of foe VMs,

then the customer should presumably report this problem to

the cloud provider. If some of the customer’s VMs contain

highly sensitive data that warrant more immediate reaction

to a detection, then the customer might suspend processing

of that data while the aforementioned steps are performed

to confirm the detection.

Probability amplification: In most of our tests, the

separation of the true detection rate from the false detection

rate (of ≤ 1%) was substantial. This separation can be lever-

aged to substantially improve HomeAlone’s sensitivity—

both its true detection rate and its false detection rate—using

the known technique of probability amplification. In this

approach, a series of N detection periods (each of n trials) is

executed, each yielding a binary detection hypothesis (“foe

present” / “foe absent”). A meta-classifier is applied to these

N outputs. The output of the meta-classifier (“Foe Present”

/ “Foe Absent”) is based on the fraction of “foe present”

results across runs, according to a statistical test that we

briefly describe.

Let α denote the false detection rate for a run of Home-

Alone and β the true detection rate (with the requirement

that α < β). Let z denote the number of “foe present” out-

puts over the N runs; E[z] = αN with no foe present, while

E[z] = βN with a foe truly present. The meta-classifier then

outputs “Foe Present” if z ≥ (α+ β)N/2, i.e., z exceeds a

threshold defined as the mid-point between expected values

under the two hypotheses; it outputs “Foe Absent” otherwise.

(The threshold can be adjusted, of course.)

Assuming that the outputs of individual HomeAlone runs

are statistically independent (even partially independent),

this meta-classifier can achieve very high detection rates

and very low false detection rates for moderate values of

N . For example, assuming complete independence, a single-

run true detection rate of β = 84% (the lowest we observed

for the PARSEC benchmarks) and a false detection rate of

α = 1%, with N = 10, the meta-classifier detection rate

would be > 99.8%, with a false detection rate < 2.5×10−8.

When HomeAlone is used in particular to detect cloud

configuration errors (and thus a long-persisting foe), it is

feasible to support many more detection periods.

The degree of independence between runs increases with

the length of time between them. Run-independence can also

be reinforced, we expect, with a resampling of the cache

color monitored by HomeAlone. Further research would be

required to characterize the statistical dependence between

runs and to determine the most appropriate tradeoff between

execution time and sensitivity for probability amplification.

B. Performance

In this section, we examine the overhead induced by

HomeAlone when avoiding 1/16th of the cache.

Overhead of address remapping: At the beginning of

a detection period, HomeAlone can change the region of

the cache being avoided by friendly VMs by transmitting

a randomly chosen cache color to all friendly VMs. This

mechanism is useful to conceal the monitored region from

an active foe that tries to escape detection. (Such a foe

is discussed more in Section VII.) However, changing the

cache color induces performance overhead caused by the

address remapping procedure (see Section V-B). In Figure 7,

we show the overhead of address remapping in our (unop-

timized) implementation, as a function of the total memory

size, assuming 16 colors (and so each color constitutes

1/16th of the memory).
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In our implementation,

applications running on

friendly VMs are paused

during remapping. So, the

costs shown in Figure 7

are not inconsequential to

applications. That said,

a more refined imple-

mentation could perform

remapping incrementally

(e.g., one or a few pages

at a time), permitting ap-

plications to run between

remapping increments. As such, remapping need not incur a

large contiguous pause in activity, but rather the remapping

costs can be amortized over a longer interval and interleaved

with application execution.

Overhead during detection periods: During detection

periods, applications inside friendly VMs continue to run,

but the VMs do not utilize the entire cache. In addition,

a detection thread runs inside the monitoring VM, and

the coordinators of the VMs interact to perform PRIME-

PROBE trials (see Section V). In this section we show the

overhead that this induced on the seven PARSEC benchmark

applications during detection periods.

To measure these costs, we first ran each benchmark

10 times without HomeAlone; in each of these runs, the

benchmark ran alone on the platform but within a VM

with one virtual core.2 In 10 subsequent tests, we ran the

benchmark in one VM (with HomeAlone) that participated

with three other, unloaded VMs in our foe detection pro-

tocol. Notably, this involved avoiding 1/16th of its cache,

conducting PRIME-PROBE trials at random intervals chosen

between 1 and 5 seconds, and coordinating detection across

2All benchmarks were run in a virtual machine with 1GB of memory,
except for dedup and canneal, which were given 3GB of memory to
avoid frequent swapping.



these VMs. (These tests did not include remapping. As

discussed above, this happens before the detection period

and the costs can be amortized over an arbitrary amount of

time in advance.) We then computed a normalized runtime

of each benchmark when run with HomeAlone enabled, by

dividing the average runtime of the benchmark when run

with HomeAlone by the average runtime of the benchmark

when run without it.
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The results, shown in

Figure 8, suggest that

there is modest perfor-

mance degradation in the

benchmarks we exam-

ined. The benchmark that

suffered the most, namely

x264, did so by approx-

imately 4.6% on average.

We believe the reasons

for the modest overhead

of HomeAlone are multi-

fold: First, in rare instances do applications utilize the entire

cache, and thus avoiding 1/16th of the cache impacts the

performance of most applications minimally. Second, we

conjecture that due to artifacts of virtualization, avoiding

a portion of the cache is less disruptive to application

performance than it would be in a traditional environment.

VII. DISCUSSION

In this section we briefly consider several issues that may

affect how our techniques are applied in practice.

Machine migration during detection: Our experiments

assumed that the number of friendly VMs is constant during

detection periods. The unexpected machine migration of a

friendly VM to or from the host, or the instantiation of a

new friendly VM on the host, could potentially produce

a false detection. If this is a possibility, then additional

measures will be needed to report these events and, if

necessary, disregard any detections based on observations

with which these events may have interfered. As discussed

in Section V-A, our techniques already assume the ability

to coordinate across friendly VMs on the same host. These

additional measures to address changes in the population of

friendly VMs are simply an extension of that requirement.

Hardware-assisted virtualization: With HVM technol-

ogy, the hypervisor can utilize hardware assistance to better

isolate one guest OS from another [32], [22]. Although

major computing infrastructure providers like Amazon [1]

and Rackspace [3] still support PVM guests, we expect a

move to HVM in the future. Some technical differences

between HVM and PVM alter the cache-based side channel

for our purposes.

The most acute complication comes from virtualization

of the MMU. In HVM, only pseudo-physical memory ad-

dresses are visible to guests and stored in the guest page

table entries. The mapping from the pseudo-physical to the

machine address space is done through a shadow page table

maintained by the hypervisor [22]. In HVMs, guests do not

have direct control of the physical memory addresses, and

this impacts our cache coloring technique used for avoiding

certain cache regions during detection.

To our advantage, more and more hardware-assisted vir-

tual machines seek paravirtualized functionality. Hypercalls,

traditionally used only by PVM, are now used in HVM for

better performance. Examples include hypercalls that allow

guests direct control of device drivers [2], and hypercalls

that make the real machine address visible to guests. We thus

believe that minor modifications would make our detection

techniques viable in cloud environments with HVM guests.

Evading detection: As shown, HomeAlone detects a

foe VM whose activities are significantly evidenced in the

L2 cache during its execution. A foe VM with knowledge of

HomeAlone could try to limit its cache footprint in order to

evade detection. Since HomeAlone selects a different cache

region (color) in each detection period, to escape detection

the foe would presumably need to lower its utilization of

most or all of the cache or else discern the color being used

by HomeAlone and avoid only those portions of the cache.

To discern the color, however, the foe would presumably

need to probe the cache, an activity that HomeAlone is

designed to detect. More generally, HomeAlone is well

positioned to detect side-channel attacks via the cache (e.g.,

of cryptographic keys), and so a foe that avoids the cache,

either in whole or in part, to evade detection sacrifices a

significant attack vector to do so. Of course, it can make use

of other timing channels—e.g., the instruction cache [4], the

branch target cache [6], [7], or shared functional units [46],

[9]—but these channels require SMT, which is not supported

in some clouds, and far less has been shown about the

efficacy of these channels. Moreover, it may be possible to

extend HomeAlone to monitor those channels as well.

VIII. RELATED WORK

Most prior work on cache timing channels has focused on

their use as a side or covert channel. Here we briefly review

related research and highlight its differences from our own.

Cryptanalytic techniques based on timing measurements

of arithmetic operations were introduced by Kocher [27].

Subsequently, timing attacks based on shared data caches

have been widely studied in the cryptanalysis of crypto-

graphic protocols, e.g., [43], [42], [35], [8], [5], [15], [33],

[34], [44], [23], [40], [25], [30], [16], [37], [49], [14], [24],

[41]. The focus of this (still active) research area is to exploit

the characteristics of the data cache (in particular the access

latency gap between the cache and main memory) to develop

cryptanalytic techniques specifically tailored to particular

cryptographic implementations. In contrast, our work uses

timing measurements on the L2 cache as a defensive tool.

Moreover, our techniques are general in that we aim at



detecting arbitrary foe VMs and we do not assume any

knowledge about the foe VM implementation or workload.

Methods proposed to mitigate the threats posed by data-

cache side channels generally fall into three categories. First,

they include new cache designs (e.g., [46], [47], [26], [28],

[48]). Second, Aviram et al. [10] have proposed to eliminate

timing channels in cloud computing by forcing VM execu-

tion to be deterministic, but the success of this approach still

needs to be demonstrated. Third, a promising direction is to

construct cryptographic implementations that resist cache-

based timing attacks (e.g., [29], [25]). Techniques such as

new cache designs and forced determinism could potentially

hinder the detection capability that we have developed in this

paper. However, we do not anticipate that these mechanisms

will be widely adopted in the near future. Another defense

applicable in cloud computing is to disallow cache sharing

among tenants altogether, either by grouping friendly VMs

on cores sharing a cache or by partitioning the cache among

VMs [36]. Of course, our techniques enable friendly VMs

to detect if the service provider fails to correctly implement

such cache isolation policies.

Besides the data cache, other architectural side channels

have been exploited in cryptanalysis; as mentioned above,

these include the instruction cache [4], the branch target

cache [6], [7], and shared functional units [46], [9]. It is

conceivable that these or other side channels could be used

for foe detection, though we leave investigation of this

possibility to future work.

IX. CONCLUSION

With the growing movement of sensitive applications to

clouds, there is increasing demand for physical isolation of

tenants’ workloads (e.g., [18], [11]). In this paper we have

developed an approach called HomeAlone by which a tenant

of an IaaS cloud can detect if this isolation is violated, with-

out requiring cooperation from the cloud service provider. In

addition to providing the first such capability of which we

are aware, our approach is novel in utilizing cache timing

channels as a defensive monitoring technique, in contrast to

the significant body of literature that uses them as an attack

vector (see Section VIII).

We detailed the design of our cache timing classifier for

detecting the co-residence of “foe VMs” with a tenant’s own

“friendly VMs” and how we overcame significant obstacles

to make this detection viable. We also implemented our

detector within Linux for Xen, and demonstrated that our

detector impacted performance modestly (less than 5%)

in a range of benchmark applications. Foe detection tests

indicate that reasonably active, benign foes can be detected

in 25 PRIME-PROBE trials of 1/16th of the cache with a

true detection rate ranging from 84% up to 100%, while

permitting a false detection rate of only ∼ 1%. For similar

parameter settings, foe VMs that attempted to exploit the

cache as a side-channel were detected with rates ranging

from 15% to 85% in our tests, depending on the frequencies

with which they probed and the extents to which the cache

sets they probed overlapped those monitored by HomeAlone.

As an initial example of using side channels to monitor

for co-resident foes, we believe our work opens up new

directions for research, both in better classifiers for cache

timing behavior and in use of other side channels. And,

while we believe that avoiding detection by HomeAlone

imposes significant penalties on a foe VM—namely avoiding

its own cache and thus dispensing of a potent attack vector

of its own—we anticipate and welcome additional progress

in testing the limits of this approach.
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[40] K. Tiri, O. Aciiçmez, M. Neve, and F. Andersen. An
analytical model for time-driven cache attacks. In Fast
Software Encryption, 14th International Workshop, FSE 2007,
pages 399–413, 2007.

[41] E. Tromer, D. A. Osvik, and A. Shamir. Efficient cache
attacks on AES, and countermeasures. Journal of Cryptology,
23(1):37–71, 2010.

[42] Y. Tsunoo, T. Saito, T. Suzaki, M. Shigeri, and H. Miyauchi.
Cryptanalysis of DES implemented on computers with cache.
In Cryptographic Hardware and Embedded Systems — CHES
2003, pages 62–76, 2003.

[43] Y. Tsunoo, E. Tsujihara, K. Minematsu, and H. Miyauchi.
Cryptanalysis of block ciphers implemented on computers
with cache. In International Symposium on Information
Theory and Its Applications, pages 803–806, 2002.

[44] Y. Tsunoo, E. Tsujihara, M. Shigeri, H. Kubo, and K. Mine-
matsu. Improving cache attacks using cipher structure.
International Journal of Information Security, 5(3):166–176,
2006.

[45] J. Vijayan. Will security concerns darken Google’s govern-
ment cloud? ComputerWorld, 17 September 2009.

[46] Z. Wang and R. B. Lee. Covert and side channels due to
processor architecture. In 22nd Annual Computer Security

Applications Conference (ACSAC), pages 473–482, December
2006.

[47] Z. Wang and R. B. Lee. New cache designs for thwarting
software cache-based side channel attacks. In 34th Interna-

tional Symposium on Computer Architecture, pages 494–505,
June 2007.

[48] Z. Wang and R. B. Lee. A novel cache architecture with
enhanced performance and security. In 41st IEEE/ACM

International Symposium on Microarchitecture, pages 83–93,
November 2008.

[49] E. Zenner. A cache timing analysis of HC-256. In Selected
Areas in Cryptography, 15th International Workshop, SAC

2008, pages 199–213, August 2009.


