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Abstract—In this paper, We present a new technique that offers lightweight, general, and elastic protection against Crum (Cross-VM

runtime monitoring) attacks. Our protection, called CREASE (CPU Resource Elasticity as a Service), enables a VM (called principal) to

purchase a higher clock rate from the cloud, through lowering the frequency of a malicious VM (called peer ), to support its

security-critical operations within a short period. During that period, the weakened peer becomes unable to catch up with the pace of

the strengthened principal, therefore losing the capability to effectively collect its sensitive information. In the meantime, our approach

can also make up for the performance impact on the peer through refunding schedule credits or service credits, in line with the service

level agreement of today’s cloud. At the center of our design is the novel application of on-demand frequency scaling and schedule

quantum randomization, together with a situation-awareness mechanism that dynamically assesses the security risk posed by the

peer. We analyzed the security guarantee of our design, implemented a prototype and evaluated it on a well-known Crum attack (an

LLC side-channel attack) and various workloads. Our study shows that CREASE is effective at protecting the principal, with only a small

impact on the peer’s operations.

Index Terms—Cross-VM runtime monitoring, Defense, Cloud environment, CPU resource elasticity.
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1 INTRODUCTION

With the rapid growth of public cloud services, the ways these sys-

tems protect their customers’ information assets are increasingly

under scrutiny. At the core of their security mechanisms are virtual

machine (VM) based isolation, which separates different users’

operations from each other. This protective partition, however,

has been found to be penetrable by a series of studies: an attack

VM can be strategically placed on the same physical machine

running the target VM and the attacker can leverage a set of side

channels to extract private information from the target. Most dam-

aging among those attacks are a category of Cross-VM Runtime

Monitoring (Crum) exploits, in which the attack VM continuously

collects information from the target when it is running a program

involving security-critical data like AES or RSA keys. What has

been discovered is that such sensitive information can be inferred

through sampling the caches within a processor [57], [58], [7],

[25], [36], [23], [21], cross-processor channel [22] or memory

bus [49] in the program runtime. Even more concerning is the

report that the attack can be executed in only a few minutes [25].

Fighting Crum: challenges. Mitigating the Crum threat is hard,

often requiring significant changes to hardware, operating systems

(OS) or the software under the threat. More specifically, hardware
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solutions include cache partitioning [41], [16], [50], [51], [34],

access randomization [51], [52], [35], cache decay interval ran-

domization [27], inaccurate time keeping [37], and memory-trace

obliviousness [33]. OS-based solutions include OS-supported

cache partition [43], [46], [28], fine-grained timer elimination [48],

enforced deterministic execution [8], [32], random noise injec-

tion [59], security-aware scheduling algorithms [47], and on-

demand migration of protected VMs [39]. Other approaches aim

at transforming a program to remove secret-dependent information

flows [38], [13], [3], obfuscating execution traces by adding decoy

execution [44], diversifying software programs for probabilistic

defense [14] or detecting side-channel vulnerabilities via static

analysis [17].

Despite sustained interest in the problem, none of the existing

solutions demonstrate a huge potential for practical adoption. Most

are either narrow, focusing on a specific type of threat (e.g., certain

types of cache attacks), or one-size-fits-all, requiring platform

changes that protect—and impose overheads on—all tenant VMs

regardless of their need for it. While exceptions exist, those tend

to be potentially burdensome to the tenants who adopt them,

e.g., involving heavyweight program transformations [38], [13]

or potentially disruptive VM migrations [39]. We therefore argue

that there is a need for a Crum defense that is general in applying

to a broad range of Crum threats; elastic in permitting only tenants

who perceive a need for protection to pay for it, and only when

they need it; and lightweight, so that adopting protection does not

subject the tenant to substantial overheads.

Resource elasticity for protection. In this paper, we present a

novel side-channel mitigation technique that we believe meets this

need. Our approach, called CREASE (CPU Resource Elasticity

as a Service), allows a VM running a critical task to purchase

from the cloud provider a higher clock rate for a short period,

before the task is completed, by lowering down the clock rate of its

peer, another VM sharing the same machine, which is considered



to behave suspiciously. The key idea here is that by temporarily

speeding up the target VM and slowing down the attacker, the

amount of information derivable from the side channels goes down

quickly, due to the reduction in the attacker’s sampling rate and

the difficulty in staying synchronized with the target (which is

made even harder by randomizing the scheduling quanta that are

assigned). In the meantime, we can keep the cost of the protection

low for the service user (e.g., just buying more CPU cycles for a

few seconds) and easily handle the impact on the suspicious peer

in line with the current service level agreements (SLAs) provided

by today’s commercial clouds: e.g., Amazon’s SLA promises a

monthly uptime percentage of 99.95% and when this cannot be

met, service credits will be given to the user [5]. Using CREASE,

the provider can easily stay profitable by setting the price for the

protection service above the credits refunded to the owner of the

peer when it is obliged to make up for the peer’s performance

degradation.

The approach can be made more effective when the target is

aware of the runtime situation of the peer: e.g., whether the

latter is aggressively probing the shared cache, as reported by

the hypervisor. Note that this is not a detection mechanism. It is

not meant to determine whether indeed the peer VM is malicious.

Instead, all we want to do here is to inform the target of potential

risks it faces, helping it decide on the amount of resources (here

clock rate) it needs to acquire in order to hedge against the possible

harm.

We analyzed the design of CREASE using the classic model of

deletion-substitution channel, which demonstrates that the ap-

proach significantly reduces the side-channel leaks. We further

implemented the design based on Xen and evaluated it against

a known Crum attack (LLC cache attack), by studying the ef-

fectiveness of the elastic protection at different resource levels

(clock rate and scheduling quanta), in terms of its impact on the

accuracy of the data the adversary is capable of inferring cross-

VM. Together with the situation data gathered from the PMU

(performance monitoring unit), this information helps the target

weigh the risk against the cost to choose a right level of protection.

Our evaluation shows that CREASE can easily defeat the attack,

with better performance (about 12.6% to 13.8%) brought to the

target VM due to boosted frequency. For the suspicious VM under

control, we found that it can still effectively serve its clients,

with different levels of performance impacts (about 11.7% to

64.4% in a worst case), depending on the types of services (i.e.,

PARSEC [12] and CloudSuite [18]) and the level of protection

requested. Important here is the fact that most CPU resource is

not wasted in our approach, which is either spent on the target

for having its job done quickly or used by the peer for serving

its client. Besides, when there is no protection requested, CREASE

incurs very low overhead (0.63% to 1.93%).

Contributions. The contributions of the paper are outlined as

follows:

• Elastic side-channel protection. We propose a general

Crum defense that is elastic, permitting the cloud user to

purchase different levels of protection, at different cost,

according to her perception of the threat from its co-

resident VMs.

• Clock-rate based, situation-aware techniques. Our defense

is novel in dynamically adjusting the target VM and its

suspicious peer’s clock rates to make a side-channel attack

ineffective. This approach is further used together with a

situation-assessment technique that evaluates whether the

behavior of a target’s peer (another VM) is risky enough

to justify activating the protection, which helps minimize

the performance impacts on both the target and the peer.

• Implementation and evaluation. We implemented our de-

sign on the Xen hypervisor [10] and evaluated it in a

realistic cross-VM setting. Our study shows that the new

techniques can effectively defeat known Crum exploits and

incurs small overheads.

Roadmap. The rest of the paper is organized as follows: Section 2

provides the background information about our research; Section 3

elaborates the design and implementation of CREASE; Section 5

presents a security analysis of CREASE; Section 6 describes the

evaluation of our technique; Section 7 discusses the limitations of

our current system and potential future research; Section 8 reviews

related prior research and Section 9 concludes the paper.

2 BACKGROUND

Elastic cloud business model. A key aspect of the cloud business

model is that cloud vendors charge customers based on the capac-

ity of the VMs they rent, instead of their actual resource usage.

For example, Amazon EC2 prices its VM instances according

to the different levels of computing resources they offer (CPU,

memory and storage) [4], e.g., c4.large, m3.xlarge, d2.2xlarge,

etc. The resource level here is the maximum capacity of these

instances, which typically will not be reached during their daily

operations. The gap between these two ends is exploited by the

cloud vendor to make profit: oftentimes, the aggregated capacity

of the VMs rented out far exceeds the computing power of the

physical machine that hosts them. This property allows us to raise

the clock rate of the VM under protection (called principal) and

lower that of the peer VM, without degrading the performance of

the service the peer provides most of the time.

In the case that the peer indeed runs CPU-intensive tasks, such as

scientific computing, the additional resource acquired by the prin-

cipal can have an observable impact on the peer’s performance.

This, however, fits squarely in the cloud’s business model. Except

the top-notch dedicated hosting service the cloud offers, all other

service types are more or less best effort: for example, Amazon

EC2 provides spot instances [6] with little guarantee about the

resource availability; other non-dedicated Amazon instances are

also expected to see occasional service disruption due to cross-

VM interference and cloud operations (like maintenance). As a

matter of fact, the SLAs of large cloud vendors only focus on the

accessibility of VM instances and the guarantee of these instances’

performance has never been mentioned. Ben-Yehuda et al. [1]

presented a detailed deconstruction of Amazon’s pricing model,

with a special focus on spot instance.

Even when the peer’s performance has been degraded to the level

that its accessibility becomes an issue, another mechanism the

vendors can use to make up for this temporary loss of the service

is “service credits” [5], which is used to repay the VM’s renter

for the disruption of her service. This enables the vendor to

reallocate the computing resources to the principal at a higher

price compared with the service credits given back to the peer,

when such a resource transfer becomes critical for protecting the

principal’s sensitive data.
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Cross-VM runtime monitoring (Crum). In this paper, we aim

to defend against a set of cross-VM side-channel attacks, which

we call Crum attacks. In a Crum attack, the adversary controls

a guest VM and instruments it to (1) interact repeatedly and

frequently with one or multiple hardware or software resources

shared with the principal, and (2) optionally interact with the

principal’s external interface (e.g., webserver requests) to trigger

sensitive operations that make uses of the security-critical data

like AES or RSA keys. The key assumption behind the Crum

attacks is that although the adversary is assumed to have the

ability to synchronize with the principal’s sensitive computation

via external interfaces, he needs to collect fine-grained side-

channel observations that require repeated and frequent resource

accesses.

Crum is broadly defined to include a large set of

cross-VM side-channel attacks. For example, attacks us-

ing PRIME+PROBE [40], FLUSH+RELOAD [55] and

FLUSH+FLUSH [20] on last-level caches (LLCs) are all exam-

ples of Crum attacks in which the adversary interacts with a shared

LLC in ways that lead to information leakage. In fact, all known

cross-VM side-channel attacks to date [57], [58], [7], [25], [49],

[36], [23], [21], [22] can be described as a form of Crum attacks.

However, as per-core side-channel attacks have been addressed

effectively by minimum run time [47] that is already integrated

into Xen schedulers, the focus of this paper is cross-core attacks

that are largely unaddressed.

Threat model and assumptions. In this paper, we assume that

the adversary is capable of co-locating his attack VM with the

principal on the same physical machine, and also conducting

Crum attacks to collect side-channel observations which will later

be used to infer sensitive information of the victim. The cloud

provider, together with its controlled hypervisor and hardware, are

considered as trusted. The main goal of CREASE is to protect a

VM’s security-critical information (like cryptographic keys) from

being leaked through cross-VM monitoring. However, CREASE

does not aim to protect other covert information like when a

principal VM is doing some critical operations, which barely adds

to the principal’s knowledge and has not been demonstrated as an

effective way to steal security-critical information.

3 DESIGN

In this section, we present the technical details of CREASE, includ-

ing its high-level idea and designs of its individual components.

3.1 Overview

Idea and architecture. As mentioned earlier, the key idea of our

defense against the runtime monitoring attacks is to enable the

principal to pay for a temporary reallocation of CPU resources,

making its security-critical operations run faster while the moni-

toring activity from its suspicious peer, if any, goes slower. What

is expected is that on one hand, the resource gap between the two

parties renders a Crum attack hard to succeed (due to the reduction

of the sampling rate and the increasing difficulty in keeping the

attacker synchronized with the ongoing secret operations), on the

other hand the computing power left with the peer can still sustain

its legitimate service with reasonable performance. The latter is

important because the less disruptive it could be, more affordable

the protection becomes and more likely the technique will be

adopted by the cloud service provider.
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Figure 1: An overview of the architecture of CREASE.

For this purpose, we come up with a design as illustrated in

Figure 1. At the center of the design is protection-level selec-

tion (PLS), through which the principal communicates with the

hypervisor to identify the runtime situation of its peer, together

with the prices and effectiveness of different levels of protection

(reallocation of clock rate and quantum) it can purchase, and

decide the protection it needs to use (Section 3.4). The protection

level here is achieved through an on-demand CPU resource allo-

cator (CRA) that performs dynamic CPU frequency scaling and

quantum randomization across different cores (Section 3.2). To

minimize the cost of running this security mechanism, a situation

awareness module (SA) continuously collects and analyzes the

information from the peer, such as the frequency of its cache use,

helping the principal understand the security risk the peer poses

(Section 3.3). Note that once the principal obtains the service,

all other VMs on the same CPU socket are not allowed to speed

up. This prevents the adversary from exploiting the mechanism

to attack the principal, which shall only run security-critical

operations upon acquiring a certain protection level.

An example. As an example, consider that the principal needs to

run AES to encrypt a message. To protect its secret key against

cache-channel attacks, the principal first talks to the hypervisor

through its PLS component, which requires the hypervisor to con-

tinuously update to the principal the risks presented by the peer.

To this end, the hypervisor runs the SA to gather the performance

information from the peer, such as LLC-load-misses (mea-

surement of the cache misses happening to the last level cache).

Such information is further analyzed by a classifier that determines

how likely the peer is indeed probing the principal’s cache lines.

The estimated risk and the prices for different protection levels are

then continuously updated to the principal through the PLS. Once

the principal decides to use a protection level (described by its own

clock rate and quanta, and the peer’s clock rate and quanta), the

service is immediately purchased from the cloud provider through

PLS APIs. These parameters are then enforced by the CRA during

the execution of the encryption using a technique that combines

real-time frequency scaling with CPU quantum adjustments.

3.2 On-Demand CPU Resource Allocation

Based on the observation that a VM’s capacity planning is usually

pessimistic to tolerate a possible load burst, the CRA dynamically

steals the unused CPU power to boost the computation of a

principal VM executing security-critical tasks. In this way, a

principal can end up having much more computing power than
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its malicious peer and thus the peer can hardly observe the correct

sequence of secrets through cross-VM runtime monitoring. Here

we elaborate the techniques that make this happen.

Dynamic clocking. The CRA enhances the principal’s computing

power by leveraging the dynamic overclocking feature in recent

x86 multi-core processors. The basic assumption is that the ther-

mal design power (TDP) of a CPU is the worst case power under

the maximum workload and thus there is usually idle power that

could be utilized to overclock a CPU core to a higher frequency.

Even if there is no additional power available within a chip,

one can manually decrease the voltage and frequency (and thus

power) in some cores to provide headroom to overclock other

cores. Dynamic overclocking is available on both Intel and AMD

processors, which are called “Turbo Boost” and “Turbo Core”

respectively (we use Intel’s notion throughout this paper). For

example, the basic frequency of our test processor is 2.3GHz

and Turbo Boost allows a core to be accelerated to 3.0GHz or

decelerated to 1.2GHz, creating a computing capability gap as

large as 2.5 times.

Using such a feature, the CRA aims at empowering the security-

critical VM (principal) to outrace its malicious peers, the attacking

VMs, thereby thwarting any Crum attempt. This effort, however,

turns out to be more complicated than it appears to be. Specifically,

the clock rate of a CPU core cannot be directly elevated by

the cloud provider: all one can do is just setting an upper limit

on the overclocked frequency of a core, whose real speed is

determined by a feedback controller during the runtime according

to the available power budget and the workload of the core. In

our experiment on an Intel Xeon CPU E5-2650 v3 processor, we

found that the maximum frequency 3.0Ghz could only be reached

when no more than 2 (out of 10) cores were running under the

full loads (i.e., 100% vCPU usage); when there were five, only

2.6Ghz could be attained. On the other hand, Turbo Boost can

slow down the peer by setting a lower frequency limit on its

core (below the base frequency, 2.3Ghz in our experiment). Our

strategy is to dynamically reduce the frequency of the peers to

provide extra power budget for overclocking the principal. As

security-critical operations like AES and RSA encryptions are

usually CPU-hungry, the principal’s core can usually be boosted

to the maximum allowable frequency.

To select the peers for this purpose, our approach takes into

account the risks posed by individual VMs and their workload.

Specifically, those likely running an attack (based upon the way

they use vCPUs) are further slowed down. Then, when more power

budgets are still needed, the CRA looks into the performance

profiles of other VMs to decide which ones can be scaled down

without a significant impact on their operations (e.g., those not

requiring real-time responsiveness). Our study shows that this

strategy works effectively in speeding up the principal without

exceedingly wasting the peer’s computing resources in the evalua-

tion section. In the meantime, it is important to note that when

necessary, the peer can be further slowed down to serve the

principal’s security need.

Our current design can only speed up a single VM at a time.

This strategy is put in place to defeat the attempt made by a

malicious VM to also raise its clock rate for catching up with the

principal under protection. In the case that multiple VMs within a

CPU socket have legitimate needs to overclock at the same time,

CREASE can handle their requests in a FIFO manner, or ask the

VMs to bid for the extra CPU resource, or migrate a VM to another

socket.

Dynamic quantum randomization. Dynamic overclocking cre-

ates a computing power gap between a principal VM and its peers

such that an adversary can observe much less secret information.

CRA further leverages dynamic quantum randomization to disturb

the sequence alignment of secrets from the adversary.

A cloud provider usually overcommits resources (e.g., CPU) [11]

for profit and thus there are multiple VMs running concurrently

atop a physical CPU. However, commodity hypervisors like Xen

and KVM usually use a mostly fixed scheduler quantum for its

VMs (e.g., every 30ms for Xen). This could enable the malicious

peer to synchronize its actions with the operations within the

principal VM, a step critical for cross-VM information collec-

tion, e.g., determining the positions of the bits stolen from the

principal’s key. To make such a synchronization hard to succeed,

the CRA further disturbs the peer’s execution by randomizing the

scheduling quantum of its virtual CPU core (vCPU). Specifically,

our approach further refines the base scheduling quantum (e.g.,

1ms in our case) and dynamically sets a random frequency

(uniformly distributed between 1ms and 30ms) to the peer’s vCPU

at the end of a schedule quantum.

A side effect from the quantum randomization is that a benign

VM co-running with an adversary VM will also suffer from some

randomness of its scheduling timings. However, the performance

impact of this randomization is limited, since the randomizing

period is usually short (i.e., a principal VM performing security-

critical operations). A further note is that using such a fine-grained

schedule quantum does not necessarily lower the performance of

a VM. Actually, recent studies show that the schedule quantum

with a fine granularity may sometimes even significantly improve

the performance of some workloads [53], [54], [2], due to better

cache locality, reduced spinning time and faster responsiveness.

Note that our dynamic quantum randomization is fundamentally

different from the minimum run time (MRT) guarantee used in

[47], though both alter Xen scheduling quantum for side-channel

protection. The MRT guarantee prevents CPU preemption, thus

defeating L1 cache attacks where both the adversary and the victim

are scheduled on the same core. Dynamic quantum randomization

aims to desynchronize the adversary and the principal while they

run on different cores.

Compensation. Dynamically boosting the execution of a principal

VM may impact the performance of its peers. Such a performance

loss can be compensated by CREASE, either through refunded

“service credits” [5], as mentioned before, or through reallocation

of CPU resources when available, particularly in the case that the

service disruption is brief. Specifically, commercial hypervisors’

schedulers have the capability of temporarily giving a vCPU a

higher priority and longer schedule quantum and later making up

for the slowdowns experienced by other vCPUs. For example,

Xen’s default Credit scheduler uses credits to determine the

priority of a vCPU: if the remaining credits go below a threshold,

the vCPU gets a low priority; otherwise, it gets a high priority

and may be boosted with more schedule quantum. We integrated

this mechanism into CREASE, which, after temporarily elevating

the principal’s resource level for protecting its security-critical

operations, automatically repays affected peer VMs with more

credits so that their performance could go up later. This approach
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enables the cloud provider to make use of idle CPU cycles to

compensate peers’ performance losses, thereby saving the “service

credits” it needs to give back.

Putting pieces together. With the integration of the dynamic

CPU frequency scaling and schedule quantum randomization,

the CRA can not only make it hard for the malicious peer to

adequately sample the principal’s operations during a Crum attack,

but also prevent it from synchronizing its information gathering

actions with the changes of the secret within the principal VM.

Further, the compensation mechanism makes use of idle CPU

cycles to compensate the peer’s performance loss caused by the

resource allocation protection, reducing the overhead of the whole

approach.

3.3 Situation Awareness

Like any other security mechanisms, allocating CPU resources

for protection does come with some cost, particularly, the per-

formance loss that may happen to benign peers and the fee for

purchasing the protection service. To keep the cost low, it is

important to determine which protection level would be sufficient.

For this purpose, CREASE includes a situation awareness module

that continuously assesses the security risk posed by the peer,

which is used by the PLS to decide whether more CPU resources

need to be purchased to hedge against the risk. Note that the risk

assessment here is not meant to accurately detect a Crum attack.

Instead, it just uses a set of necessary conditions of the threats

to filter out the situations where attacks are unlikely to happen,

thereby reducing the cost for the protection.

To this end, the SA module continuously monitors the guest VMs

for the signs of risky behaviors. Given the diversity of the Crum

attacks, finding a generic behavior pattern to capture all these at-

tacks is hard. Therefore in our research, we focus on a set of cross-

VM cache side-channel attacks, including PRIME+PROBE [40],

FLUSH+RELOAD [55] and FLUSH+FLUSH [20]. Should

new types of side-channel attacks be discovered, the current

scheme may be extended accordingly. In particular, these cache

attacks will inevitably introduce anomalies in cache operations,

on the instruction/data translation lookaside buffer (TLB), last-

level cache (LLC) and others, which are documented by the per-

formance monitoring units (PMU) within commercial processors.

The SA module is designed to continuously gather the PMU

events reported by the processor for each VM at the hypervisor

level and analyze these events to identify potential security risks.

For example, once the peer is found to cause a lot of LLC

misses, suspicion may arise about whether it is performing a

PRIME+PROBE attack. In practice, however, such a simple

approach can be susceptible to the dynamics of workloads. Later

in the section, we describe a more robust alternative.

Multi-grained event gathering with piggybacked polling. A

challenge for using PMU for online monitoring is how to balance

the granularity of the information collected and the overhead

incurred. Specifically, PMU runs an interrupt mechanism to re-

port events: when the number of accumulated events exceeds a

predefined threshold, a PMU interrupt is issued. However, PMU

interrupts may lead to frequent disruption of running services in

a guest VM, especially given the fact that SA is an always-on

service to monitor all guest VMs. On the other hand, a high

PMU threshold could let suspicious peer behavior fall through

the cracks, missing the opportunity to detect the risk in time.

To balance between these two ends, the SA combines proactive

polling with reactive PMU interrupts for event gathering. Specif-

ically, the SA is designed to periodically poll the PMU status,

make an assessment of the security risk based upon the events

and then reset the PMU counter for firing the interrupt when the

risk is low. In this way, the PMU interrupt will only be triggered

when events flood in within the polling interval, which is rare

in the absence of an attack. The problem here, however, is that

the PMU event counter is per-core based and it is infeasible

for one CPU core to directly read from the PMU of another

core. The most straightforward way to get the content of the

core’s counter is simply sending an inter- processor interrupt,

which itself produces a large number of interrupts (and thus VM

exits1). To address this issue, our approach leverages the normal

VM exits, which happen periodically (every 140µs for the data-

serving workload in CloudSuite, due to the events such as external

interrupt, virtual APIC and VMCALL) during a VM’s normal

operations, to “piggyback” the access to the peer’s PMU counter.

Specifically, whenever the peer VM exits due to such a normal

event, the SA checks its timing to determine whether a polling

point is approaching: if so, it uses the exit to collect information

from the peer’s PMU and reset the timer; otherwise, it just waits

for the right moment to send an interrupt. In our evaluation, we

found that this strategy reduces the number of interrupts from 7685

to 7257 every second due to piggybacking for a peer is running

the data-serving workload in CloudSuite. We confirmed that most

interrupts due to event polling and PMU interrupts are eliminated

during coarse-grained monitoring.

The design of the SA further takes into account the protection

demands from VMs, using a multi-grained event gathering strat-

egy to further reduce its overhead. Particularly, when no one is

asking for protection, our approach becomes less aggressive in

collecting PMU events (e.g., every 3ms in our implementation).

Upon receiving a risk assessment request, it switches the gear,

starts polling at the coarse granularity every 300µs and maintains

the pace throughout the period for protecting the principal. In this

way, we can minimize the interference with the peer’s operations.

3.4 Protection Level Selection

In line with the service-oriented nature of cloud computing,

CREASE provides the security service in a “pay-as-you-go” fash-

ion by allowing a principal VM to decide whether to purchase

a specific level of protection at a given price. Such on-demand

protection acquisition happens through a set of protection level

selection (PLS) APIs, through which the principal obtains the

assessment of the peer’s security risk and a quotation for different

protection levels (i.e., the prices for the frequency/quantum for the

principal and the frequency/quantum for the suspicious peer), and

also informs the hypervisor of the choice of a protection level.

PLS APIs. Specifically, before running a security-critical task, the

principal VM can communicate with the cloud provider through

the following APIs:

• risk_assessment, which returns the security risks

posed by peer VMs, e.g., those considered to execute a

Crum attack on the principal.

• get_price_info, which returns a table of the prices

for different protection levels.

1. VM exit is a control transition from a guest VM to the hypervisor.
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• disable\enable_protection, which instructs the

CRA to disable or enable the protection at a certain level

(after the principal decides to purchase the corresponding

service).

Such interfaces are provided directly to the user space programs

in a VM. A tenant may simply choose a protection level by

directly calling disable\enable_protection without risk

assessment or getting a price quotation.

TOCTTOU. Note that it is possible that a malicious peer may

mount an attack after a tenant has conducted the risk assessment

and thus the selected protection level may not be sufficient to

protect the principal. This threat can be addressed by periodically

collecting risk reports from the SA and dynamically adjusting the

protection levels in response to the perceived threat. Actually, the

fine-grained monitoring when enabling protection allows the hy-

pervisor to quickly adjust the protection level once observing any

suspicious behavior. Further, along with specifying a designated

protection level, a tenant can also specify a maximum protection

level under high risk; the cloud provider can later charge the tenant

with the actual protection level.

Pricing models. Similar to the way the current cloud services

are priced, the charges for CREASE protection could also vary,

in line with the Amazon’s price models for instances (reserved

instances, on-demand instances and spot instances) [1]. A VM

can purchase protection through a fixed and guaranteed price

(like a reserved instance) through a long-term contract along

with a reserved VM instance, or a pay-per-use price with less

availability guarantee for the protection service (like a on-demand

instance), or a market-driven price through auctions [1] according

to demand and supply (like a spot instance [6]). Under any above

pricing models, CREASE is more cost-effective compared to other

approaches like always-on protection or using a dedicated physical

machine as it only charges a VM at a “pay-as-you-go” fashion. We

leave the decision on the price models to the cloud provider and

tenants.

Protection levels. At a specific protection level (i.e., the prin-

cipal’s frequency/quantum and the suspicious peer’s frequen-

cy/quantum), it is important to help the principal understand

the security implication of operating at this level. Quantitative

estimation of side-channel risks is an open problem. Therefore,

in this paper, we aim to quantify the security implication at each

level by empirically evaluating the error rates encountered in the

adversary’s inference of the secret keys, when the principal and

the adversary operate with different frequency gaps. To further

understand the link between such an error rate estimation and

the difficulty of successfully conducting side-channel attacks, we

further derived two security metrics, channel capacity and key

recovery effort, from the basic error rates estimation (Section 5).

Although not the perfect estimation of side-channel risks, we

believe our method represents the best effort towards such a goal.

The analysis of error rate, channel capacity and key recovery

effort will be provided to the principal, allowing it to select the

right service given its risk attitudes (risk averse, risk neutral or

risk seeking) and its valuations of the sensitive information under

protection.

4 IMPLEMENTATION ISSUES

Decision-tree based risk assessment. A Crum attack exhibits

some salient features. For example, in a last-level cache attack,

since the program produces lots of cache misses with a small

number of instruction and data, the peer’s LLC miss ratio will

go up while the instruction and data TLB miss ratio remains

low. To capture such signals of the attack without being over-

conservative (which results in purchasing the protection more

frequently than needed), the SA runs a machine learning classifier

to automatically assess whether an attack is being executed inside

the peer. The classifier is built on top of five PMU attributes,

including TLB miss ratio, iTLB miss ratio, LLC miss ratio,

L2 prefetch miss ration and retired instruction number, which are

collected within a short time frame (e.g., 300µs/3ms with/without

protection requests). Its output is an assessment whether the peer

poses a risk.

In our implementation, we utilized a decision-tree classifier due

to its simplicity and performance. Specifically, the classifier is

intuitive and works well with the features we observed from Crum

attacks. Also, the decision tree is known for its high performance

(9.3µs for 100,000 classifications in our experiment), which is

important for the real-time protection provided by CREASE.

Our dataset includes a bad set with the attributes collected from

100 runs of the PRIME+PROBE and FLUSH+RELOAD attacks,

and a good set with the data gathered from running different

legitimate tasks, including PARSEC [12], CloudSuite [18], etc.

The risk analysis model was trained in our research over 70% of

the dataset. The classifier constructed from the training set was

further evaluated over the rest 30% of the data and accurately

identified 99.9596% of the attack records at a false detection rate

of 0.02%.

When a protection level is not selected, CREASE assesses the risk

of current vCPU with PMU data collected within 3ms, which is

implemented by setting up a timer in Xen. The timer is triggered

every 300µs when a protection level is selected.

Dynamic clocking and scheduling quantum randomization.

The CPU frequency of one processor can be controlled by a

model-specific register called IA32 PERF CTRL MSR (0x199).

The value written in the bit range from 0 to 15 indicates the fre-

quency level is required for the processor. The scheduling quantum

is determined by the credit scheduler in the Xen hypervisor. Each

time the scheduler function is called, we will choose a random

value for the next vCPU.

5 SECURITY ANALYSIS

5.1 Deletion Channel Model

To understand the security guarantee offered by frequency scaling,

we model Crum attacks as deletion-substitution channels.

A deletion-substitution channel is a type of communication chan-

nel model widely used in information theory and coding theory.

In the model, the sender transmits a bit (which can be extended to

non-binary values) each time, and the transmitted bit is dropped

by the channel with a probability pd or substituted by the channel

with a different value with a probability ps. An important property

of the deletion channel is that the receiver does not know which

bit was dropped by the channel, therefore perfectly reflecting the

nature of the lack of synchronization in Crum attacks.
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Modeling sensitive operations. In side-channel attacks, particu-

larly the Crum attacks, the principal’s sensitive operations process

secret information in phases: in each phase, b bits of the secret

is processed; another b bits are used after the operations move

to a different phase. For example, in the square-and-multiply

implementation of modulo exponentiation, which is widely used

in asymmetric ciphers such as RSA, DSA and ElGamal, one

bit of the exponent is processed each time. Therefore, b = 1
in this case. In the sliding-windows version of the square-and-

multiply algorithm, in which a window of n (e.g., 5) bits is

processed together, b = n. In symmetric ciphers, such as AES and

DES, encryption of each block involves different combinations of

plaintext and encryption keys, and therefore b is related to the size

of the encryption key and the plaintext of the block.

Modeling attacks. In a Crum attack, the adversary collects

the side-channel information of the principal’s executions. To

abstract away the complexity induced by imperfect side-channel

measurements and non-synchronicity between the adversary and

the principal, we model the side-channel attacks as a deletion-

substitution channel. Particularly, we assume that in each phase of

the principal’s sensitive operation, the b-bit secret is transmitted

through a noisy channel to the adversary who has probability pd
to miss the b bits all together and has probability ps to mistaken

the b-bit secret for another. When the channel is noise-free, where

pd = 0 and ps = 0, the adversary can perfectly recover the

b-bit secret. However, in practice, due to measurement noise or

misalignment of the adversary’s side-channel measurements with

the principal’s sensitive operations, usually pd > 0 and ps > 0.

Modeling frequency scaling and dynamic scheduling quantum

randomization. By scaling up the execution frequency of the prin-

cipal during sensitive operations and scaling down the execution

frequency of the adversary, both pd and ps will be increased. The

loss of synchronization is further amplified by dynamic scheduling

quantum randomization, which ensures that dropping of signal by

the deletion channel will not be detected by the adversary.

5.2 Security Metrics

As mentioned in prior sections, the primary security metric we

will use to estimate side-channel risks at certain protection level

is the error rate of side-channel inference. In this section, we will

establish its connection to two other security concepts: channel

capacity of the deletion-substitution channel and key recovery

rates using a state-of-the-art sequence assembly algorithm.

Channel capacity. One commonly used approach to estimate the

effectiveness of a side-channel attack is by adopting information

theory and analyzing the capacity (or mutual information) of the

corresponding covert channel [30], [9]. Although lower channel

capacity does not directly imply security against side-channel

attacks, it does quantify the efficiency of such information ex-

filtration. Therefore in this paper, we try to estimate an upper

bound of the channel capacity given pd and ps we observe from

empirical tests. However, computing of the channel capacity is an

open problem for both binary or non-binary deletion-substitution

channels. There have been a few studies on the upper bounds of

the capacity of binary deletion channels [15], [19], which is a

special case of the non-binary deletion-substitution channel model

we have for Crum attacks. In a binary deletion channel, each

bit of a signal takes a binary value and only bit deletion, rather

than both deletion and substitution, is observed in the channel

communication. Some of the capacity upper bounds is given in

Table I of [15] and Table IV of [19]. In both studies, the upper

bounds of channel capacity decrease monotonically with the rate

of bit deletion. Some of these results are summarized here. The

non-binary version of the deletion channel is given by Rahmati

et al. [42], which shows the channel capacity upper bounds for a

2K-ary deletion channel, C2K is related to the channel capacity

upper bounds for a binary deletion channel, C2, by Equation 1.

C2K ≤ C2(pd) + (1− pd)log(K) (1)

We are not aware of any non-trivial upper bound for the channel

capacity of non-binary deletion-substitution channels. Therefore

for the purpose of our study, we approximate the channel capacity

of the non-binary deletion-substitution channels (denoted Cds)

with that of the non-binary deletion channels (denoted Cd). It is

easy to see that Cds ≤ Cd, with the same value of pd. Therefore,

Cd is also an upper bound of the non-binary deletion-substitution

channel we intend to study. Especially when pd increases, as

shown in Figure 3, pd contributes much more in the error rate

than ps, and the substitution errors can be omitted without sig-

nificantly loosen the upper bound. Particularly we list the channel

capacity upper bounds for b = 1, 2, 4, 8, 16, 32, 64, 128, 256 that

is computed using Equation 1 in Table 1.

Table 1: Upper bounds of channel capacity for 2K-ary deletion-
substitution channels

pd 1 2 4 8 16 32 64

0.05 0.816 1.766 2.716 3.666 4.616 5.566 6.516
0.10 0.704 1.604 2.504 3.404 4.304 5.204 6.104
0.15 0.619 1.469 2.319 3.169 4.019 4.869 5.719
0.20 0.551 1.351 2.151 2.951 3.751 4.551 5.351
0.25 0.494 1.244 1.994 2.744 3.494 4.244 4.994
0.30 0.447 1.147 1.847 2.547 3.247 3.947 4.647
0.35 0.406 1.056 1.706 2.356 3.006 3.656 4.306
0.40 0.371 0.971 1.571 2.171 2.771 3.371 3.971
0.45 0.340 0.890 1.440 1.990 2.540 3.090 3.640
0.50 0.311 0.811 1.311 1.811 2.311 2.811 3.311
0.55 0.284 0.734 1.184 1.634 2.084 2.534 2.984
0.60 0.258 0.658 1.058 1.458 1.858 2.258 2.658
0.65 0.233 0.583 0.933 1.283 1.633 1.983 2.333
0.70 0.208 0.508 0.808 1.108 1.408 1.708 2.008
0.75 0.183 0.433 0.683 0.933 1.183 1.433 1.683
0.80 0.157 0.357 0.557 0.757 0.957 1.157 1.357
0.85 0.129 0.279 0.429 0.579 0.729 0.879 1.029
0.90 0.099 0.199 0.299 0.399 0.499 0.599 0.699
0.95 0.064 0.114 0.164 0.214 0.264 0.314 0.364

Key recovery effort. The drop of channel capacity signifi-

cantly reduces the effectiveness of side-channel attacks. To show

such effects in practical attacks, we also evaluate our defense

by measuring the difficulty of recovering the secret from the

deletion-substitution channel. Unlike covert channel communi-

cations, where the sender can use error-correcting encoding to

assure reliability of communication, side-channel attacks can only

recover from transmission errors using repeated attacks [57], [21].

We model the key recovery process as a sequence alignment

procedure. Particularly, we assume the adversary can capture

multiple traces of the sensitive operation with the same sequence

of secret bits by repeatedly triggering the sensitive operation and

conducting Crum attacks. These side-channel traces are noised

versions of the secret sequence, with each b bits missing with

probability pd and misinterpreted with probability ps. The task of

the adversary is to recover the original secret sequence given the

collected traces with errors.
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To understand the link between error rates of key inferences and

the ultimate key recovery efforts, we conducted an empirical

evaluation with one of the state-of-the-art sequence alignment

algorithms in bioinformatics [56]. In particular, we conducted a

simulation of key recovery tests. For a specific error rate, we

repeated a key recovery test 100 times. In each test, we first select

a randomly generated 128 bit secret key and then generate 200

traces from this secret by injecting deletion and substitution errors

uniformly at random in accordance with a given error rate. By

running the algorithm specified in [56], with parameters slightly

tuned for our binary key recovery purpose (the original one is for

4-ary genome assembly), one or multiple secret key candidates

were recovered. The result of each test is the shortest edit distance

between the original secret key and one of the key candidates

recovered by the algorithm. The averages of such edit distances

for 100 tests are calculated for different error rates, as shown

in Figure 2. We found that when the error rate is below 10%,

in some tests, the original secret is among the candidates, an

observation in line with the prior studies [57], [21]. However,

when the error rate grows above 10%, recovering the secret needs

to correct errors on the right candidate, which is difficult: even

given the candidate closest to the secret, with an edit distance n,

the number of steps one needs to take to brute-force the secret are

larger than Cn
128

× 2n, roughly 1028 when the error rate is 0.35

(with a distance about 19). Of course, the longer the secret, the

more difficult it becomes to recover it under the same error rate.

Security guarantee of CREASE. CREASE mitigates Crum attacks

by increasing both the deletion probability pd and substitution

probability ps of the deletion-substitution channels, on which the

attacker’s cross-VM secret exfiltration relies. Dynamic scheduling

quantum randomization breaks the synchronization of the com-

munication channel, which further diminishes the efficiency of the

attacks. A practical measure of these effects is the increased error

rate of the side-channel measurements conducted by the attacker.

As we have shown earlier in this section, higher error rate leads

to loss of channel capacity and also increased difficulty of secret

reconstruction. For instance, an increase of error rate from 5% to

35% will reduce the channel capacity of a 2-ary channel by half

(i.e., 0.41) and increase the brute-force effort of reconstructing a

128-bit security key by 1028. Although CREASE’s protection for

different types (e.g., RSA, AES) and length (e.g., 128 or 1024

bit) of the secrets are also different, we conservatively believe a

20 to 30% error rate will render the attack infeasible in practice.

Therefore, while not completely eliminating the threats, CREASE

significantly raises the bar of successful Crum attacks.

6 EVALUATION

We have implemented CREASE by extending the Xen hypervisor

(version 4.5.1). The implementation adds around 1,200 lines of

code to the Xen hypervisor. We also add a special hypercall for

risk assessment and protection level selection. Currently, CREASE

supports three protection levels, which correspond to different

frequencies in the peers. For example, in our processor with a

base frequency of 2.3Ghz, the low, medium and high protection

levels correspond to 2.3Ghz, 1.8Ghz and 1.2Ghz of the peers’

frequencies. For all protection levels, we turn on dynamic quan-

tum randomization and run the principal VM to the maximum

frequency (i.e., 3.0Ghz).

This section presents the evaluation results on the effectiveness
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Figure 2: Average edit distance with different error rate.

and performance of CREASE. As CREASE requires changes to the

hypervisor, we cannot directly run our experiments on a public

cloud. Instead, we conducted all experiments on an in-house

machine. Our test machine is equipped with two Intel Xeon CPU

E5-2650 v3 processors, each of which had 10 cores with hyper-

threading supported but disabled. Both L1 data and instruction

caches are 32KB, 8-way set associative. Each core has a 256KB,

8-way L2 cache; all cores on one socket share a 25MB 20-way L3

cache. The cache line size is 64 bytes. We used Linux 3.18.12 as

the guest OS for both Dom0 (the management VM) and DomU

(the production VM). The number of Dom0 vCPUs is 4 and the

vCPUs are pinned to 4 different physical cores (pCPUs). Each

DomU has one vCPU pinned to a pCPU and has 4 GB memory.

To reduce the interference from Dom0, the vCPUs in Dom0 and

DomU were pinned to pCPUs in different sockets.

6.1 Effectiveness

Settings and attacks. To evaluate the effectiveness of CREASE,

we used PRIME+PROBE [40] to attack the implementation of

square-and-multiply in GnuPG version 1.4.13, which implements

the Open PGP standard. The victim and the attackers resided in

different VMs pinned in different pCPUs within a socket. The

victim kept using GnuPG to decrypt a short file with a 2048-bit

RSA public key. The attacker utilized the inclusiveness property

of last-level cache in Intel processors to detect the cache line

usage information of the victim. To exactly probe one cache set

used by the victim without knowing the virtual-physical address

mappings, the attacker utilized large pages available in today’s

cloud environments.

The key idea to attack the square-and-multiply implementation

is to monitor the usage of the square function for the RSA key.

When processing a “1” bit, the square function is followed by a

modulo reduction and a multiply function , which is followed by

another reduction. If the processed bit is “0”, the square function

is only followed by a reduction. Therefore, the time intervals

between consecutive square functions help an attacker to recover

the processed exponent.

We regarded the time intervals between the consecutive square

functions in GnuPG as the target secret, and the time intervals

recovered by the attacker as the stolen secret. Since there is

noise encountered by the attacker, the stolen secret does not

perfectly match with the targeted one. To measure the difference
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Table 2: An error rate comparison of frequency scaling + 1∼30ms random quantum based upon 8 independent experiments

Experiment #1 #2 #3 #4 #5 #6 #7 #8 Mean STDDEV

No Protection 0.044499 0.027873 0.047922 0.033252 0.031296 0.053301 0.027873 0.038631 0.0380809 0.008
Random quantum 0.094423 0.099804 0.131115 0.154599 0.740705 0.154599 0.132583 0.08953 0.19966975 0.2201

2.3Ghz 0.123892 0.131063 0.140559 0.124134 0.125587 0.126605 0.118513 0.12583 0.127023 0.0065
2.3Ghz + random quantum 0.234217 0.180435 0.225786 0.670381 0.194292 0.307767 0.238287 0.190222 0.280173 0.1627

1.8Ghz 0.320122 0.325161 0.322593 0.325064 0.315132 0.326518 0.323514 0.323514 0.322702 0.0036
1.8Ghz + random quantum 0.574592 0.37245 0.470565 0.474538 0.554048 0.560167 0.445661 0.368574 0.477574 0.0811

1.2Ghz 0.543292 0.52958 0.536169 0.538253 0.531179 0.527157 0.537865 0.536993 0.535061 0.0053
1.2Ghz + random quantum 0.626871 0.564998 0.580261 0.751343 0.644992 0.701329 0.703038 0.583459 0.644536 0.0682

between the stolen secret and the real one, we calculated the

edit distance [31] between them. The edit distance is the total

number of insertion, deletion, and substitution operation required

to transform a string to another; the error rate is estimated as the

edit distance divided by the length of the secret.

 0

 0.1

 0.2

 0.3

 0.4

 0.5

 0.6

 1.2  1.4  1.6  1.8  2  2.2  2.4  2.6  2.8  3

E
rr

o
r 

ra
te

CPU frequency (Ghz)

Figure 3: The error rate of stolen secrets for 2048-bit RSA key

under different peer CPU frequencies

Defense and Results. Under CREASE’s protection, the frequency

of the attacker’s physical CPU core is lowered while the principal

VM’s CPU frequency is temporarily boosted to a high value (e.g.,

3.0Ghz). Figure 3 shows the relationship between the error rates

of stolen secrets and the CPU frequency of the attacker. All results

are average of 10 runs. The results demonstrate that the error

rates of the stolen secret increase along with the decrease of

the frequency of the attacker’s pCPUs. When an attacker’s CPU

frequency drops to a minimum value (e.g., 1.2Ghz), the error rate

reaches to 54%, which makes it nearly infeasible to recover the

key according to our security analysis and prior studies [57], [21].

Yet, the error rate is as low as 3.8% without protection, by which

an attacker can be fairly easy to recover the key.

To further demonstrate the effectiveness of dynamic quantum

randomization, we co-ran two other VMs together with an at-

tacking VM on the same physical CPU core to simulate an

overcommitting scenario in a real cloud setting. The other two

VMs were running the data-analytics workload from CloudSuite.

We tested the effectiveness under the three protection levels.

As shown in Table 2, the combination of CPU frequency scaling

and dynamic quantum randomization makes the rate error not only

higher but also more unstable. The average error rate increases

from 12.7% to 28.02% at 2.3Ghz (similarly for 1.8Ghz and

1.2Ghz) and the standard deviation increases from 0.0065 to

0.1627 at 2.3Ghz. The reason for the instability is that a smaller

and random scheduling quantum gives less execution time for the

attacker to probe the cache activities of the victim, which results

in more missing pieces for the stolen secrets. Applying dynamic

quantum randomization alone may increase the instability of the

error rate, as shown in the third row of Table 2. However, the

error rate is still small in most cases, which means the attacker

can recover most of the sensitive data.

6.2 Performance

Performance of Principal VMs. We evaluated the performance

of a protected VM by running six typical applications in turn on

a protected VM. Three of the applications involve cryptographic

operations: GnuPG (1.4.13), Nginx https connections (1.9.7 with

OpenSSL 1.0.2d), and scp (in OpenSSH 4.0p1). We evaluated the

performance of GnuPG by measuring the time to decrypt a 1GB

file encrypted using the RSA encryption. Nginx is a web server

which supports Transport Layer Security (TLS) protocol used in

https connections. We ran a client in another VM residing in

another physical server but within the same subnet. To evaluate the

performance of https connections, we ran ApacheBench 2.3 in the

client to request a static page of 612 Bytes (the default index.html

file with Nginx). The reported results were averaged latencies of

500,000 requests. Scp is a network data transfer protocol built on

top of secure shell (ssh). We transferred a 383 MB file using scp

and evaluated the time to complete the total transfer.

We also ran other three applications from PARSEC [12] in the

principal VM: ferret, dedup and canneal. They present CPU-

bound applications with different memory and cache requirements.

The input to these benchmarks was “native” and the number of

threads was the same as the number of vCPUs in the VM.

All six applications were slightly modified to use CREASE’s

hypercall to select protection levels during runtime. We created

ten VMs, one for the principal and nine for the peers. Four of

the nine peers ran data-serving benchmarks, and five ran data-

analytics benchmarks.

Figure 4 shows the performance for benchmarks in the principal

VM. As expected, due to boosted frequency, all principal VMs

run faster than normal runs. Yet, if an application chooses a higher

protection level, the performance further increases slightly (from

12.55% to 12.69% and to 13.76% for low, medium and high

protection levels), even though the principal VMs all run at the

highest frequency (i.e., 3.0Ghz). The reason is that the slower the

peers run, the less interference in the last level cache from the

peers will be. As scp is involving copying a large file and thus

is more memory and I/O intensive than CPU-intensive, boosting

the CPU frequency only leads to 1.4% performance speedup.

Nevertheless, this still creates a notable gap between a principal

VM and the peers for security protection against Crum attacks.

Overhead of the peers. To evaluate the performance overheads

of peers, we ran four CloudSuite benchmarks (data-serving data-

analytics, data-caching and media-stream) and ten PARSEC

benchmarks. The data-serving workload relies on YCSB 0.1.3

and Cassandra 0.7.3 to benchmark data store systems; we ran

both the client and the server on the same VM for simplicity. The
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Figure 4: Performance speedup for principal applications
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Figure 5: Performance overhead for peers running CloudSuite

server stored 5,000,000 records and the client executed 500,000

(50% update operations) operations on all records. We evaluated

the average update latency. The data-analytics workload used

Hadoop 20.2 to perform Bayes classifier on a 162MB Wikipedia

document; we evaluated the total execution of the classifier. The

data-caching workload uses Memcached 1.4.15 to simulate the

behavior of a Twitter caching server using a 1.2GB Twitter dataset.

The metric of interest is the throughput calculated as the number of

requests served per second. The media-stream workload uses the

Darwin Streaming Server to benchmark video streaming behavior.

We evaluated the average transferring speed. All the PARSEC

benchmarks used the default configuration. The performance

was evaluated when the principal VM execute sensitive opera-

tions (CREASE-sensitive) and non-sensitive operations (CREASE-

nonsensitive). As there is no attack here, CREASE enabled the low

protection level by default.

Figure 5 and Figure 6 show the overheads of peers running

CloudSuite and PARSEC accordingly. The results show that

when the principal executed non-sensitive operations, the average

overhead is about 1.93% and 0.63% for CloudSuite and PARSEC

accordingly. Due to the fine-grained monitoring when turning on

protection, the average overhead of peers increases to 2.54% and

3.06% respectively.

Comparison with other approaches.

There are other approaches to defending against Crum attacks.
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Figure 6: Performance overhead for peers running PARSEC
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Figure 7: Performance comparison between CREASE and other

state-of-the-art approaches using SPEC CPU 2006 when enabling

protection

CacheBar [60] is a state-of-art approach to mitigating the last

level cache side-channel attacks. It leverages copy-on-access for

physical pages shared among multiple security domains (for

FLUSH+RELOAD attack), and manages cacheability for pages to

limit the number of cache lines per cache set that an adversary can

occupy simultaneously. It evaluates using SPEC CPU 2006 and

reports their results in the paper. We evaluated CREASE using

SPEC CPU 2006 benchmarks and compared it with CacheBar,

as shown in Figure 7. CacheBar incurs larger overhead for some

workloads (perlbench, bzip2 and h264ref) and the average over-

head is 52.27%, which is larger than CREASE (32.66%).

Nomad [39] is a migration-based solution which migrates one

victim VM to different physical machines when necessary. It

assumes that cache-based side channel attack is capable of ex-

tracting a key in few minutes, which is not the case based on our

evaluation. In fact, we observe that a 2048-bit key can be extracted

within 30 milliseconds. Moreover, the migration-based defense

cannot eliminate the threat if multiple attackers reside on different

physical servers. We also evaluated the performance overhead of

the migration-based solution, as shown in Figure 7. Its average

overhead on SPEC CPU 2006 benchmarks is 103.91%, which is

also larger than CREASE (32.66%).
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Table 3: Error rates of colluding attacks on GnuPG (RSA’s 2048-bit key) based upon 8 independent experiments

Experiment #1 #2 #3 #4 #5 #6 #7 #8 Mean

Type 1 under 1.2Ghz 0.091443 0.093399 0.1022 0.101711 0.094377 0.08802 0.083619 0.090465 0.093154
Type 1 under 1.2Ghz and random quantum 0.279707 0.281663 0.207335 0.26357 0.266015 0.235208 0.280685 0.220049 0.254279
Type 1 under 50 CAP value 0.450367 0.452812 0.471394 0.482152 0.516381 0.451834 0.472861 0.535452 0.479157

Type 2 under 1.2Ghz 0.325183 0.300244 0.331051 0.343276 0.337408 0.303178 0.290954 0.353545 0.323105

7 DISCUSSION

Multi-core collusion. The SA evaluates the risk posed by the peer

from the performance data collected from the PMU of its core.

A potential security risk is that the adversary controlling multiple

cores could distribute the attack workload across these cores, keep-

ing the behavior of a single core inconspicuous while collectively

gathering a sufficient amount of information for recovering the

principal’s secret. Currently, the colluding threat has not been

thoroughly investigated in all prior studies and its implication is

still less clear. Here we conduct a preliminary study to understand

its impact on CREASE and evaluate the effect of possible defenses.

Basically, there could be two types of colluding models. The first

one (type 1) aims to make up for the speed loss caused by lowered

frequency by accumulating the processor power of multiple cores.

Take PRIME+PROBE as an example, if the frequency of the

attacker is much lower than the victim’s, it is possible that the

victim has already accessed the cache set before the attacker

finishes priming the cache set. To quickly prime a cache set,

an adversary can anticipate two probing programs residing on

different cores, each of which priming half of the cache set. The

concrete steps are as follows:

• Step 1: The main thread creates one priming thread and

pins it to a new core. Both threads keep executing three

operations: priming the half of the target cache set, waiting

for a period of time, and probing the half cache set.

• Step 2: The main thread starts to prime the other half

of the cache set with the same three operations. If the

victim accesses the target data or instruction, one of the

two threads would detect the access in the probe operation.

The first two rows in Table 3 show the error rates of stolen

secrets without and with schedule quantum randomization when

both CPU cores’ frequencies are lowered to 1.2Ghz. Without

schedule quantum randomization, this type of colluding attack can

recover secret with a reasonable error rate. However, with schedule

quantum randomization, the error rate gets significantly higher

such that it is infeasible to recover the secret, due to the fact that

the two cores are less likely to run together thanks to misaligned

execution. One special case is the adversary VM monopolizes the

two cores, where CREASE can set the limit to the accumulated

resource for the VM, i.e., setting the cap of the VM to fix the

maximum proportion of CPU it can use. With the cap setting as

50 (i.e., 50% ratio), the error rate will grow significantly to the

level where it is hardly possible to recover any secret.

The second type of colluding attack (type 2) is using multiple

cores to probe all cache sets, with the goal of collecting different

sample sequences during monitoring and increasing the accuracy

by comparing the sample sequences collected by different cores.

To evaluate its effectiveness, we use one core to monitor the square

function and the other to monitor the multiply function. For type

2 scenario, the sample sequence collected by two attackers should

be combined to restore the actual behavior of the victim. However,

simple combination is unable to produce the accurate result. Row

4 in Table 3 shows that the error rates of the type 2 model under

1.2Ghz, which is infeasible to recover the secret. Type 2 is less

effective than type 1 because it is harder to align the secrets

collected by different cores.

We also evaluated the case of using more CPU cores for colluding.

Interesting, the error rates for both types of colluding attacks

increase significantly compared to the 2-core case, e.g., the error

rate increases from 9.3% to 48.7% when using 4 cores for the

type 1 attack. The reason is that, with more cores colluding, it

becomes extremely harder for such cores to synchronize and/or

align the stolen secret pieces together. Further, we briefly studied

the case of using multiple cores instead of multiple VMs to do the

colluding, which turns out to be much harder since it is more

difficult for multiple VMs to synchronize their operations and

align secret pieces. Further, colocating more than one VMs with

a victim VM is extremely hard given that the VM placement is

controlled by the cloud provider [45].

Mitigating the colluding attacks: we only consider the defense in

the type-1 scenario since this attack is easier to implement. Under

this scenario, two attackers should keep priming the half cache

set, which can be detected by our SA module. The basic idea of

defending against such attacks is to leverage random scheduling

quantum and prohibiting the attackers from co-running with each

other. As shown in the second line in Table 3, random scheduling

quantum can significantly increase the error rates for such attacks.

Meanwhile, we can limit the accumulated CPU resources used by

the two cores, such as setting the cap value of the vCPU.

Covert channel. One potential issue is that CREASE creates a

covert channel between two VMs such that one VM can have in-

sight into each other’s CPU usage through the situation awareness

module. However, as discussed in section 3.3, all that the situation-

aware module tells the VM is nothing more than whether one of its

peers apparently presents a side-channel threat, which is very thin

and barely adding to the principal’s knowledge, not to mention

any utility for a cross-VM attack. Besides, even if a malicious

principal is able to guess peers’ current execution behaviors from

the thin channel, it cannot know exactly what a specific peer’s

behavior is. Further, CREASE can easily detect this covert channel

due to frequent risk assessment. On the other hand, if all these

VMs intend to do is just colluding, they can easily utilize other

mechanisms such as KSM, burst I/O, caches and memory burst.

Multiple principals. As discussed in section 3.1, our current

implementation of CREASE allows running only a single principal

(for a CPU socket) at a time. This prevents a malicious attacker

to purchase more CPU frequency and quanta to perform Crum

attack of other peers, which will not be executing security-

critical operations without being elevated as a principal. Hence,

a malicious VM trying to produce a speed gap between itself and

other VMs only waste the attackers’ money without being able

to steal any useful information. If multiple VMs running on the

same CPU socket do ask for protection at the same time, CREASE

handles them through an unblocked FIFO queue. The VMs unable

to be boosted will wait in the queue. Upon rejection, CREASE
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will return a waiting time number indicating when the rejected

VM can invoke the interface again to get boosted. To reduce the

performance impact for the rejected VM, the waiting VMs will

not be blocked, which means they can do other work. When the

time is up, the VM can reapply again. To make up for the time

cost of one request that is waiting in the queue, the cloud provider

may grant a discount to it.

An attacker may issue malicious and frequent CPU requests to

ask for protection, which blocks the victim needing to perform a

critical operation. To mitigate the effects of such a DoS attack,

CREASE limits the time duration a guest can boost itself. This

is reasonable since a VM usually sends a CPU request for small

operations like AES/RSA encryption. Under such situation, even

if a malicious guest VM blocks the victim, the blocking time will

not severely affect the victim. Moreover, if one VM is severely

affected by such DoS attack, CREASE will migrate one of the

API users to a different socket. We leave the details to handle

such a case to our future research.

Financial attacks. Another possible attack is that an adversary

may purposely generate noise workloads to trigger the SA to

flag a false alarm to raise the risk level. The adversary may be

pretending to perform Crum attack while being only interested in

increasing costs for the competitor’s VM. However, a higher level

of security guarantee should come with a price. A company has

the confidence to ask its customers for more money if it can guar-

antee to provide higher security compared with its competitors.

Furthermore, if a suspicious VM constantly behaves like a Crum

attacker and there is one VM in the same socket keeps invoking

CREASE API, the cloud provider can treat such frequent alarms

as an indication of malicious customers; the provider can migrate

the VM away.

8 RELATED WORK

Hardware solutions. New cache designs were proposed to defeat

various cache-based side-channel attacks. These solutions include:

using relaxed includsive cache [26], partitioning shared caches

dynamically to isolate the principal and the adversary [41], [16],

[50], [51], [29], introducing randomness into the cache usage [51],

[52], [35], [27], and coarsening the fine-grained time keeping in

modern processors with new ISA designs [37]. Although these

approaches are promising, they are specific to CPU cache-based

side-channels. Liu et al. [33] proposes a comprehensive defense

against memory-traces (e.g., cache access patterns, memory bus

access patterns) that involves both new hardware support and

software modification. However, such a method induces as much

as 195× slowdown. One major limitation of hardware-based

approach is that the time window required to have them included

in commercial hardware is very long, if not indefinite. Therefore,

their adoption by public cloud providers for practical side-channel

defenses is less likely, compared to our approach.

OS solutions. OS-based solutions refer to side-channel counter-

measures that are implemented in the privileged software layers,

such as operating systems or hypervisors. In the case of public

clouds that we consider, they particularly mean hypervisor-based

solutions. Our approach falls into this category. Similar to the

hardware-solution counterparts, one direction of OS-supported

approaches is to partition the shared caches [43], [46], [28], [34],

[60]. Although effective against targeted attacks, these methods

are too narrow in scope and failed to consider other types of side-

channel attacks. Eliminating fine-grained timer by virtualizing

RDTSC instructions [48] can be easily adapted to work in the

cloud, but experiments show that such a method may render the

operating system unstable. Moreover it fails to consider other

sources for time keeping. Enforcing deterministic execution in

cloud computing is another viable solution [8], [32], which un-

fortunately induces higher than acceptable performance overhead

for practical use. Zhang et al. [59] have proposed to inject random

noise particularly to defeat L1 cache attacks and Varadarajan et

al. [47] studied security-aware scheduling algorithms to mitigate

the per-core side-channel threats. These methods do not consider

other vectors of attacks such as shared last-level caches. Moon

et al [39] studied live VM migration based side-channel protec-

tion in public clouds. This method can be applied to defeat all

side channels that exploit shared resources. Our approach also

considers the willingness of cloud provider to adopt side-channel

defense techniques by integrating the defense methods into the

cloud pricing model, and therefore has better chance of adoption.

Software solutions. Software transformation is yet another cat-

egory of side-channel defenses, including eliminating secret-

dependent data flows and control flows [38], [13] and introducing

decoy execution traces into the software program so that the

true execution traces are obfuscated during the adversary’s side-

channel analysis [44]. These approaches effectively defeat all side-

channel attacks but at the same time come at a very high perfor-

mance cost (e.g., one or two magnitudes higher runtime overhead).

Software diversification [14] offers probabilistic defense against

cache side-channel attacks, by randomly and frequently switch

between program replicas with the same semantics. This method

reduces the performance overhead to acceptable level (e.g., around

100% overhead) but at the same time weakens the ability to

provably defeat side-channel attacks. In general, these software

approaches are promising in certain context, but due to the

complexity of use and high performance overhead, it is unsuitable

for cloud settings.

Other non-defensive approaches. Doychev et al. [17] present

a method to detect side-channel vulnerability via static analysis.

Irazoqui et al. [24] instead proposed to statically analyze programs

for malicious side-channel attack code, but the requirement of

examining all binary code is not suitable for public clouds.

9 CONCLUSIONS

This paper presents CREASE, a new technique to defend against

cross-VM runtime monitoring. CREASE is shaped by a resource-

elastic design that combines dynamic CPU frequency boosting

and randomized scheduling to temporarily give more resources

to a principal to outpace the peer. Further reducing the cost

is the situation-awareness technique that continuously monitors

peers without interfering their operations. Evaluation shows that

CREASE is both effective and lightweight, incurring small over-

heads for both the principal and the peer.
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