
ReminISCence: Trusted Monitoring
Against Privileged Preemption

Side-Channel Attacks

Weijie Chen1, Yu Zhao1, Yinqian Zhang4, Weizhong Qiang1,3(B),
Deqing Zou1,3, and Hai Jin2

1 National Engineering Research Center for Big Data Technology and System,
Hubei Key Laboratory of Distributed System Security, Hubei Engineering Research
Center on Big Data Security, School of Cyber Science and Engineering, Huazhong

University of Science and Technology, Wuhan 430074, China
{weijie chen,z y,deqingzou}@hust.edu.cn, wzqiang@hust.edu.cn

2 National Engineering Research Center for Big Data Technology and System,
Services Computing Technology and System Lab, Cluster and Grid Computing Lab
School of Computer Science and Technology, Huazhong University of Science and

Technology, Wuhan 430074, China
hjin@hust.edu.cn

3 Jinyinhu Laboratory, Wuhan 430040, China
4 Department of Computer Science and Engineering, Research Institute of

Trustworthy Autonomous Systems, Southern University of Science and Technology,
Shenzhen 518055, China

yinqianz@acm.org

Abstract. Trusted Execution Environments (TEEs) have long served as
a prominent security measure for ensuring isolation and data privacy in
cloud environments. However, their security foundations face challenges
from numerous side-channel threats, particularly those involving privi-
leged capabilities that enable potent preemption attacks. Various solu-
tions exist to mitigate these attacks, including monitoring-based ones
featured with higher efficiency. Unfortunately, existing monitoring-based
solutions do not consider privileged preemption attacks and, therefore,
are not qualified for trusted monitoring within TEE enclaves. In this
paper, we propose ReminISCence, a novel trusted monitoring framework
designed to mitigate privileged preemption side-channel attacks on TEE
architectures. We present a trusted scheduling design that enforces con-
trol over the timer interrupts, which ensures the monitoring relies on
untampered trusted time slices with valid lengths and cannot be bypassed
via arbitrary timer preemption. Consequently, the privileged adversary
is constrained to performing preemption attacks within trusted time
slices solely via non-timer interrupts, which are confidentially monitored
with full coverage by ReminISCence. We implement the ReminISCence
prototype on off-the-shelf RISC-V hardware by extending the OpenSBI
and leveraging the RISC-V HPM facility. Our evaluations demonstrate
the prototype’s effectiveness and resilience to evasion in monitoring
and analyzing preemption attacks of various RISC-V microarchitectural

c© The Author(s), under exclusive license to Springer Nature Switzerland AG 2024
J. Garcia-Alfaro et al. (Eds.): ESORICS 2024, LNCS 14985, pp. 24–44, 2024.
https://doi.org/10.1007/978-3-031-70903-6_2

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-031-70903-6_2&domain=pdf
https://doi.org/10.1007/978-3-031-70903-6_2

ReminISCence 25

side-channels while maintaining high temporal resolution with negligible
performance overhead (approximately 1% overhead at a resolution of 125
us).

Keywords: Side-channel · Preemption attacks · Hardware
performance monitor · Trusted execution environment · RISC-V

1 Introduction

With the prevalence of cloud computing comes the demand for data privacy and
trustworthiness, across architectures and hardware. In response, a plethora of
TEEs for various architectures have been extensively explored in both academia
and industry, including the most far-reaching ones, such as Intel SGX [23], ARM
TrustZone [3], and RISC-V Keystone [31], upon which in-depth research and
ecosystem are established.

Unfortunately, the resource-sharing nature of multi-tenant clouds breeds
numerous microarchitectural side-channel attacks, including cache-based [36,50,
52], TLB-based [20], and transient attacks [27,34], etc. Initially, side-channel
adversaries are considered unprivileged with quite limited capabilities, and most
TEE designs explicitly exclude side-channel issues from their threat models.
Nevertheless, these attacks have also been proven feasible on modern TEEs,
effectively leaking enclave information and challenging their security founda-
tions [8,9,22,46]. Even more concerning is that within the TEE context, where
the attacker could compromise the OS, the original unprivileged side-channel
attacks can evolve into more potent forms. Specifically, the untrusted OS is still
responsible for resource allocation and scheduling. Thus, a privileged attacker
can control the interrupt handling and frequency of the enclave, enabling enclave
program preemption at arbitrary intervals and much finer-grained side-channel
observations (e.g., instruction-by-instruction) [11,12,28,48,49].

In this regard, numerous protection techniques have been presented to mit-
igate side-channel threats. Application-based methods aim to eliminate side-
channel vulnerabilities at the source code or binary level, such as constant-
time programming [6,7] and obfuscated execution [35,42]. However, their secu-
rity is no longer guaranteed under privileged attacks, which can bypass these
approaches with much higher attack resolution and distinguish target informa-
tion from obfuscation. Moreover, hardware-based solutions also exist, such as
partitioning [15,43] and usage randomization [45,47], but according to [19], these
hardware modifications do not appear to be favored by up-to-date CPUs.

Apart from these, several runtime monitoring solutions have also been pro-
posed, which can act as an oracle for runtime mitigations featured with higher
efficiency and flexibility. Nevertheless, in the context of privileged side-channel
attacks within TEEs, these solutions fail to exhibit the necessary trustworthiness
and security. On the one hand, unprivileged monitoring techniques [30,40,51],
which constitute the majority of them, cannot guarantee the trustworthiness of
their monitoring process under the TEE threat model. As their code and data are

26 W. Chen et al.

not protected from external tampering, and they rely on untrusted data sources
(e.g., OS-provided interfaces such as perf and PAPI) for HPM sampling, the
privileged adversary can easily manipulate and defeat them. On the other hand,
as HPM hardware resources are usually core-specific, privileged monitoring tech-
niques [29,44] can be bypassed by the privileged adversary using the preemption
capability to schedule the enclave to other cores at will. Furthermore, existing
approaches overlook the hazards of exposing the HPM service to lower privileges,
potentially opening new side-channel surfaces while dealing with existing ones.
Notably, even if the untrusted OS cannot directly access and tamper with the
HPM, a malicious enclave instance can still exploit the monitoring mechanism
to obtain side-channel information of other enclaves sharing the same hardware.

To address these challenges, we propose ReminISCence, a novel trusted mon-
itoring framework against privileged preemption side-channel attacks. Specifi-
cally, ReminISCence contains three key security designs: confidential sampling,
interface abstraction, and trusted scheduling, which cover the security implica-
tions when considering privileged adversaries within TEE environments. Con-
fidential sampling lays the security foundation that ReminISCence’s compo-
nents and data sources cannot be learned or tampered with externally. Interface
abstraction prevents malicious enclaves from abusing ReminISCence to obtain
side-channel knowledge from others. Trusted scheduling is the key design that
ensures valid sampling based on trusted time slices and achieves full-coverage
monitoring combined with enclave-core awareness. We have implemented Remi-
nISCence on an off-the-shelf RISC-V platform without hardware modification by
moderately extending the OpenSBI firmware. Our implementation demonstrates
effective monitoring with high temporal resolution and negligible performance
overhead.

In summary, we make the following contributions in this paper:

– We propose ReminISCence, a novel trusted enclave monitoring framework
designed to counter privileged preemption side-channel attacks in typical TEE
architectures. The framework consists of three security designs: confidential
sampling, interface abstraction, and trusted scheduling, which ensures the
monitoring is tamper-proof against the privileged adversary and based on
trusted time slices that cannot be bypassed via preemption.

– We implement the ReminISCence prototype on off-the-shelf RISC-V hard-
ware, which enforces trusted monitoring by extending the OpenSBI and uti-
lizing the RISC-V HPM facility.

– Using the prototype, we monitor preemption attacks across a wide range of
RISC-V microarchitectural side-channels and demonstrate the effectiveness
and resilience to evasion. We demonstrate that the prototype can achieve
very high temporal resolution with negligible performance overhead (approx-
imately 1% overhead at a resolution of 125 us).

For the remainder of this paper, Sect. 2 introduces necessary background
knowledge. Section 3 explains the threat model and system overview of Remi-
nISCence. Section 4 presents the detailed implementation of the ReminISCence

ReminISCence 27

prototype on RISC-V. Section 5 evaluates ReminISCence and analyzes the exper-
imental findings. Section 6 discusses related works on HPM-based monitoring.
Section 7 draws the conclusion of this paper.

2 Background

2.1 Privileged Side-Channel Attacks

Previous studies have shown that unprivileged side-channel attackers can inter-
rupt the victim’s execution for more precise observations by tricking the under-
lying OS or hypervisor schedulers [52]. While under the TEE context, privi-
leged side-channel attackers, namely a compromised OS responsible for enclave
scheduling and trap handling, can achieve this goal more easily. In consequence,
side-channel attacks evolve to more direct and potent forms known as preemption
attacks, which can be generally categorized into exception-based and interrupt-
based.

Exception-Based attacks. Also known as the controlled-channel attack [49],
the untrusted OS manipulates an Intel SGX enclave’s page table to leak its
page-level information without noise, by triggering page faults and observing
the trace of the faulting addresses. However, recent TEE designs, such as RISC-
V ones [5,15,31], have drawn lessons from Intel SGX and have straightforwardly
addressed the exception-based attacks by depriving page tables and virtual-to-
physical mapping management from the untrusted privileged software.

Interrupt-Based Attacks. A malicious OS can abuse an off-chip interrupt
controller to trigger high-frequency interrupts towards the enclave. Existing
works on various TEEs [11,28,48] have demonstrated the hazard posed by such
preemption attacks that greatly amplify the observation resolution based on
various side-channel primitives. In particular, SGX-step [11] has achieved the
highest instruction-by-instruction resolution through single-stepping the SGX
enclaves and has bred many other astounding attacks over the years [9,10,12].

2.2 Hardware Performance Monitor

HPM is a platform-specific, hardware-driven facility initially designed to cap-
ture and analyze detailed execution performance metrics. Generally, hardware
performance counters (HPCs), a group of dedicated registers that record run-
time hardware events, are the key hardware component of HPM. Major ISAs
like x86, ARM, and RISC-V have all introduced their specific HPM standards
and monitoring solutions [2,26,32]. Besides conventional usage, studies have also
shown HPM’s potential for security problems, such as malware and side-channel
attack detection [39,51]. Currently, the latest RISC-V privileged specification
covers a maximum of 32 HPCs, divided into two parts: 1) three mandatory
fixed-function counters (CTI counters), namely cycle, time, and instret; 2)
at most 29 event-programmable HPM counters [2,17], which can be configured
with platform-specific events.

28 W. Chen et al.

2.3 RISC-V Infrastructures

RISC-V is an ISA with a fully open standard based on the reduced instruction
set computer design principles. It aims to be extensible and customizable for var-
ious scales of computing systems. In RISC-V systems, only the highest privilege
level M-mode (Machine) is mandatory. As the complexity increases, U extension
for U-mode (User) and S extension for S-mode (Supervisor) can be added for
conventional application and operating system usage, respectively.

RISC-V Traps. In RISC-V terminology, traps denote abnormal control flows
from a lower to a higher privilege level. Traps consist of asynchronous inter-
rupts, which are independent of execution of the current hart (hardware thread,
a RISC-V term for logical core), and synchronous exceptions directly attributed
to the execution. Specifically, there are three types of interrupts in RISC-V:
timer, software, and external interrupts, where timer interrupts are responsi-
ble for scheduling, and software interrupts are used to generate known inter-
processor interrupts (IPIs).

RISC-V SBI. The RISC-V supervisor binary interface (SBI) is a standard
that defines the calling convention and execution environment under a Unix-like
OS, aiming to provide the S-mode software with an interface to M-mode-only
hardware resources as well as portability across different platforms. Currently,
there are several well-established and widely-used SBI implementations such as
OpenSBI [4] and RustSBI [37].

3 System Design

3.1 Threat Model

We align our threat model and basic design principles with TEEs, assuming
that the OS might be compromised or malicious and that all untrusted compo-
nents in the system cannot extract or tamper with the enclave’s private memory.
This paper focuses on privileged microarchitectural side-channel attacks, where
the adversary can conduct preemption attacks with various primitives. As is
explained in Sect. 2.1, we do not cover exception-based attacks in this paper, as
they are eradicated in recent TEE designs. When considering evasion techniques,
we align with the assumptions proposed by [25], pointing out that side-channel
attacks are time-sensitive and the attacker cannot advance the attack arbitrar-
ily slowly. This closely aligns with the goal of preemption attacks to obtain very
fine-grained and accurate observations.

Given our focus on microarchitectural side-channels, we exclude consideration
of untrusted entities exploiting general software vulnerabilities in the enclave
program, such as logical and memory corruption bugs. Also, we do not consider
transient execution attacks and cross-core attacks as their mitigations can be
extended orthogonally to our approach, as well as SMT-driven attacks that can
be mitigated by reasonably disabling SMT according to security requirements.

ReminISCence 29

3.2 ReminISCence Overview

ReminISCence is a trusted enclave monitoring framework designed to mitigate
privileged side-channel threats on typical TEE systems. Figure 1 illustrates the
overview of ReminISCence. The usage of ReminISCence can be integrated as a
general, default enforcement to all enclaves or as an optional feature based on
the enclave application’s security requirements. The running enclaves with Rem-
inISCence enabled are referred to as monitored enclaves, whose execution should
be entirely under surveillance. When considering privileged adversaries within
TEE environments, the methodologies and security implications must be recon-
sidered as they differ significantly from those proposed in existing monitoring
solutions. Therefore, we explain the three security designs of ReminISCence that
are essential to monitoring against the privileged preemption adversary model.

ReminISCence Framework

Scheduling

Monitor

Sampling

Module

Data

Processor

Trusted HPM
Hardware

PL1

Monitored Enclaves

Trusted Time Slice.

Normal Enclaves

PL0

Untrusted Proc.

PL2
Mitigations

(Optional)

Native TEE

Trusted Scheduling

Fig. 1. Overview of ReminISCence (PL2, HPM, and enclaves are trusted)

Confidential Sampling. Confidential sampling is the fundamental foothold
of ReminISCence’s monitoring trustworthiness. Specifically, all the framework’s
internal code and data, as well as its sampling and communication processes
with the target enclave, cannot be intercepted or tampered with by unauthorized
entities, including the untrusted OS and potentially malicious enclave instances.
Therefore, instead of relying on an external source (i.e., OS-provided facilities),
the framework must sample from a trusted data source, typically through direct
access to the trusted HPM hardware. In practice, the framework should be imple-
mented as a TEE extension in the monitor privileged level (PL2), typically
the highest privilege level for conventional TEEs and the hypervisor privilege
level for VM-based TEEs (containing the secure VM manager, not shown in
the figure). On the one hand, being in PL2 makes the framework inherently
confidential against the lower privileged untrusted OS (PL1) and enables it to
acquire runtime information about the enclaves from the native TEE’s security
monitor, including their identifier and running core. On the other hand, as HPM
facilities usually incorporate a hierarchical accessibility mechanism for security
concerns, the highest privilege mode has the ultimate control over the HPM,

30 W. Chen et al.

which can restrict HPM access from lower privilege levels to ensure data source
trustworthiness.

Interface Abstraction. While confidential sampling is primarily against priv-
ilege capability issues of the OS (PL1), interface abstraction focuses on pre-
venting malicious enclaves (PL0) from abusing ReminISCence. Specifically, the
framework should only provide necessary interfaces to the monitored enclave.
For instance, HPM resources should never be exposed to or configurable in user
space through ReminISCence functionalities. Also, the internal states managed
by ReminISCence should be agnostic to the target enclave. Regarding monitored
results, if any, the framework can only return the monitored enclave with highly
abstract results that reveal no low-level execution information. The abstraction
aspect is often overlooked, resulting in the unintended creation of new side chan-
nels while attempting to address the existing ones. In our implementation, we
deploy a machine-learning-based data processor for interface abstraction.

Trusted Scheduling. Many HPM resources are typically core-specific, making
them sensitive to core scheduling. Consequently, privileged preemption capa-
bilities can be exploited to disrupt and bypass the monitoring by arbitrarily
scheduling the enclave to another core on the sneak. To address this, we pro-
pose trusted scheduling as a pivotal component of ReminISCence, tackling privi-
leged preemption attacks and ensuring trusted monitoring. First, the framework
should capture and have ultimate control over all interrupts during the monitored
enclave’s execution. Here, we categorize interrupts into timers and non-timers,
with timers responsible for periodically interrupting enclave processes and per-
forming scheduling decisions. The privileged adversary chooses either timers or
non-timers to achieve high-frequency preemption. For timers, ReminISCence
restricts their duration with a lower bound, ensuring that monitoring is built on
trusted time slices with valid lengths. Otherwise, the timer-based preemption
attacks can still be performed with high frequency, as well as severely com-
promising monitoring trustworthiness. For instance, scheduling the enclave to
another core before a sampling interval finishes creates unmonitored windows.
In the worst case, when the scheduling is always triggered faster than the first
sampling of the time slice, the monitoring would be fully bypassed as no valid
sampling can be made. In other words, trusted scheduling not only assures mon-
itoring trustworthiness but also mitigates timer-based preemption attacks as the
frequency of timers is censored and controlled. For non-timers, altering their
arrival time or restricting their frequency may impact the usability and function-
ality of the enclave program. However, with timers controlled, non-timer-based
preemptions targeting the trusted time slices are fully monitored by ReminIS-
Cence. Additionally, the framework is aware of the core on which the monitored
enclave is executing by tracking this information through the native TEE. This
ensures that ReminISCence monitors the entire execution of the enclave and
the monitoring is performed on the proper core’s HPM, and also prevents the

ReminISCence 31

malicious OS from illegally scheduling the enclave to another core through non-
timers.

According to Fig. 1, ReminISCence contains three main functional parts: the
scheduling monitor, the sampling module, and the data processor. The sam-
pling module directly retrieves raw data from the trusted HPM facility through
interrupt-based sampling approaches that provide dynamically adjustable sam-
pling intervals and require no modification on the enclave program. The alter-
native polling-based sampling approaches are unsuitable because the sampling
point depends on the enclave execution and may not fit into the trusted time
slice. The scheduling monitor mainly enforces our trusted scheduling design,
which checks interrupts and tracks the core residence (enclave-core awareness)
during the monitored enclave’s execution. The data processor is responsible for
transforming the raw data from the sampling module and enforcing the interface
abstraction on the final results that may be delivered to the monitored enclave.
The final results or internal states can be further used as an indicator for optional
runtime mitigations extended in the native TEE.

As stated above, the framework typically resides in the monitor privilege
level, which implies the highest privilege level containing the security monitor
of conventional TEEs. Although this paper does not delve into virtualization
settings as RISC-V H-mode (Hypervisor) is still on its way to hardware integra-
tion, here we briefly discuss how ReminISCence can be applied to cutting-edge
VM-based TEE designs of various architectures. As for ARM CCA, the trusted
monitoring mechanism can be extended to the trusted Realm Manager Monitor
(RMM) that resides in the exception level 2 of the Realm world and manages
all secure VMs (Realms) inside the world. The ARM Coresight architecture [32]
also explicitly recommends HPM implementations to enforce observability and
access control over different worlds, which complies with the confidential sam-
pling design. However, it might be challenging to extend ReminISCence to x86
counterparts. The Intel TDX module, which runs in a special SEAM processor
mode and provides interfaces for the hypervisor to schedule and manage secure
VMs, is proprietary to Intel. Fortunately, Intel TDX module specification has
enforced countermeasures against interrupt-based attacks that a secure VM con-
tinues executing a random amount of instructions if interrupted too soon after
resuming [24]. As for AMD SEV, it features encryption-based memory isolation
and does not incorporate a trusted counterpart like the RMM or the TDX mod-
ule, which makes it hard to underpin trusted scheduling. Also, the x86 PMU is
normally accessible from ring 0, at which the untrusted OS runs, so confiden-
tial sampling is unable to be achieved unless further PMU access controls are
applied.

4 Implementation

This section outlines the ReminISCence implementation details. We implement
the ReminISCence prototype on an off-the-shelf RISC-V hardware platform,
StarFive VisionFive V2. The entire implementation is software-only, extending

32 W. Chen et al.

Table 1. Platform parameters

Description Value

Hardware name StarFive VisionFive V2 (DT)

CPU RISC-V U74 Quad-Core V64GC ISA SoC@1.5 GHz

Priv. Spec. Ver. v1.11

OS Debian GNU/Linux bookworm/sid

Kernel Linux 5.15.0-starfive

HPM cycle, time, instret, hpmcounter3/4

the M-mode OpenSBI from the standard v1.0 version. Detailed parameters of
our experiment platform are illustrated in Table. 1.

4.1 ReminISCing over Side-Channel Vectors on RISC-V

We first look into various microarchitectural side-channel vectors on RISC-V
and their implications on preemption attacks. Recently, Gerlach et al. [19] have
systematically analyzed microarchitectural side-channel vectors on currently rep-
resentative RISC-V CPUs. As listed in Table 2, besides the conventional ones,
RISC-V platforms suffer from new attack surfaces due to their high-resolution
counters, unprivileged cache maintenance instructions, and exclusive hardware
optimizations, which we respectively summarize as follows.

Table 2. Primary microarchitectural side-channel attack vectors on RISC-V

Hardware Attack Primitives Descriptions

Counters CycleDrift∗ User space cycle & instret

counters

Cache

Evict+Reload Eviction-based, targeting L1 data

Prime+Probe (L1-D) cache

Flush(Fence)+ReloadFlush-based, flushing the L1

Flush+Fault/Ret∗ instruction (L1-I) cache with
fence.i

TLB TLB-eviction Eviction-based

Branch PredictorCache+Time∗ Combining branch prefetching
with flushing the L1-I cache

* New side-channel primitives proposed by Gerlach et al.

1) The RISC-V specification explicitly requires all implementations to offer the
CTI counters, which by default count events in all privileges and are univer-
sally accessible. These counters enable unprivileged programs to extract exe-

ReminISCence 33

cution information from higher-privileged domains, creating the CycleDrift
attack.

2) RISC-V CPU vendors commonly introduce custom cache maintenance
instructions, with fence.i being one of the most prevalent. The fence.i
instruction enables an unprivileged attacker to flush the entire L1-I cache,
which is usually impossible on other ISAs. This leads to Fence+Reload,
Flush+Fault/Ret, and Cache+Time attacks, as shown in Table 2. Specifi-
cally, Fence+Reload is a variant of Flush+Reload that targets the L1-I cache
using fence.i, while Flush+Fault(Ret) is another variant that replaces the
data reload step by jumping into the shared victim code following a fault or
return.

3) While most off-the-shelf RISC-V CPUs are in order, they incorporate
prediction-based optimizations that speculatively prefetch branch instruc-
tions instead of executing them. In a Cache+Time attack, the attacker first
flushes the L1-I cache to a deterministic state, then uses a speculative gadget
to prefetch one of the branch paths into the cache, and finally measures the
time required for branch execution to determine whether the prefetched path
is selected.
Regarding our work, as the attack primitives serve as injected payloads and
the essence of preemption attacks remains the same, cross-platform differences
in attack primitives and HPM events might yield diverse monitoring perfor-
mance but do not impact the basic applicability of ReminISCence framework.
On RISC-V, the timer-based preemption attacks can be achieved by manipu-
lating the mtimecmp register, while the non-timer-based ones can be achieved
by sending IPIs to the target hart.

4.2 Sampling Facility

According to Sect. 3.2, the sampling method should be interrupt-based, indi-
cating an event-based sampling method that requires performance monitoring
interrupts (PMIs) and samples each time a specified number of certain events
occur [16]. However, RISC-V PMI support (the Sscofpmf extension), which pro-
vides essential hardware mechanisms for generating and capturing HPC overflow
interrupts, has only been ratified quite recently and yet exists in current RISC-
V platforms. Therefore, to address this challenge, we adopt a m-timer-based
sampling approach. The machine timer interrupts (m-timers) can be seen as
a special type of PMI that necessarily exists, where a hart’s mtimecmp register
specifies the upper limit for mtime to trigger the m-timer. Specifically, our imple-
mentation samples trusted data directly from the HPM hardware based on the
high-resolution timer (1 tick equals ∼250 ns), with an average sampling latency
of less than 1 tick on our platform.

Additionally, we are aware of the non-determinism of HPCs proposed by
[16]. On the one hand, we validate the determinism and high accuracy of our
HPCs, aligning with the findings of [19], and our direct sampling method elimi-
nates interference caused by the additional execution of performance tools. On
the other hand, we utilize the mcountinhibit CSR that stops and resumes

34 W. Chen et al.

the counters’ increment, to avoid data pollution due to the execution of Rem-
inISCence. In order to straightforwardly thwart the CycleDrift attack surface,
we prohibit non-M-mode accesses of cycle and instret during the monitored
enclave’s execution. We set the event-programmable HPM counters inaccessi-
ble to lower privileged modes during all times as exposing them creates new
side-channel threats, complying with the interface abstraction design.

4.3 Trusted Scheduling

Nevertheless, if m-timers are used in event sampling, a naive solution of sampling
at each m-timer’s arrival and writing for the next one can corrupt the hart’s
regular scheduling. We delicately address this timer contention issue by inte-
grating the m-timer-based sampling with the trusted scheduling design. Trusted
scheduling ensures ReminISCence’s control over the timer, enabling trusted and
full-coverage monitoring under the privileged preemption threat model. To avoid
interference with regular scheduling, we implement the trusted scheduling based
on the normal time slice on a RISC-V hart, as illustrated in Fig. 2a. In the course
of a time slice, a timer is not received until a hart’s mtimecmp is reached by the
incrementing mtime(1). M-timers are directly handled in M-mode, where the

OS Scheduler:

sbi_timer_event_start:

 add mtimecmp, mtimecmp, next
 clear mip.stip // clear s-timer

 set mie.mtie // set m-timer

sbi_timer_process:

 clear mie.mtie // mask m-timer

 set mip.stip // manifest as s-timer

 // handling the s-timer interrupt ...

 ecall sbi_timer_event_start, next

 S-timer Manifestation

 Time Slice Ends

Hart Receiving M-timer

(mtime ≥ mtimecmp)

 SBI Call

 Next Time Slice Begins

M

M

S U

(a) Original time slice

OS Scheduler:

RMNSC_schedmon_start:

 store δ, max(next, τ)
 add mtimecmp, mtimecmp, sampling_intv

 clear mip.stip // clear s-timer
 set mie.ssie // unmask s-software

 set mie.seie // unmask s-external

RMNSC_schedmon_process:

 add mtimecmp, mtimecmp, insurance

 set mip.stip // manifest as s-timer

 clear mie.ssie // mask s-software

 clear mie.seie // mask s-external

 // handling the s-timer interrupt ...

 ecall RMNSC_schedmon_start, next

Hart Receiving M-timer

 (mtime ≥ mtimecmp)

RMNSC_sampler:

 // do sampling...

 if mtime ≥ δ: // Trusted Time Slice Ends

 call RMNSC_schedmon_process

 else:

 add mtimecmp, mtimecmp, sampling_intv

(b) Trusted time slice

Fig. 2. Detailed implementation of trusted scheduling

ReminISCence 35

SBI immediately manifests it as s-timers (2). After the m-timer trap returns,
the hart is promptly trapped again in the OS Scheduler that handles the s-timer
and schedules the next m-timer event via the SBI call (3). Lastly, the SBI
assigns the next timer event to the HPM accordingly and returns, indicating
that the next time slice begins (4).

Figure 2b shows the lifecycle of a trusted time slice following the implemen-
tation of the trusted scheduling and m-timer-based sampling. At the start of
each time slice, the scheduling monitor compares the next timer value delivered
from the supervisor with a lower bound τ and keeps the greater as δ. Then,
the m-timer is scheduled to the first sampling point, after sampling intv ticks.
For the subsequent m-timers, the sampling module compares the current mtime
with δ and decides to either schedule the next sampling timer or call the schedul-
ing monitor when the trusted time slice should end. Here, execution inside the
trusted time slice can be viewed as an s-timer-atomic region because, within
which, if the supervisor intends to regain control of the hart via timers, it must
wait for the current time slice to end, but the length of which cannot be less
than τ and is specified by the SBI rather than the supervisor.

However, it is interesting to note that, in theory, the supervisor still retains
the capability to perform preemption attacks on the trusted time slice. At the OS
scheduler arc of the trusted time slice, if the supervisor can hand over control to
the enclave on the sneak before calling the scheduling monitor, it can still perform
non-timer-based preemption attacks on the enclave’s execution, the process of
which would be agnostic to ReminISCence. To mend this security fissure, we
enforce the OS scheduler arc to be s-non-timer-atomic by masking the supervisor
software and external interrupts. Henceforth, the only way for the OS to preempt
the enclave and regain control here is via the timer, which, falls into the trusted
time slice cycle again. Additionally, to avoid losing control of the hart when the
malicious OS actually performs this bypass attack without knowing the s-non-
timer-atomic feature, the scheduling monitor sets a relatively long insurance
timer to reclaim the hart in the future.

Note that we do not need to care how long the supervisor is exclusively
holding the hart, as preemption attacks essentially require interleaved execution
and a long piece of supervisor execution alone does not leak valid information
about the enclave. However, the implementation of trusted scheduling limits the
timer-based preemption interval to τ , which is orders of magnitude higher for
retrieving effective side-channel results. At this point, the only alternative for the
adversary to achieve a feasible resolution is non-timer-based preemption attacks
targeting inside the trusted time slice. Now that the execution within the trusted
time slice is fully monitored, all non-timer behavior and its microarchitectural
footprint will be entirely captured and analyzed by ReminISCence. Therefore,
our machine-learning-based data processor can fulfill the dual purpose of the
interface abstraction design and monitor non-timer-based preemption attacks,
the effectiveness of which will be demonstrated in the next section.

36 W. Chen et al.

5 Evaluation

5.1 Monitoring Preemption Attacks

This section demonstrates the effectiveness and resilience to evasion of Remi-
nISCence in monitoring and analyzing non-timer-based preemption attacks over
side-channel attack primitives mentioned in Sect. 4.1. Specifically, we train super-
vised learning models using our generated datasets and classify non-timer-based
attacks with different side-channel primitives and preemption intervals. The
models are transformed into bare-metal native code using the emlearn library [41]
to be deployed in the M-mode-only memory space and exclusively invoked by
ReminISCence.

Data Collection. We create datasets comprised of HPM raw data gener-
ated from the sampling module of the prototype, with a sampling interval of
2000 ticks (∼500 us). For better representativeness, the dataset is collected
from widely used benchmark suites, namely Coremark [18] and Mibench [21].
The target programs are cross-compiled for RISC-V and cover various appli-
cation scenarios, including automotive, consumer, network, office, security, and
telecomm (e.g., qsort, jpeg, dijkstra, ispell, sha, CRC32). We choose 16 out of
35 hardware events supported by the HPM of our platform together with the
CTI counters; we organize them into 11 related features: Instret, Load/Store
Instret, Branch Instret, Branch Misprediction, D-cache Busy, D-cache
Miss, D-cache Write-back, I-cache Busy, I-cache Miss, D-TLB Miss, and
L2-TLB Miss. To experiment with the system under realistic load conditions,
we stress the system with memory-intensive and CPU-intensive processes by
concurrently running cross-page memory copy operations and CPU-consuming
programs in the rv8 benchmark [14] like dhrystone and primes. Each program,
attack primitive, and interval share equivalent data sizes to avoid bias.

Attack Classification. While monitoring the target programs, we conduct
non-timer-based attacks by sending IPI from another hart with an intuitive pre-
emption interval of 500 ticks, to evaluate the performance of all 5 classification
models supported by emlearn in distinguishing normal executions from attacked
ones and identifying specific attack primitives. The classification performance,
the average time per prediction and binary sizes of the models are shown in
Table 3. Generally, the tree-based models, namely Decision Tree (DT), Random
Forest(RF), and Extremely Randomized Trees (ERT), as well as Multilayer Per-
ceptron (MLP) can effectively classify normal and attacked executions with F1
scores above 0.97, by contrast, Gaussian Naive Bayes (GNB) behaves poorly.
Although featuring the least binary size, MLP is less accurate than the tree-
based models and significantly more time-consuming, which is not advisable
in frequent sampling. Hence, we hereinafter choose and discuss the tree-based
models.

Despite the fact that the models cannot identify individual attack primi-
tives with reasonable accuracy, they can effectively narrow the scope of attack

ReminISCence 37

Table 3. Model evaluation results of attack primitive classfication. �: Normal,
CT: Cache+Time, FF: Flush+Fault, FR: Fence+Reload, ER: Evict+Reload, PP:
Prime+Probe, TLB: TLB-eviction, WA: Weighted Average.

Model
Performance (F1 scores · 102) Time tick Size

� CT FF FR ER PP TLB WA

DT
98.3 64.7 48.3 47.4 66.7 75.7 78.7 72.6

<1 27
98.8 98.3 75.7 76.6 90.9

RF
99.2 69.0 55.4 49.9 76.5 84.5 84.8 77.6

<1 243
99.2 98.2 81.0 82.0 92.9

ERT
99.3 68.0 52.5 49.4 75.7 83.8 84.0 76.8

<1 757
99.1 98.3 79.7 79.7 92.2

GNB
44.3 21.8 9.8 19.5 18.2 6.6 13.9 22.3

<1 12
56.7 63.2 8.7 20.6 44.5

MLP
81.4 40.0 32.4 25.3 18.9 43.1 54.0 47.6

11.6 11
97.0 94.3 43.1 66.2 81.7

primitives with similar microarchitectural characteristics, such as identifying the
fence-based (CT, FF, FR), data-cache-based (ER, PP), and TLB-based types
with weighted average F1 scores above 0.90, referring to the gray rows in the
table. Due to similar extensive cross-page memory access patterns, TLB-based
type introduce certain data cache anomalies as data-cache-based, resulting in
their lower F1 scores comparing with normal and fence-based ones. However,
if we further combine data-cache-based and TLB-based types into eviction-
based type, the F1 scores of identifying which reach above 0.97 and the models’
weighted averages increase to around 0.98.

W
-A

v
g.

 F
1
-s
co

re

0.92

0.94

0.96

0.98

1.00

Preemption Interval (Ticks)
500 1000 2000 4000 8000 16000 32000

(a) Weighted averages of F1 scores

W
-A

v
g.

 A
U

C

0.95

1.00

Preemption Interval (Ticks)
500 1000 2000 4000 8000 16000 32000

Decision Tree
Random Fores
Extra Trees

(b) Weighted averages of AUC

Fig. 3. Monitoring performance under different preemption intervals

Resilience to Evasion. We are aware of evasive attacks that the adversary
would leverage to avoid being detected, as is presented in RHMD [25]. Although

38 W. Chen et al.

the RHMD solution is complementary to ReminISCence, here we wish to demon-
strate the formidable difficulty of non-timer-based attacks evading detection
without significant impact on the side-channel bandwidth. Li and Gaudiot [33]
have proven that the most effective way for microarchitectural attacks to evade
ML-based detectors is bandwidth reduction via sleeping after each atomic exe-
cution of the attack primitive. First, we verify that the shortest non-timer inter-
vals for all attack primitives are less than 1.13 ticks (∼283 ns) on our plat-
form, which indicates the highest non-timer-based preemption speed in theory.
Then, we increase the preemption interval from the initial 500 ticks by pow-
ers of two and observe the models’ performance on classifying normal, fence-
based, and eviction-based types, as illustrated in Fig. 3. Despite the monotonic
decrease in performance, the weighted averages of F1 scores and AUC remain
above 92% and 95% even until the preemption interval inflates to 32000 ticks
(∼28319x bandwidth reduction), and their subsequent trend gradually stables.
As claimed in Sect. 3.1 that side-channel attacks are time-sensitive, we argue
that it is extremely difficult for the privileged adversary to evade our prototype
without significant sacrifice of bandwidth and accuracy. Also, according to both
Fig. 3 and Table 3, RF and ERT have similar effectiveness and overall outperform
DT in the case of classification performance and resilience to evasion. Therefore,
we ultimately select RF considering its slightly higher accuracy with a smaller
binary size, whose false positive rate ranges within 0.17%-1.09% and false neg-
ative rate ranges within 0.35%-9.11%, corresponding with preemption intervals
of 500–32000 ticks.

5.2 Overhead

This subsection evaluates the overhead incurred by deploying our ReminISCence
prototype. According to the results in Sect. 5.1, we use the RF model with the
same sampling interval trained by the same datasets (∼13 MB), and the deployed
model binary is about 232 KB in size.

Figure 4 illustrates the runtime performance overhead of our ReminISCence
implementation, according to the average of 100 different runs for each rv8
benchmark program. Figure 4a shows that ReminISCence incurs negligible over-
head below 0.6% and a mean average of 0.259% for all bench programs, under
the sampling interval of 2000 ticks. One possible explanation for the negative
overhead in the figure is that ReminISCence’s trusted scheduling reduces the pro-
gram’s timer preemptions. Furthermore, we explore our performance overhead
under different sampling intervals in the case of dynamically adjusted frequen-
cies. Figure 4b indicates that ReminISCence can achieve the sampling resolution
as high as 500 Ticks (∼125 us) with only an average overhead of about 1%.

5.3 Security Discussion

Firstly, the privileged attacker cannot compromise the prototype as its code
and data reside in the M-mode-only memory space. In addition, the privileged
attacker cannot tamper with the data source as we directly sample from the

ReminISCence 39

-0.2

0.0

0.2

0.4

0.6

0.8

aes bigint
dhrystone

miniz
norx

primes

qsort
sha512

mean

0.284 0.289

0.177

0.450

0.233

0.578

-0.119

0.178
0.259

(a) Overhead under the sampling inter-
val of 2000 ticks

0

5

10

15

20

25

30

Sampling Interval (Ticks)
10 50 100 500 1000 2000

26.335

5.273
2.792

1.006 0.474 0.259

(b)
sampling intervals

Fig. 4. ReminISCence performance overhead (in percent) on rv8 relative to baselines

trusted HPM hardware, which is set inaccessible to lower privileges during
the monitoring process. Furthermore, all HPM interfaces and internal states
of the prototype are concealed from the monitored enclave, preventing malicious
enclave instances from exploiting ReminISCence to gain microarchitectural infor-
mation. With grounded confidentiality, we proceed to trusted monitoring against
preemption attacks based on either timers or non-timers.

We implement trusted scheduling to enforce control over timers, which hin-
ders the attacker from arbitrarily scheduling the enclave to any hart via timers.
Together with the enclave-core awareness, it is ensured that the monitoring cov-
ers all time slices of the enclave using the proper hart-specific HPM. There-
fore, the only remaining option for the privileged attacker by far is to preempt
the trusted time slices via non-timers, which are deterministically monitored
by ReminISCence. As demonstrated in Sect. 5.1, ReminISCence can effectively
detect such attacks and is extremely hard to evade. As a whole, the implemen-
tation ensures trusted monitoring and mitigates preemption attacks against the
privileged adversary. Last but not least, although we reasonably extend the M-
mode software for around 1K LoC, this does not necessarily indicate the increase
of TCB and the attack surface because the implementation never interferes with
the native TEE and only provides the enclave with the interface to acquire
abstract monitoring results.

6 Related Work

Several monitoring frameworks have been proposed to address performance anal-
ysis within TEEs. TEEMon [29] is a performance monitoring framework specif-
ically designed for Intel SGX, assisting with identifying program performance
bottlenecks. TS-Perf [44] is a compiler-based approach that inserts measure-
ment code in operations like API calls and memory accesses during the com-
pilation phase, enabling performance counting in TEEs across architectures.
Microarchitectural side-channel monitoring and detection have also been exten-
sively studied. NIGHTs-WATCH [40] utilizes machine learning models to detect
Flush+Reload and Flush+Flush attacks by analyzing real-time performance
counter values. Cloudradar [51] combines signature-based and anomaly-based

40 W. Chen et al.

detection methods to identify cache-based side-channel attacks in multi-tenant
cloud systems. Déjà Vu [13] detects privileged side-channel attacks in Intel SGX
by comparing the actual execution time with the expected one. For transient
attacks, PerSpectron [1] relies on microarchitectural statistical information and
a hardware-based predictor to detect Spectre and cache side-channel attacks.
Le et al. [30] leveraged cache activities and neural networks to address Spectre
attacks on an FPGA-based out-of-order RISC-V CPU. Speculator [38] utilizes
performance counters to observe instructions during CPU speculation, provid-
ing defense against speculative execution attacks. Some studies have shown the
potential evasion of monitoring methods. RHMD [25] employs random switch-
ing of models during runtime to increase the difficulty for malware adversaries in
reverse-engineering the monitor. Li et al. [33] recognized that Spectre attacks can
achieve evasion by reducing attack frequency but suggested that a robust attack
detection rate can still be achieved through the random switching of models.

7 Conclusion

In this paper, we propose ReminISCence, a novel trusted monitoring frame-
work specifically designed to mitigate privileged preemption side-channel attacks
within TEEs. The framework incorporates three key security designs: confiden-
tial sampling, interface abstraction, and trusted scheduling, which ensures the
monitoring is tamper-proof against the privileged adversary and based on trusted
time slices that cannot be bypassed via preemption. We implement the Remi-
nISCence prototype on an off-the-shelf RISC-V platform by extending OpenSBI,
which demonstrates its effectiveness and resilience to evasion in monitoring high-
frequency preemption attacks across various RISC-V microarchitectural side-
channels. Our evaluation also showcases ReminISCence’s ability to achieve high
temporal resolution with negligible performance overhead.

Acknowledgements. We sincerely thank the anonymous reviewers for their construc-
tive comments. This work was supported in part by National Key Research and Devel-
opment Program of China (Grant No. 2022YFB4501500 and 2022YFB4501502) and
National Natural Science Foundation of China (Grant No. 62272181).

References

1. Ajorpaz, S.M., Pokam, G., Koruyeh, E.M., Garza, E., Abu-Ghazaleh, N.B.,
Jiménez, D.A.: Perspectron: detecting invariant footprints of microarchitectural
attacks with perceptron. In: 53rd Annual IEEE/ACM International Symposium on
Microarchitecture, MICRO 2020, Athens, Greece, 17–21 October 2020, pp. 1124–
1137. IEEE (2020)

2. Andrew, W., Krste, A., John, H.: The risc-v instruction set manual volume ii:
Privileged architecture (2021)

3. Arm Limited: Security technology: building a secure system using trustzone tech-
nology. http://infocenter.arm.com/help/topic/com.arm.doc.prd29-genc-009492c/
PRD29-GENC009492C trustzone security whitepaper.pdf. Accessed Nov 2023

http://infocenter.arm.com/help/topic/com.arm.doc.prd29-genc-009492c/PRD29-GENC009492C_trustzone_security_whitepaper.pdf
http://infocenter.arm.com/help/topic/com.arm.doc.prd29-genc-009492c/PRD29-GENC009492C_trustzone_security_whitepaper.pdf

ReminISCence 41

4. avpatel: Opensbi. https://github.com/riscv-software-src/opensbi. Accessed Nov
2023

5. Bahmani, R., Brasser, F., Dessouky, G., Jauernig, P., Klimmek, M., Sadeghi,
A., Stapf, E.: CURE: a security architecture with customizable and resilient
enclaves. In: Bailey, M.D., Greenstadt, R. (eds.) 30th USENIX Security Sympo-
sium, USENIX Security 2021, 11–13 August 2021, pp. 1073–1090. USENIX Asso-
ciation (2021)

6. Barthe, G., Grégoire, B., Laporte, V.: Secure compilation of side-channel coun-
termeasures: the case of cryptographic “constant-time”. In: 31st IEEE Computer
Security Foundations Symposium, CSF 2018, Oxford, United Kingdom, 9–12 July
2018, pp. 328–343. IEEE Computer Society (2018)

7. Borrello, P., D’Elia, D.C., Querzoni, L., Giuffrida, C.: Constantine: automatic side-
channel resistance using efficient control and data flow linearization. In: Kim, Y.,
Kim, J., Vigna, G., Shi, E. (eds.) CCS 2021: 2021 ACM SIGSAC Conference on
Computer and Communications Security, Virtual Event, Republic of Korea, 15–19
November 2021, pp. 715–733. ACM (2021)

8. Brasser, F., Müller, U., Dmitrienko, A., Kostiainen, K., Capkun, S., Sadeghi, A.:
Software grand exposure: SGX cache attacks are practical. In: Enck, W., Mulliner,
C. (eds.) 11th USENIX Workshop on Offensive Technologies, WOOT 2017, Van-
couver, BC, Canada, 14–15 August 2017. USENIX Association (2017)

9. Bulck, J.V., et al.: Foreshadow: extracting the keys to the intel SGX kingdom with
transient out-of-order execution. In: Enck, W., Felt, A.P. (eds.) 27th USENIX
Security Symposium, USENIX Security 2018, Baltimore, MD, USA, 15–17 August
2018, pp. 991–1008. USENIX Association (2018)

10. Bulck, J.V., et al.: LVI: hijacking transient execution through microarchitectural
load value injection. In: 2020 IEEE Symposium on Security and Privacy, SP 2020,
San Francisco, CA, USA, 18–21 May 2020, pp. 54–72. IEEE (2020)

11. Bulck, J.V., Piessens, F., Strackx, R.: SGX-step: a practical attack framework
for precise enclave execution control. In: Proceedings of the 2nd Workshop on
System Software for Trusted Execution, SysTEX@SOSP 2017, Shanghai, China,
28 October 2017. pp. 4:1–4:6. ACM (2017)

12. Bulck, J.V., Piessens, F., Strackx, R.: Nemesis: studying microarchitectural timing
leaks in rudimentary CPU interrupt logic. In: Lie, D., Mannan, M., Backes, M.,
Wang, X. (eds.) Proceedings of the 2018 ACM SIGSAC Conference on Computer
and Communications Security, CCS 2018, Toronto, ON, Canada, 15–19 October
2018, pp. 178–195. ACM (2018)

13. Chen, S., Zhang, X., Reiter, M.K., Zhang, Y.: Detecting privileged side-channel
attacks in shielded execution with déjà vu. In: Karri, R., Sinanoglu, O., Sadeghi,
A., Yi, X. (eds.) Proceedings of the 2017 ACM on Asia Conference on Computer
and Communications Security, AsiaCCS 2017, Abu Dhabi, United Arab Emirates,
2–6 April 2017, pp. 7–18. ACM (2017)

14. Clark, M.: rv8 benchmark suite. https://github.com/michaeljclark/rv8-bench.
Accessed Nov 2023

15. Costan, V., Lebedev, I.A., Devadas, S.: Sanctum: minimal hardware extensions for
strong software isolation. In: Holz, T., Savage, S. (eds.) 25th USENIX Security
Symposium, USENIX Security 16, Austin, TX, USA, 10–12 August 2016, pp. 857–
874. USENIX Association (2016)

16. Das, S., Werner, J., Antonakakis, M., Polychronakis, M., Monrose, F.: Sok: the
challenges, pitfalls, and perils of using hardware performance counters for security.
In: 2019 IEEE Symposium on Security and Privacy, SP 2019, San Francisco, CA,
USA, 19–23 May 2019, pp. 20–38. IEEE (2019)

https://github.com/riscv-software-src/opensbi
https://github.com/michaeljclark/rv8-bench

42 W. Chen et al.

17. Domingos, J.M., Tomás, P., Sousa, L.: Supporting RISC-V performance counters
through performance analysis tools for linux (perf). CoRR arxiv:2112.11767 (2021)

18. Gal-On, S., Levy, M.: Exploring coremark a benchmark maximizing simplicity and
efficacy. The Embedded Microprocessor Benchmark Consortium (2012)

19. Gerlach, L., Weber, D., Zhang, R., Schwarz, M.: A security RISC: microarchitec-
tural attacks on hardware RISC-V cpus. In: 44th IEEE Symposium on Security
and Privacy, SP 2023, San Francisco, CA, USA, 21–25 May 2023, pp. 2321–2338.
IEEE (2023)

20. Gras, B., Razavi, K., Bos, H., Giuffrida, C.: Translation leak-aside buffer: Defeating
cache side-channel protections with {TLB} attacks. In: 27th USENIX Security
Symposium (USENIX Security 2018), pp. 955–972 (2018)

21. Guthaus, M.R., Ringenberg, J.S., Ernst, D., Austin, T.M., Mudge, T., Brown,
R.B.: MiBench: a free, commercially representative embedded benchmark suite.
In: Proceedings of the fourth annual IEEE international workshop on workload
characterization. WWC-4 (Cat. No. 01EX538), pp. 3–14. IEEE (2001)

22. Hähnel, M., Cui, W., Peinado, M.: High-resolution side channels for untrusted
operating systems. In: Silva, D.D., Ford, B. (eds.) 2017 USENIX Annual Technical
Conference, USENIX ATC 2017, Santa Clara, CA, USA, 12–14 July 2017, pp.
299–312. USENIX Association (2017)

23. Intel: Intel software guard extensions programming reference. https://software.
intel.com/sites/default/files/managed/48/88/329298-002.pdf. Accessed Nov 2023

24. Intel: Intel trust domain extensions module base architecture specification. https://
cdrdv2.intel.com/v1/dl/getContent/733575. Accessed Nov 2023

25. Khasawneh, K.N., Abu-Ghazaleh, N.B., Ponomarev, D., Yu, L.: RHMD: evasion-
resilient hardware malware detectors. In: Hunter, H.C., Moreno, J., Emer, J.S.,
Sánchez, D. (eds.) Proceedings of the 50th Annual IEEE/ACM International Sym-
posium on Microarchitecture, MICRO 2017, Cambridge, MA, USA, 14–18 October
2017, pp. 315–327. ACM (2017)

26. Kleen, A., Strong, B.: Intel processor trace on linux. Tracing Summit (2015)
27. Kocher, P., et al.: Spectre attacks: exploiting speculative execution. In: 2019 IEEE

Symposium on Security and Privacy, SP 2019, San Francisco, CA, USA, 19–23
May 2019, pp. 1–19. IEEE (2019)

28. Kou, Z., He, W., Sinha, S., Zhang, W.: Load-step: a precise trustzone execution
control framework for exploring new side-channel attacks like flush+evict. In: 58th
ACM/IEEE Design Automation Conference, DAC 2021, San Francisco, CA, USA,
5–9 December 2021, pp. 979–984. IEEE (2021)

29. Krahn, R., et al.: TEEMon: a continuous performance monitoring framework for
tees. In: Silva, D.D., Kapitza, R. (eds.) Middleware 2020: 21st International Mid-
dleware Conference, Delft, The Netherlands, 7–11 December 2020, pp. 178–192.
ACM (2020)

30. Le, A., Hoang, T., Dao, B., Tsukamoto, A., Suzaki, K., Pham, C.: A real-time
cache side-channel attack detection system on RISC-V out-of-order processor.
IEEE Access 9, 164597–164612 (2021)

31. Lee, D., Kohlbrenner, D., Shinde, S., Asanovic, K., Song, D.: Keystone: an open
framework for architecting trusted execution environments. In: Bilas, A., Magoutis,
K., Markatos, E.P., Kostic, D., Seltzer, M.I. (eds.) EuroSys 2020: Fifteenth EuroSys
Conference 2020, Heraklion, Greece, 27–30 April 2020, pp. 38:1–38:16. ACM (2020)

32. Lee, Y., Lee, J., Heo, I., Hwang, D., Paek, Y.: Using coresight PTM to integrate
CRA monitoring ips in an arm-based soc. ACM Trans. Design Autom. Electr. Syst.
22(3), 52:1–52:25 (2017)

http://arxiv.org/abs/2112.11767
https://software.intel.com/sites/default/files/managed/48/88/329298-002.pdf
https://software.intel.com/sites/default/files/managed/48/88/329298-002.pdf
https://cdrdv2.intel.com/v1/dl/getContent/733575
https://cdrdv2.intel.com/v1/dl/getContent/733575

ReminISCence 43

33. Li, C., Gaudiot, J.: Detecting spectre attacks using hardware performance counters.
IEEE Trans. Comput. 71(6), 1320–1331 (2022)

34. Lipp, M., et al.: Meltdown. arXiv preprint arXiv:1801.01207 (2018)
35. Liu, C., Harris, A., Maas, M., Hicks, M.W., Tiwari, M., Shi, E.: GhostRider: a

hardware-software system for memory trace oblivious computation. In: Özturk,
Ö., Ebcioglu, K., Dwarkadas, S. (eds.) Proceedings of the Twentieth International
Conference on Architectural Support for Programming Languages and Operating
Systems, ASPLOS 2015, Istanbul, Turkey, 14–18 March 2015, pp. 87–101. ACM
(2015)

36. Liu, F., Yarom, Y., Ge, Q., Heiser, G., Lee, R.B.: Last-level cache side-channel
attacks are practical. In: 2015 IEEE Symposium on Security and Privacy, SP 2015,
San Jose, CA, USA, 17–21 May 2015, pp. 605–622. IEEE Computer Society (2015)

37. luojia65: Rustsbi. https://github.com/rustsbi/rustsbi. Accessed Nov 2023
38. Mambretti, A., Neugschwandtner, M., Sorniotti, A., Kirda, E., Robertson, W.K.,

Kurmus, A.: Speculator: a tool to analyze speculative execution attacks and miti-
gations. In: Balenson, D. (ed.) Proceedings of the 35th Annual Computer Security
Applications Conference, ACSAC 2019, San Juan, PR, USA, 09–13 December 2019,
pp. 747–761. ACM (2019)

39. Martin, R., Demme, J., Sethumadhavan, S.: TimeWarp: rethinking timekeeping
and performance monitoring mechanisms to mitigate side-channel attacks. In: 39th
International Symposium on Computer Architecture (ISCA 2012), Portland, OR,
USA, 9–13 June 2012, pp. 118–129 (2012)

40. Mushtaq, M., Akram, A., Bhatti, M.K., Chaudhry, M., Lapotre, V., Gogniat, G.:
NIGHTs-WATCH: a cache-based side-channel intrusion detector using hardware
performance counters. In: Szefer, J., Shi, W., Lee, R.B. (eds.) Proceedings of the
7th International Workshop on Hardware and Architectural Support for Security
and Privacy, HASP@ISCA 2018, Los Angeles, CA, USA, 02 June 2018, pp. 1:1–1:8.
ACM (2018)

41. Nordby, J., Cooke, M., Horvath, A.: emlearn: machine learning inference engine
for microcontrollers and embedded devices (2019)

42. Rane, A., Lin, C., Tiwari, M.: Raccoon: closing digital side-channels through obfus-
cated execution. In: Jung, J., Holz, T. (eds.) 24th USENIX Security Symposium,
USENIX Security 15, Washington, D.C., USA,x 12–14 June 2015, pp. 431–446.
USENIX Association (2015)

43. Saileshwar, G., Qureshi, M.K.: MIRAGE: mitigating conflict-based cache attacks
with a practical fully-associative design. In: Bailey, M.D., Greenstadt, R. (eds.)
30th USENIX Security Symposium, USENIX Security 2021, 11–13 August 2021,
pp. 1379–1396. USENIX Association (2021)

44. Suzaki, K., Nakajima, K., Oi, T., Tsukamoto, A.: TS-Perf: general performance
measurement of trusted execution environment and rich execution environment on
Intel SGX, Arm TrustZone, and RISC-V Keystone. IEEE Access 9, 133520–133530
(2021)

45. Tan, Q., Zeng, Z., Bu, K., Ren, K.: PhantomCache: obfuscating cache conflicts
with localized randomization. In: 27th Annual Network and Distributed System
Security Symposium, NDSS 2020, San Diego, California, USA, 23–26 February
2020. The Internet Society (2020)

46. Wang, W., et al.: Leaky cauldron on the dark land: Understanding memory side-
channel hazards in SGX. In: Thuraisingham, B., Evans, D., Malkin, T., Xu, D.
(eds.) Proceedings of the 2017 ACM SIGSAC Conference on Computer and Com-
munications Security, CCS 2017, Dallas, TX, USA, 30 October–03 November 2017,
pp. 2421–2434. ACM (2017)

http://arxiv.org/abs/1801.01207
https://github.com/rustsbi/rustsbi

44 W. Chen et al.

47. Werner, M., Unterluggauer, T., Giner, L., Schwarz, M., Gruss, D., Mangard,
S.: ScatterCache: thwarting cache attacks via cache set randomization. In: 28th
USENIX Security Symposium, USENIX Security 2019, Santa Clara, CA, USA,
14–16 August 2019. pp. 675–692 (2019)

48. Wilke, L., Wichelmann, J., Rabich, A., Eisenbarth, T.: Sev-step a single-stepping
framework for AMD-SEV. IACR Trans. Cryptogr. Hardw. Embed. Syst. 2024(1),
180–206 (2024)

49. Xu, Y., Cui, W., Peinado, M.: Controlled-channel attacks: deterministic side chan-
nels for untrusted operating systems. In: 2015 IEEE Symposium on Security and
Privacy, SP 2015, San Jose, CA, USA, 17–21 May 2015, pp. 640–656. IEEE Com-
puter Society (2015)

50. Yarom, Y., Falkner, K.: FLUSH+RELOAD: a high resolution, low noise, L3 cache
side-channel attack. In: Fu, K., Jung, J. (eds.) Proceedings of the 23rd USENIX
Security Symposium, San Diego, CA, USA, 20–22 August 2014, pp. 719–732.
USENIX Association (2014)

51. Zhang, T., Zhang, Y., Lee, R.B.: CloudRadar: a real-time side-channel attack
detection system in clouds. In: Research in Attacks, Intrusions, and Defenses -
19th International Symposium, RAID 2016, Paris, France, 19–21 September 2016,
Proceedings, pp. 118–140 (2016)

52. Zhang, Y., Juels, A., Reiter, M.K., Ristenpart, T.: Cross-vm side channels and
their use to extract private keys. In: Yu, T., Danezis, G., Gligor, V.D. (eds.) the
ACM Conference on Computer and Communications Security, CCS 2012, Raleigh,
NC, USA, 16–18 October 2012, pp. 305–316. ACM (2012)

	ReminISCence: Trusted Monitoring Against Privileged Preemption Side-Channel Attacks
	1 Introduction
	2 Background
	2.1 Privileged Side-Channel Attacks
	2.2 Hardware Performance Monitor
	2.3 RISC-V Infrastructures

	3 System Design
	3.1 Threat Model
	3.2 ReminISCence Overview

	4 Implementation
	4.1 ReminISCing over Side-Channel Vectors on RISC-V
	4.2 Sampling Facility
	4.3 Trusted Scheduling

	5 Evaluation
	5.1 Monitoring Preemption Attacks
	5.2 Overhead
	5.3 Security Discussion

	6 Related Work
	7 Conclusion
	References

