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Abstract. The field of Automatic Exploit Generation (AEG) plays a
pivotal role in the assessment of software vulnerabilities, automating the
analysis for exploit creation. Although AEG systems are instrumental in
probing for vulnerabilities, they often lack the capability to contend with
defense mechanisms such as vulnerability mitigation, which are com-
monly deployed in target environments. This shortfall presents significant
challenges in exploitation. Additionally, most frameworks are tailored to
specific vulnerabilities, rendering their extension a complex process that
necessitates in-depth familiarity with their architectures. To overcome
these limitations, we introduce the SAEG framework, which streamlines
the repetitious aspects of existing exploit templates through a modular
and extensible state machine that builds upon the concept of an Exploit
Graph. SAEG can methodically filter out impractical exploitation paths
by utilizing current information and the target program’s state. Addi-
tionally, it simplifies the integration of new information leakage methods
with minimal overhead and handles multi-step exploitation procedures,
including those requiring the leakage of sensitive data. We demonstrate
a prototype of SAEG founded on symbolic execution that can simultane-
ously explore heap and stack vulnerabilities. This prototype can explore
and combine leakage and exploitation effectively, generating complete
exploits to obtain shell access for binary files across i386 and x86_64
architectures.

Keywords: Automatic Exploit Generation · Symbolic Execution ·
Vulnerability

1 Introduction

The field of Automatic Exploit Generation (AEG [21]) assists not only in crafting
cyber-attacks but also in bolstering cybersecurity defenses. Such tools [28] enable
software manufacturers to gauge the severity of their products’ vulnerabilities
and prioritize their remediation strategies.

In recent times, as vulnerability mitigation strategies become commonplace
in modern operating systems, the ability to breach these defense mechanisms
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has emerged as a critical challenge for executing practical attacks in production
environments. Numerous vulnerabilities result only in denial of service, failing to
compromise sensitive information or facilitate arbitrary code execution, chiefly
due to the robustness of security defenses or their inherent limitations. Thus,
evaluating vulnerabilities’ exploitability under defense mechanisms is a crucial
aspect of AEG. For instance, Syzkaller [7] continually reveals a multitude of
proof-of-concept (POC) that induce kernel crashes and many of them remain
unmitigated yet. However, many POCs do not pose meaningful exploitation
threats due to intrinsic vulnerability limitations or robust defense measures.
AEG’s role is to discern which vulnerabilities can be maneuvered into viable
exploits under the constraint of these defense mechanisms.

1.1 Challenges from Modern Protection Mechanisms

Contemporary operating systems and compilers widely support a quartet of dis-
tinguished defense mechanisms: Data Execution Prevention (DEP), often known
as the NX bit, Stack Canaries, Address Space Layout Randomization (ASLR),
and RELocation Read-Only (RELRO). DEP is designed to deter the execution
of code from data pages, effectively preventing certain types of exploits such as
shellcode injection. Stack Canaries safeguard the call stack with a secret value
to detect buffer overflow attempts, while ASLR systematically randomizes mem-
ory addresses to hinder attackers from predicting target locations. The RELRO
feature marks the Global Offset Table (GOT) as read-only after initialization to
prevent attackers from hijacking the control flow by tampering with the GOT.
Consequently, in scenarios where these protective measures are enabled, attack-
ers typically need to adeptly combine multiple techniques to carry out attacks
through information leakage and bypass these protections.

Table 1. Protections bypass ability of recent AEG framework

Framework NX Canary ASLR

Zeratool [18] �� � �
BOF AEG [27] � � �
LAEG [14] �� �� ��
PANGR [12] � � �
ExpGen [9] � � ��
CanaryExp [10] � �� ��
SAEG � � �
� means that the framework can
bypass this defense with several
techniques�� means that the framework can
bypass this defense with one tech-
nique� means that the framework can
not bypass this defense
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After evaluating existing implementations, we noticed that most frameworks
neglect complex information leakage challenges. As indicated in Table 1, few
efforts have been made to concurrently address NX, ASLR, and Canary. All
current open-source frameworks fall short in circumventing Canary and other
CFI checks. However, these three mechanisms are widely supported by modern
compilers such as gcc and clang and are extensively used in operating systems
like OpenBSD 7.4, where the default clang-local compiler ships with all three
enabled. Thus, given the lack of general capability among present AEG frame-
works to manage such complex exploitation efforts, the generation of exploits
involving complex information leaks represents a meaningful yet challenging
endeavor.

1.2 Our Solutions

Complex exploits typically involve a multistep process to progressively gather
new information and ultimately complete the attack. Consequently, there is a
need for a fine-grained exploit system that can efficiently manage and filter the
necessary steps. Towards this end, we have crafted an expandable exploitation
graph based on attack graphs [11] to accurately depict each step in the attack
sequence and label the acquired information. We have developed an algorithm to
generate these exploitation graphs using the target program and primitive attack
templates. The graph’s analysis is carried out through symbolic execution to find
potential successor nodes. If the exploit generation is successful, we will obtain
a complete path composed of nodes in the exploitation graph.

Here, we list the main contributions of our work:

– (1) We have developed and implemented SAEG, an innovative AEG frame-
work that utilizes an exploitation graph derived from attack graphs to accu-
rately manage the steps involved in exploiting vulnerabilities.

– (2) We introduce a refined approach to AEG that utilizes primitive attack
templates. In contrast to traditional AEG solutions dependent on complete
attack templates, our method simplifies the generation of complex exploits
capable of bypassing modern protection measures and improves extensibility.

– (3) Our evaluation of 34 real Capture The Flag (CTF) challenges indicates
that SAEG can produce intricate exploits involving multiple steps. Compared
to contemporary frameworks, SAEG’s exploit generation efficiency is 5.4x
greater on average, and it can generate exploits beyond the capabilities of
those frameworks.

– (4) We release the source code of SAEG and the test cases used in the exper-
iments at https://github.com/GhostFrankWu/SAEG.

2 Background

The concept of attack graphs was initially conceptualized to represent the
entirety of a cyber-attack process, encompassing stages such as initial access,

https://github.com/GhostFrankWu/SAEG
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privilege escalation, and lateral movement. Analogously, in the context of binary
program exploitation, crafting an interactive shell exploit often necessitates the
orchestration of various vulnerability exploitation techniques. To streamline the
automation of complex exploits requiring multiple exploitation stages, we intro-
duce the exploitation graph, an evolution of attack graphs designed specifically
for binary program attack sequences.

Exploitation Techniques

Traditional binary exploitation is mainly categorized by the target data region:
stack or heap. Exploitation based on the stack primarily manipulates the stack
buffer overflow for control flow hijacking. It employs return-oriented program-
ming (ROP) to counteract DEP protections and leverages format string vul-
nerabilities to facilitate information leakage, thereby subverting Canary and
ASLR defenses. Exploitation based on the heap primarily involves construct-
ing a desired heap layout, often referred to as heap Feng Shui, and leveraging
vulnerabilities such as heap overflows, use-after-free, and double-free to enable
information leakage and arbitrary address writes for exploitation.

Stack-Based Buffer Overflow. One typical scenario of Stack-based Buffer
overflow [13] is a function like strcpy neglects to enforce buffer boundaries, there
is a risk of overwriting adjacent memory, potentially resulting in the corruption
of neighboring stack frame elements, including the Canary, base pointer, and
return address. These vulnerabilities can lead to shellcode injection or ROP
attacks, enabling unauthorized attackers to obtain the entire shell access.

An AEG framework needs the capability to perceive the program’s runtime
state, plan paths, and correctly overwrite the Canary and return address after
achieving information leakage, ultimately hijacking the program’s control flow
upon function return.

Format String Vulnerability. Exploiting format string vulnerabilities is a
common technique for information leakage and sometimes also a way to hijack
control flow. When the printf() function’s first parameter (the format string)
is under user control, attackers can carefully construct special format specifiers
like %s, %5$p, %hn, etc., to crash the program or leak data from the stack,
arbitrary addresses, or achieve arbitrary address writes.

The va_list pointer in printf() sequentially reads data from the stack. At
this point, an attacker can modify [num] using a format like %[num]$[fmt], spec-
ifying the offset relative to the initial position of va_list. By using [fmt], the
attacker controls the behavior of the printf() function. Attackers can access con-
trollable memory using specific offsets and achieve arbitrary memory read/write
using indirect addressing format specifiers like s and n.

Depending on the length and content restrictions of controllable characters
in the vulnerability’s environment and the varying ability to manipulate data
on the stack, the exploitation capability of format string vulnerabilities also
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differs. The ability to achieve information leakage through format string attacks
typically has broad requirements. Therefore, implementing automatic detection
and exploitation of format string vulnerabilities can enhance the framework’s
ability to leak information and provide the chance of control flow hijacking by
locating and overwriting function pointers.

Return Oriented Programming. Return Oriented Programming (ROP) is a
commonly employed technique designed to counteract the Non-Executable (NX)
protection of data segments [20]. ROP involves the identification of usable code
snippets, often referred to as gadgets, within code segments marked as exe-
cutable but not writable through static analysis. These gadgets typically end
with a ret instruction and are frequently employed for register manipulation
and stack data read/write operations. Attackers can construct various power-
ful primitives by strategically placing consecutive code addresses on the stack
through vulnerabilities such as buffer overflows. This enables them to achieve
function parameter layout and invoke functions at arbitrary addresses.

ROP plays a pivotal role in multiple exploitation stages, including infor-
mation leakage. Therefore, nested ROP scenarios are often encountered in a
comprehensive exploitation. For instance, in cases where an attacker has limited
access to imported functions within the program, they may initiate a call to
puts(&puts); to obtain the address of the puts function in libc. After returning
to the stack overflow point, they can trigger the overflow again and call any
function, such as exit(0);, located within libc.

Leveraging leaked random address information, it is possible to combine func-
tions and code snippets from the dynamically loaded library for a function call
similar to system(“/bin/sh”);. Alternatively, in scenarios where DEP is disabled,
it becomes feasible to inject shellcode into controllable regions and execute arbi-
trary code. In many early AEG approaches, extensive research was conducted
on automatic shellcode generation and injection. However, the main focus of this
work is to address complex challenges such as information leakage in automated
exploitation. Therefore, the injection of shellcode is considered only as a means
of introducing a scalable and simplified state for us.

Nested ROP presents diverse combinations of function call chains, demanding
that an AEG framework selectively and flexibly choose and combine these calls.
This step-by-step approach is essential for overcoming various protections and
ultimately gaining the ability to execute arbitrary code.

3 Design

3.1 Methodology

Our framework SAEG can be conceptualized as navigating an exploitation graph
(EG) through a specific search strategy to probe potential exploit paths. The
traversal of the EG is guided by conditional transitions and prioritizations that
limit the breadth of the state to be explored. The EG is defined as follows:
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Definition 1 (Exploit Graph). Let AP be a set of atomic information such
as secret canary value or randomized base address of .text segment. An exploit
graph or EG is a tuple EG = (S, τ, S0, Ss, L), where S is a set of states, τ ⊆ S×S
is a transition relation, S0 ⊆ S is a set of initial states, Ss ⊆ S is a set of success
states, and L : S → 2AP is the labeling of states with a set of information true in
that state. Intuitively, Ss denotes exploitation completed, for example, reaching
a shell access.

Within the Exploit Graph (EG), each state corresponds to the exploitation
of a vulnerability with an information set. Such vulnerabilities encompass stack
overflows, format string vulnerabilities, and use-after-free, among others. We
maintain the distinctness of each state by associating it with a specific type of
vulnerability and its present information set where si.l = L(si). Every τi ⊆ τ
symbolizes an individual atomic exploit method.

To construct the EG, we first manually create an attack template library (T )
consisting of several atomic exploitation steps. Each attack template contains
the classification of the techniques to which the vulnerability is exploited, the
premises required to execute this exploitation, the atomic information obtained
from completing the exploitation, and the code knowledge to execute the attack.
The definition of the attack template is as follows:

Definition 2 (Attack Template). An attack template is a tuple t =
(type, p, g, code) where:

– type represents the vulnerability type exploited by the template.
– p ⊆ 2AP provides the preconditions of the template.
– g ∈ AP is a subset of atomic information, denoting the effect of the attack.
– code is the payload of the exploitation.

SAEG generates the initial states S0 based on the input binary program. For
instance, if the target binary is not compiled with Position Independent Exe-
cutable (PIE), each initial state s ∈ S0 implicitly contains the base address of the
.text segment. Consequently, the generated EG excludes techniques aimed at
revealing this known information. Similarly, if the target binary has not disabled
lazy binding, the EG would include exploits such as GOT hijacking. Following
this, SAEG leverages the predefined attack templates in conjunction with S0 to
construct the EG, as detailed in Algorithm1.

Subsequently, SAEG constructs an exploit path by recursively traversing the
program’s execution tree and searching for new vulnerabilities by symbolic execu-
tion. The transfer from the current state to its successor indicates the deployment
of an attack template according to the newly found vulnerability. SAEG also ver-
ifies the exploit path during its construction and returns a complete exploit path
if found otherwise it returns empty if all available exploits are failed. We define
that SAEG verifies the exploit through the CHECK_EXPLOITATION proce-
dure. The primary concern of this verification procedure is ensuring that the
exploit’s payload conforms to the target program’s constraints. For example, if
an attack requires overwriting 16 bytes of data, but only overwrite 12 bytes can
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be overwritten under the current state, then it does not meet the constraint.
The process through which SAEG generates exploits based on the EG is shown
in Algorithm2.

Algorithm 1. Generate EG
Require: A set of attack templates T , initial states S0

Ensure: EG = (S, τ, S0, Ss, L)
1: function Gen_EG(T, S0)
2: S ← ∅, Ss ← ∅, L ← ∅, τ ← ∅, W ← S0

3: while W �= ∅ do
4: s ← pop(W )
5: S ← S ∪ {s}
6: if shell_access ∈ L[s] then
7: Ss ← Ss ∪ {s}
8: else
9: for all t ∈ T do

10: if t.g ∈ L[s] then
11: continue
12: end if
13: if t.p ∈ L[s] then
14: Create a new state s′

15: s′.l ← L[s] ∪ t.g
16: L[s′] ← s′.l
17: τ [s, s′] ← t
18: W ← W ∪ {s′}
19: end if
20: end for
21: end if
22: end while
23: return EG = (S, τ, S0, Ss, L)
24: end function

Algorithm1 is capable of ensuring each step of the vulnerability exploitation
will acquire new information, this provides a constraint implied at line 8 of Algo-
rithm2 to limit the recursion depth to less than |AP |. As a result, Algorithm2
is inherently protected against the problem of state explosion, yet the nature of
symbolic execution itself may still lead to generating a large number of states.

Overall, the work of SAEG is divided into two steps: (1) Generate EG employ-
ing Algorithm1 with attack templates and the target program. (2) Try to gen-
erate exploits by analyzing the program against the EG with Algorithm2.
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Algorithm 2. Generate exploitation from EG
Require: An exploit graph EG, initial states S0, a sequence of transitions τa
Ensure: An exploit path consisting of a sequence of transitions if exists, otherwise ∅
1: function Check_EG(EG, sn, τa) � We use symbolic execution to get all

immediate successor of sn
2: for all transition τ [s, s′] in EG.τ where s′ is an immediate successor of sn do
3: τ ′

a ← τa ∪ {τ [s, s′]} � Append τ [s, s′] to τa to create a new path
4: if check_exploitation(τ ′

a) then
5: if s′ is in EG.Ss then
6: return τ ′

a

7: else
8: result ← Check_EG(EG, s′, τ ′

a)
9: if result �= ∅ then

10: return result � Found An exploit path
11: end if
12: end if
13: end if
14: end for
15: return ∅ � No exploit path found
16: end function

3.2 Architecture

We present a prototype of SAEG as shown in Fig. 1. The entire prototype is
primarily divided into four major modules: binary preprocessing, exploit graph
verification, Hook module, and verification module.

The solid arrows in the figure denote state transitions and the dotted arrows
indicate information transfer. The binary preprocessing and exploit graph verifi-
cation aim to extract the initial states and execute Algorithms 1 and 2. The EG
verification begins by taking the initial state obtained through preprocessing and
conducting symbolic execution to traverse the execution tree. It aims to generate
and verify multiple immediate successors for EG in scenarios such as memory
reading and writing, hook hits, and function returns. To ensure consistency, the
path verified by EG is synchronously passed to the interactive framework for
verification within the actual running program.

The Hook framework provides an appropriate abstraction for library func-
tions. On one hand, hooking library functions can alleviate the issue of state
explosion that occurs during the symbolic execution of these functions, thereby
significantly enhancing the efficiency of symbolic execution and even directly
affecting its exploitability. On the other hand, the hook framework allows the
overall framework to be aware of the program’s state. This enables the frame-
work to infer the controllability of the content and length of library function
arguments. It facilitates the exploitation of library functions such as printf
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Fig. 1. Schematic representation of the implementation structure of SAEG. (Color
figure online)

and puts, and also aids in identifying the offsets of sensitive data, such as stack
addresses and canaries, thereby enabling effective and accurate information leak-
age.

In contrast to traditional open-source AEG frameworks like BOF AEG and
Zeratool, expanding our framework only requires extending specific edges from
attack templates. This eliminates the need for writing multiple sets of modules
for designing from discovering exploitation states to exploitation models. SAEG
efficiently supports the combination of various information leakage and exploita-
tion methods with concise code. Such capability is challenging to achieve in
traditional expert systems based on greedy implementations that can only pri-
oritize a single goal.

Our approach leverages strategies such as prioritization and pruning to
enhance exploit attempts. In a scenario where multiple exploitable vulnerabil-
ities converge within line 2 of Algorithm 2, the SAEG framework is adept at
sequencing attempts according to a set of manually defined priorities. These pri-
orities may include the likelihood of successful exploitation or the risk of causing
program crashes. Furthermore, we have refined the preprocessing phase, enabling
the framework to discard more extraneous paths contingent on the preprocessing
outcomes. Such optimization has led to substantial performance enhancements
as evidenced by practical trials. By utilizing the exploit graph, SAEG can orches-
trate a variety of exploit techniques and effectively bypass security mechanisms
such as NX, ASLR, and Canary.
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3.3 Example

To briefly demonstrate the workflow of SAEG, We use the vulnerable program
in Fig. 2 compiled with both Canary and NX enabled, but PIE disabled.

Fig. 2. Simple vulnerable Program

SAEG first analyzes the protection status of the program and generates
S0 = {start}. For this simple scenario, we provide four primitive templates for
vulnerability exploitation T = {A1, A2, ..., A4}, which correspond to Attack 1
to Attack 4 in the appendix. Subsequently, the EGbasic generated by SAEG,
EGbasic = Gen_EG(T, S0), is shown in Fig. 3.

Fig. 3. Generated EGbasic

Subsequently, starting from start, SAEG performs symbolic execution to
line 4 of the source code, where two potential vulnerabilities s1 and s2 emerge.
Assuming SAEG prioritizes the attack format-string-leak-canary (A2), it will
first verify whether A2 can be completed. Once the attack is confirmed to be
feasible, SAEG recursively continues symbolic execution from s1 until it finds
s3 and verifies that A3 can be completed. If at this point A3 is considered not
satisfying the constraints, SAEG will backtrack to start to re-verify whether A1

can be completed. This process continues until a transition to the termination
state e1 ∈ Ss is made, at which point the entire exploitation path constitutes
the complete exploit generated. If, upon backtracking to start, there are no new
potential exploits, then the exploit generation fails.
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For a slightly more complex situation, the program is compiled with both the
PIE and the canary enabled. Now the attacker also needs to obtain the address of
the .text segment randomized by ASLR. In the new initial state, L(start′) = ∅.
We added two attack templates to the template library, T ′ = {A1, ..., A6}, cor-
responding to Attack 1 to Attack 6 in the appendix. The EGenhanced generated
by SAEG now is as shown in Fig. 4.

Fig. 4. Generated EGenhanced

Then when the SAEG inspection of Attack 1 can be completed, it will con-
tinue to try to leak more information, such as by appending the formatted string
length to complete Attack 5, or continue to exploit the formatted string attack
to complete Attack 6. Thus, by adding two templates, we have expanded SAEG
to complete the complex exploit generation with more information leakage.

4 Implementation

In the detailed implementation, the binary preprocessing module includes the
Radare2 [17] analysis engine and FLIRT [8] function signature recognition algo-
rithm. Radare2 [17] is used for the reverse analysis of binary files, detecting
high-risk functions and code snippets. FLIRT [8] identifies statically compiled
library functions to alleviate the burden of symbolic execution. exploit graph
verification module uses angr [22] for symbolic execution, which uses z3 solver
[5] as its backend. Exploits satisfying the constraint conditions are interactively
tested with the local executable file or remote port service by the verification
module. The prototype of SAEG is implemented in Python using 2240 lines of
code, which includes 30 attack templates. Among them, four templates exemplify
heap exploitation by implementing the house-of-force attack [25]. On average,
each attack template requires fewer than 50 lines of Python code, making the
prototype relatively easy to further expand.

5 Evaluation

In this section, we evaluate the effectiveness of SAEG through binary files from
several CTF challenges. The assessment primarily focuses on protection strate-
gies, exploitable vulnerability types, and the performance of generating exploit
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samples. All experiments without “*” mark were conducted on a Ubuntu 20.04
in docker with 2 Intel i7-13700 cores under virtualization of QEMU Virtual CPU
version 2.5+ @ 2.1GHz and 4GB memory. It should be noted that since we did
not have access to the source code of LAEG, the results of LAEG were refer-
enced from the original LAEG work on an Ubuntu 18.04.5 LTS with 6 AMD
R5 R5600X CPU @ 3.7GHz cores and 16GB memory. Despite having fewer
CPU cores, less memory, and a lower clock frequency, SAEG still exhibits higher
efficiency. The details are shown in Table 2.

Compared to existing relevant work, our approach achieves a significant effi-
ciency improvement without sacrificing the capability of exploitation. We posit
that the efficiency enhancement primarily stems from the more effective pruning
of conditional branches by the exploit graph, leading to a notable increase in vul-
nerability exploitation efficiency. Note that many relevant implementations rely
on complete template matching, requiring significant time for matching and ver-
ifying each template. While SAEG generates numerous exploit paths by combin-
ing primitive templates, it efficiently minimizes unnecessary verification guided
by the exploitation graph. Simultaneously, the exploit graph proves effective in
handling complex exploit generation, as it can adeptly manage multi-step states,
thereby bypassing defenses in binary programs equipped with diverse protective
mechanisms. We further validate the feasibility of our framework in addressing
heap exploitation challenges.

In the two samples from defcon27_speedrun, SAEG demonstrated a signifi-
cant advantage over the top hackers participating in DEF CON. The participants
exploited the vulnerabilities in 266 s and 280 s respectively, while SAEG outper-
formed the fastest participant by 35 times and 37 times, confirming its efficiency
in rapidly identifying exploitable vulnerabilities. This underscores the value of
AEG in compelling assessments of software vulnerability remediation, namely,
having a greater chance of confirming the urgency of fixes before live exploita-
tion, while also allowing time for remediation efforts, post the public disclosure
of POCs.

In the defcon27_speedrun-002 example, our approach’s runtime is slightly
close to that of LAEG, attributed to the presence of numerous constraint-solving
steps in the file (requiring interactive password input). LAEG provides a crash
POC through the exploitation framework, including the correct password, result-
ing in saved solving time. Given that the real exploitation process may signifi-
cantly differ from the POC’s execution flow (for instance, in a repeatable path
where one branch’s two sides represent a crash and information leakage, the POC
may only obtain crash information, neglecting the information leakage on the
other side of the branch-essential for completing the exploitation), we contend
that the proper handling and utilization of POC information are worthwhile
topics for exploration. However, this exceeds the scope of our current work.

In testing scenarios such as static compilation examples (S-crash-static), the
input target programs are all large binary files exceeding 500KB. Only SAEG
and LAEG can generate the exploitation, and the efficiency of SAEG is higher
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Table 2. Evaluation results of SAEG (time: seconds)

Vulnerable Program Protection Zeratool BOF AEG LAEG SAEG

umdctf_jne N 7 (9.33x) 2.69 (3.58x) - 0.75
downunderctf_out N 6 (7.06x) ✗ - 0.85
csawctf_roppity N 30 (16.2x) 2.38 (1.29x) - 1.85
downunderctf_return N 30 (30.0x) 2.39 (2.39x) - 1.00
dctf_babybof N 27 (24.3x) 1.59 (1.43x) - 1.11
umdctf_jnw N 27 (26.5x) 2.39 (2.34x) - 1.02
csictf_0x1 N ✗ 2.40 (2.72x) - 0.88
csictf_0x2 N ✗ 2.40 (9.99x) - 0.24
csictf_0x3 N 7 (8.75x) 2.36 (2.95x) - 0.80
dctf_sanity N ✗ 10.7 (12.4x) - 0.86
csawctf_password N ✗ 60 (7.22x) - 8.31
hcktivityctf-retcheck R+N ✗ 3.09 (3.90x) - 0.79
tamilctf_name N ✗ 1.63 (1.81x) - 0.90
dicectf_babyrop N ✗ 2.32 (2.19x) - 1.06
utctf_resolve N ✗ 2.35 (2.17x) - 1.08
nahamconctf smol N ✗ 1.56 (1.88x) - 0.83
sharkctf_give R+A+N ✗ 4.00 (4.00x) - 1.00
angstromctf_no_canary N ✗ 6.40 (3.65x) *8.60 (4.90x) 1.75
angstromctf_tranquil N ✗ 3.80 (1.70x) *5.59 (2.51x) 2.23
wpictf_dorsia1 A+N ✗ ✗ - 1.28
downundercrf_deadcode N ✗ ✗ - 0.29
redpwncrf_coffer N ✗ ✗ - 0.28
dctf_hotelrop A+N ✗ ✗ - 1.11
lexingtoncrf_gets A+N ✗ ✗ - 0.69
crash_backdoor - 10 (9.52x) 1.75 (1.72x) *5.72 (5.56x) 1.02
crash_canary C ✗ ✗ *5.60 (4.88x) 1.14
crash_pie A ✗ ✗ *5.74 (4.85x) 1.18
S-crash-static - ✗ ✗ *1.68 (1.73x) 0.96
S-defcon27-speedrun-001 N ✗ ✗ *41.3 (5.46x) 7.55
defcon27-speedrun-002 N ✗ ✗ *6.20 (1.54x) 4.02
utctf_bof N ✗ 2.33 (1.60x) *5.54 (3.81x) 1.45
gyctf_force R+C+A+N ✗ ✗ - 174
lexingtoncrf-madlibs R+N ✗ ✗ - ✗

crash-canary-pie R+C+N ✗ ✗ ✗ ✗

The number in parentheses after the time refers to the efficiency improvement
multiple achieved by our SAEG compared to the current framework. In the protec-
tion status, “R” represents RELRO, “C” represents Canary, “A” represents ASLR,
and “N” represents NX. The “S-” prefix indicates a statically linked program.
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than that of LAEG with existing POC knowledge. This indicates that modeling
library functions and attempting to reconstruct function tables is beneficial.

The example lexingtonctf_madlibs is a typical example of the limitation of
symbolic execution. This example contains a nested format string vulnerability,
which can lead to a stack overflow vulnerability. However, symbolic execution
based on angr still cannot handle this problem. Therefore, SAEG is unable to
complete the exploitation as it cannot find new potential vulnerabilities. Another
failed example is crash-canary-pie. SAEG has the capability to handle multi-step
leaks, but this scenario needs to involve truncation symbol overwrite vulnera-
bility. In order to exploit this vulnerability, attackers may need to overwrite the
low bytes of the return address pointing to libc to re-enter the current function,
creating a second chance for information leaks and exploiting stack overflow vul-
nerability. SAEG does not have an exploitation primitive template for re-entering
the current function, thus it cannot complete the full exploitation. After we pro-
vided a simple re-entry template, SAEG successfully exploited crash-canary-pie.
However, this indicates that SAEG needs to combine existing templates rather
than create new exploitation primitives beyond the templates.

6 Discussion

Real-World Applications

SAEG may encounter inherent limitations of symbolic execution in collecting
vulnerability states, such as path explosion issues in complex large-scale appli-
cations. In such cases, we can replace the path exploration module with known
exploit samples, such as POC causing a denial of service, to improve the effi-
ciency of initial exploitation state exploration for large-scale applications. Alter-
natively, we can use concolic execution to enhance efficiency through fuzzing.
While recent works, such as MAZE and Revery, focus on optimizing modules or
smaller components of exploit generation, the topic of crash state exploration,
as another field of program analysis, is not extensively discussed in this article.

SAEG’s exploit generation and exploitation information collection capabili-
ties can help developers differentiate between vulnerabilities that may only lead
to DoS attacks and those that have the potential to achieve arbitrary code exe-
cution by bypassing protection mechanisms. By analyzing the potential harm
of these vulnerabilities and understanding the underlying causes of successful
exploitation, SAEG can assist developers in proposing more secure patching
solutions, ultimately improving the overall security of modern protections.

Trade-Off of Symbolic Execution

Using modeling and hooking can mitigate the problem of state explosion caused
by library functions, but it may cause the symbolic execution engine to lose
precise information about stack data. Since the stack space is linear and not
automatically cleared, both library functions and the program itself reuse the
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same stack memory. Therefore, crucial information introduced by library func-
tions may reside on the stack and it is difficult for symbolic execution to capture
after function replacement. This information may be obtainable through concolic
execution or real-time debugging methods. However, using dynamic analysis to
obtain this part of information leakage is beyond the scope of our framework.

Future Research

The current limitations of SAEG are primarily associated with a clear reliance
on symbolic execution and ROP technology. ROP technology cannot be applied
to high-risk vulnerabilities in real scenarios caused by logical flaws, such as
command concatenation [16], branch mispredictions, and supply chain back-
doors [15], where attacks do not manipulate return addresses/jump addresses.
To address these limitations, future work can focus on optimizing the symbolic
execution section to handle high-risk path exploration and make the framework
compatible with these types of vulnerability exploitation.

7 Related Works

7.1 AEG

The research related to AEG was first proposed in APEG [3], which aims to
generate exploits for unpatched programs through a patched program. In subse-
quent work [1], AEG automatically generates an exploit by providing a POC. In
recent years, researchers have proposed several AEG solutions. However, modern
protection procedure like ASLR and Stack Canary brings great challenges to the
exploitation capabilities of those AEG implementations.

Exploit Generation. Many AEG frameworks strive to efficiently generate uti-
lization like MAZE [24] tackles heap layout as a patching problem by identifying
allocated and deallocated primitives to construct the desired heap layout in com-
plex scenarios. Revery [23] efficiently explores and generates exploits by replacing
symbolic execution with fuzzing. However, they assume protections like ASLR
that require information leakage are disabled. Therefore, combining SAEG with
these technologies may improve the exploitation ability of existing work.

Protection Bypass. The realm of automatic exploit generation stands as
a vibrant domain in contemporary research endeavors, some recent work has
focused on solving the problem of information leakage in AEG. For example,
LAEG [14] aims to make up for the lack of information leakage capabilities of
existing AEGs through optimized dynamic analysis methods. ExpGen [9] aims
to obtain leaked ASLR information through fuzz testing and make subsequent
use of it, while CanaryExp [10] adds detection of Canary leaks similar to LAEG
on the basis of ExpGen, and enhances the leakage capabilities by guiding fuzz
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testing technology while making the leaks more Robust. However, it is difficult
for them to use formatted strings or heaps of feng shui to accomplish more com-
plex information leakage or vulnerability exploitation. Autopwn [26] implements
the first Artifact-assisted automatic heap exploitation framework, which defines
an Exploitation State Machine to receive automatically learned knowledge to
efficiently perform complex heap exploitation.

7.2 Path Exploration

Symbolic Execution. Symbolic execution utilizes symbols to represent vari-
ables and simulate the execution of a program. It extracts and resolves con-
straints along the execution path using constraint solvers like z3 and cvc5 [2].
Theoretically, symbolic execution generates constraints for every path, which
may result in challenges such as state explosion.

Prominent tools for symbolic execution include KLEE [4] and angr. KLEE
functions as a source code analysis framework, compiling from the source code
and incorporating instrumentation for symbolic execution. On the other hand,
angr serves as a platform-agnostic binary analysis framework, offering a plethora
of easily extendable modules and interfaces. It can simulate binary program
instructions and convert standard or file inputs into bit vectors.

Fuzzing. Fuzzing can explore a large number of paths in a short period of time
through processes such as the automated generation and mutation of inputs.
Common tools for fuzzing include American Fuzzy Lop (AFL) [30] and AFL++
[6]. AFL utilizes genetic algorithms to effectively expand code coverage, and it
can be further improved through the integration of ASAN [19] and QEMU.

For example, ARCHEAP [29] uses extended AFL to automatically detect
new primitives for heap exploitation and CanaryExp uses AFL++ to generate
POC that leaks the value of canary.

8 Conclusion

We have designed a novel exploitation graph based on the attack graph. Addi-
tionally, we have implemented an automatic exploit generation framework,
SAEG, based on the exploitation graph. This framework relies on finely-grained
vulnerability primitives that are easy to expand and can generate complex
exploits containing information disclosure to counter general modern protection
mechanisms. We use binary files from CTF challenges to evaluate the frame-
work, and the results demonstrate the effectiveness of SAEG. Lastly, we believe
we have raised the state-of-art of open-source AEG frameworks and provided
new ideas for the state management of AEG.
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Appendix for Attack Templates

Attack 1 chop-leak-canary

Type: Overwrite terminate symbol in output string.
Premise: None.
Effects: Secret value of canary.

Attack 2 format-string-leak-canary

Type: use stack format string vulnerability to leak data on stack.
Premise: None.
Effects: Secret value of canary.

Attack 3 leak-got

Type: Use stack overflow to launch ROP attack.
Premise: Secret value of canary ∧ Base address of .text segment.
Effects: Base address of .libc mapping.

Attack 4 return-to-libc

Type: Use stack overflow to launch ROP attack.
Premise: Secret value of canary ∧ Base address of .libc segment.
Effects: Shell access.

Attack 5 chop-leak-text

Type: Overwrite terminate symbol in output string.
Premise: None.
Effects: Base address of .text segment.

Attack 6 format-string-leak-text

Type: use stack format string vulnerability to leak data on stack.
Premise: None.
Effects: Base address of .text segment.
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