Analyzing Cache Side Channels Using Deep Neural Networks

Tianwei Zhang
No Affiliation
tianweiz@alumni.princeton.edu

ABSTRACT

Cache side-channel attacks aim to breach the confidentiality of a
computer system and extract sensitive secrets through CPU caches.
In the past years, different types of side-channel attacks targeting a
variety of cache architectures have been demonstrated. Meanwhile,
different defense methods and systems have also been designed
to mitigate these attacks. However, quantitatively evaluating the
effectiveness of these attacks and defenses has been challenging.
We propose a generic approach to evaluating cache side-channel
attacks and defenses. Specifically, our method builds a deep neural
network with its inputs as the adversary’s observed information,
and its outputs as the victim’s execution traces. By training the neu-
ral network, the relationship between the inputs and outputs can
be automatically discovered. As a result, the prediction accuracy
of the neural network can serve as a metric to quantify how much
information the adversary can obtain correctly, and how effective
a defense solution is in reducing the information leakage under dif-
ferent attack scenarios. Our evaluation suggests that the proposed
method can effectively evaluate different attacks and defenses.

ACM Reference Format:

Tianwei Zhang, Yingian Zhang, and Ruby B. Lee. 2018. Analyzing Cache Side
Channels Using Deep Neural Networks. In 2018 Annual Computer Security
Applications Conference (ACSAC ’18), December 3-7, 2018, San Juan, PR, USA.
ACM, New York, NY, USA, 13 pages. https://doi.org/10.1145/3274694.3274715

1 INTRODUCTION

Side-channel attacks are serious security threats to the confiden-
tiality of computing. They exploit the physical characteristics of
the system to breach the confidentiality of the victim’s applications
under the cryptography or access control protection. Generally,
when a victim program executes critical operations with secret in-
formation, the host system may exhibit secret-dependent features
or behaviors that can be observed by the side-channel adversary.
Typical examples of such features include power consumption [24],
electromagnetic radiation [39], acoustic noise [15], timing [37] etc.
Based on these features, the adversary is able to infer the secrets.
Among all the potential sources of information leakage, cache
side channels are particularly dangerous. The interferences between
different programs on the cache usage can be exploited by the
adversary to steal information [4, 6, 19, 37]. Past work have shown
the possibility and practicality of cache side-channel attacks in

Permission to make digital or hard copies of all or part of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full citation
on the first page. Copyrights for components of this work owned by others than ACM
must be honored. Abstracting with credit is permitted. To copy otherwise, or republish,
to post on servers or to redistribute to lists, requires prior specific permission and/or a
fee. Request permissions from permissions@acm.org.

ACSAC 18, December 3-7, 2018, San Juan, PR, USA

© 2018 Association for Computing Machinery.

ACM ISBN 978-1-4503-6569-7/18/12...$15.00
https://doi.org/10.1145/3274694.3274715

Yingian Zhang
The Ohio State University
yinqian@cse.ohio-state.edu

Ruby B. Lee
Princeton University
rblee@princeton.edu

cloud servers [57, 58], mobile devices [29, 56] and web browsers
[35]. Recently, two critical processor vulnerabilities, Meltdown [30]
and Spectre [23], were discovered which allow user-level programs
to break the OS protection ring and steal data from the privileged
kernel space or other programs. These two vulnerabilities exploit
cache side channels or covert channels to transmit information.

A variety of cache attacks have been proposed targeting different
victim applications (e.g., cryptographic programs [36, 37], the user
Interface [18], web applications [35, 58]), system configurations (e.g.,
non-virtualization [19, 37], virtualization [34, 57]) and CPU cache
architectures (e.g., L1 cache [37, 57], LLC [21, 34, 52]). Meanwhile,
different defenses haven been designed to mitigate these attacks
by modifying system software [22, 44, 59, 60] or hardware [13, 31,
32, 49, 51]. In order to evaluate these attacks or defenses, the most
straightforward way is to implement the real attacks or defense
solutions, and check if the adversary can steal the secrets. While
this method can provide reliable and convincing results, it is not
easy to conduct experimental evaluation. First, reproducing side-
channel attacks from literature usually takes a lot of effort, as these
attacks are delicate and complex. It is also difficult to implement
the defenses, especially for the hardware solutions. Second, given
the fact that there are so many types of attacks and defenses, it
is extremely difficult to experimentally evaluate different attacks
against different solutions to get comprehensive conclusions.

To efficiently analyze cache side-channel attacks and defenses,
different metrics [10, 25, 40, 45, 54] and models [20, 55] were pro-
posed. However, they have some limitations. (1) Some work only
consider one specific attack and cannot be generalized to all known
cache side-channel attacks. (2) Some metrics [10, 54] assume that
the adversary’s observation and victim’s execution are linearly cor-
related, which reduces the attack scope. (3) Some metrics [25, 40, 45]
need to model how the adversary analyzes the side-channel infor-
mation and recovers the keys, which makes them more complicated
and less practical. (4) Some methods (e.g., [55]) suffer from state
explosion problem and can only be used to simulate very simple
cache activities.

In this paper, we propose a novel method to quantify the ef-
fectiveness of cache side-channel attacks and defenses by using
deep neural networks. Our key insight is that the essence of cache
side-channel attacks is to learn the relationship between the ad-
versary’s observations and victim’s execution traces, and predict
the sensitive information from the observations. This learning and
prediction process can be naturally simulated by a neural network.
Past work have shown the possibility of using machine learning
methods to help the adversary recover cryptographic keys in some
side-channel attacks [2, 7, 19, 35, 57]. Different from those work,
we aim to build a generic deep learning based approach to analyze
different types of cache side-channel attacks as well as defenses.

Specifically, the adversary’s side-channel observations are mod-
eled as inputs, and the victim’s execution traces are modeled as

https://doi.org/10.1145/3274694.3274715
https://doi.org/10.1145/3274694.3274715

ACSAC ’18, December 3-7, 2018, San Juan, PR, USA

outputs. These data are fed into a deep neural network and the
analysis is performed in two phases: in the training phase, a neural
network model is trained, which discloses the relationship between
the inputs and outputs. This training process simulates how the ad-
versary learns the relationship between side-channel observations
and sensitive information. In the inference phase, the input data is
fed into the trained model and the output data is generated, which
simulates how the adversary predicts sensitive information from
side-channel observations. The prediction accuracy can serve as a
metric to quantify the effectiveness of the attacks and defenses.

Our method has several advantages. First, the neural network
can automatically discover the relationship between the adversary’s
observation and the victim’s execution. So we do not need to con-
sider and model the process of secret recovery for each specific
attack method. Second, the neural network can reveal both linear
and non-linear relationships. The non-linear relationship signifi-
cantly improves over previous methods, such as Zhang et al. [54]
and Demme et al. [10]. Third, it is feasible to build state machines to
model cache activities and generate training and inference datasets
for the neural network. So there is no need to run actual attacks in
real systems for data collection, which saves a lot of time and effort
for cache side-channel analysis. Fourth, our method is generic and
can be applied to different attacks and defenses. We show in this
paper how we use this method to evaluate five common existing
attack techniques (i.e., PRIME-PROBE, EvicT-TIME, FLUSH-RELOAD,
FLusH-FLUSH, PRIME-ABORT) and two categories of defense strate-
gies (i.e., isolation, randomization).

The key contributions of this paper are:

e A novel and generic method to analyze cache side channels
using deep neural networks.

e Modeling of cache side-channel attack techniques and defense
strategies using finite state machines.

o Evaluations and comparisons of different attacks and defenses.

The rest of the paper is organized as follows: Sec. 2 gives the
background of cache side-channel attacks, and deep neural net-
works. Sec. 3 gives the methodology overview. Sec. 4 describes how
to use a finite-state machine to model cache activities and generate
datasets. Sec. 5 describes how we conduct the side-channel analysis
using a deep neural network. Sec. 6 presents the evaluation of our
method. Sec. 7 validates our methodology using real attacks. We
discuss related work in Sec. 8 and conclude in Sec. 9.

2 BACKGROUND
2.1 Cache Side-channel Attacks

CPU caches provide a side channel for information leakage from
the victim’s program to the adversary’s program. The root cause
is the interferences (timing or functional) between the victim and
adversary on the cache usage. As the victim executes on the system,
it may have different cache behaviors when accessing the memory.
These behaviors can interfere with the adversary and cache states.
Then the adversary tries to observe his own cache state or the
victim’s external behaviors (e.g., execution time) to deduce the
victim’s cache behaviors, which might help him steal the secrets.
To capture the victim’s memory traces, the adversary usually
conducts two stages. We abstract these as SET-CHECK. In the SET

Tianwei Zhang, Yinqian Zhang, and Ruby B. Lee

stage the adversary sets some critical cache blocks or sets to certain
states. Then the adversary waits for some time for the victim to
execute. If the victim accesses any of these cache blocks or sets,
it will change the cache states. In the CHECK stage, the adversary
checks the states of the cache blocks or sets to infer the victim’s
memory traces. He can repeat the SET-CHECK stages until he obtains
enough victim’s memory traces to recover the confidential data.
Based on the techniques of setting and checking cache states, we
can classify the cache side-channel attacks into three categories:

Contention-based attacks. The adversary checks if the victim’s
memory accesses cause cache contention with his own activities,
and uses such contention information to deduce the victim’s traces.

PRIME-PROBE attack [37]: the adversary selects an array of mem-
ory blocks that can exactly fill up certain cache sets, which contain
the victim’s secret. Then in the PRIME stage, the adversary reads
each memory block in the array to evict all the victim’s data in these
cache sets. The adversary waits for a certain time and then performs
the PROBE stage, where he again reads each memory block in the
array, and measures the time of each memory access. A large access
time means cache contention occurs, indicating that this cache set
has been accessed by the victim between the PRIME and PROBE
stages. The PROBE stage is the PRIME stage for the next round.

EvicT-TIME attack [36]: similar to the PRIME-PROBE attack, the
adversary also prepares an array of memory blocks that can fill up
the critical cache sets. The EvICT stage is the same as the PRIME
stage, except that typically only one cache set is evicted. After this
stage the victim executes certain blocks of code (e.g., encryption
of one plaintext). The adversary measures the victim’s execution
time as his second stage TIME. A large execution time means that
the victim accesses the critical cache sets during the execution, and
generates cache contention with the adversary.

Reuse-based attacks. This type of attacks assumes that the sys-
tem enables the Kernel Samepage Merging (KSM) technique [1],
where identical memory pages amongst different processes are
merged and shared. So the adversary and victim processes can
share the same pages containing cryptographic codes. The adver-
sary checks if some memory blocks inside these shared memory
pages are used by the victim to infer the victim’s memory access.

FLusH-RELOAD attack [19]: the adversary selects an array of
critical memory blocks from these shared pages. In the FLUSH stage,
the adversary flushes these memory blocks out of the entire cache
hierarchy. Then he waits for a certain interval. In the RELOAD stage,
the adversary accesses these memory blocks and measures the
latency. A short access time for one memory block indicates a
cache hit, as this block has been reused by the victim and brought
into the cache during the interval.

FrusH-FLUSH attack [17]: the setup and first stage is the same as
FLusH-RELOAD. In the second stage, instead of reloading the shared
memory blocks, the adversary still flushes the blocks. If the victim
fetches a block into the cache, then flushing this block will take a
longer time than when it is out of the cache. So FLusH has the same
effect as RELOAD. Besides, a single FLUSH operation can serve as
CHECK for the current round as well as SET for the next round.
Abort-based attacks. Different from the above two timing-based
attacks, the adversary can use the occurrence of aborts to infer the
victim’s access. Specifically, in an Intel Transactional Memory (TSX)

Analyzing Cache Side Channels Using Deep Neural Networks

processor, when the victim evicts the adversary’s transactional
memory block out of the cache, the adversary receives an abort.
This serves as an indication of the victim’s access to a certain cache
set.

PRIME-ABORT attack [11]: the adversary prepares an array of
memory blocks that can fill up a target cache set. The first stage is
also similar to the PRIME-PROBE attack, except that the adversary
also opens a TSX transaction first for his memory blocks. Then
he can just wait for the occurrence of the second stage ABORT.
When the victim evicts the adversary’s block out of the cache, the
adversary observes an abort and he can detect the victim’s access.

2.2 Cache Side-channel Defenses

Different defense systems and methods have been proposed to
protect against cache side-channel leakage. Basically these solutions
follow one of two strategies: isolation and randomization [50].

Isolation. The root cause of cache side-channel attacks is due to
the interference in the physical cache regions (PRIME-PROBE, EvicT-
TIME, PRIME-ABORT) or memory pages (FLUSH-RELOAD, FLUSH-
FrLusH). So one straightforward approach is to isolate the adver-
sary’s and victim’s cache activities. To isolate cache regions, the
cache can be partitioned into different zones by sets or ways via
hardware [13, 31, 51] or software methods [22, 44], and allocate
these zones to different programs. This can effectively prevent
information leakage due to cache set interference, at the cost of
performance degradation. To isolate memory blocks, we can disable
memory page sharing or memory deduplication [52, 58]. This can
defeat reuse-based attacks, at the cost of memory space waste.

Randomization. This strategy aims to introduce randomness to
the adversary’s measurements to make it hard for him to distinguish
the victim’s cache usage. Typical examples of this strategy include
random memory-to-cache mappings [49, 51], randomized cache
prefetches [32], timers [28, 48] and cache states [59]. For instance,
a random eviction cache [55] periodically selects a random cache
block to evict. This adds faked cache activities into the adversary’s
observation, and he cannot distinguish them from the victim’s
activities. A random permutation cache [51] or a NewCache [33, 49]
dynamically randomizes the memory-to-cache mapping for each
process. When the adversary obtains the victim’s cache access trace,
he cannot recover the victim’s memory access trace, as he does not
know the victim’s memory-to-cache mapping.

2.3 Deep Neural Networks

A deep neural network is a parameterized function fy : X — Y
that maps an input tensor x € X to an output tensor y € Y. Vari-
ous neural network architectures have been proposed and applied
to different tasks, e.g. multilayer perceptrons [42], convolutional
neural networks [27] and recurrent neural networks [43].

We use multilayer perceptrons as an example. A neural network
usually consists of an input layer, an output layer and a sequence
of hidden layers between the input and output. Each layer is a
collection of units called neurons, which are connected to other
neurons in the previous layer and the following layer. Each connec-
tion between the neurons can transmit a signal to another neuron
in the next layer. In this way, a neural network transforms the
inputs through hidden layers and then the outputs, by applying a

ACSAC ’18, December 3-7, 2018, San Juan, PR, USA

linear function (weight: W;, bias : b;) followed by an element-wise
nonlinear activation function ¢; (e.g. sigmoid, ReLU or softmax)
in each layer i, as shown in Equation 1.

h1 = ¢1(Wrix + by)
hy = ¢2(Wahy + b2)

hn = ¢n(Wnhn-1 + bp)
Y = ¢n+1(Wns1hn + but1)

Model training. The training process of a neural network is to
find the optimal parameters 0 that can accurately reflect the re-
lationship between X and Y. To achieve this, a training dataset
Dptrain — {xi”“i",yi’r“i"}{i1 with N samples is needed, where
xl.”“i" € X is the feature data and yfr“i” € Y is the corresponding
ground-truth label. Then a loss function L is adopted to measure
the distance between the ground-truth output yf rain and the pre-
dicted output fp(x!" ainy The goal of training a neural network is
to minimize this loss function (Equation 2). Backward propagation
[16] and stochastic gradient descent [41] are commonly used meth-
ods to approximately achieve this goal. The optimal parameters 6*

together with the network topology form the deep learning model.

N
0" = argmin(} Ly ", fo(xi™")))
i=1
Model inference. After the model training is completed, given
an input x, the corresponding output can be calculated as y =
fo+(x). This prediction process is called inference. We can also
calculate the prediction accuracy of the model over a testing dataset
Dptest = {xit“t, yge”}f\il to measure the model’s performance. For
a classification problem where the output is a discrete number of
values, the prediction accuracy is defined in Equation 3, where I is
the indicator function, i.e., I(a = b) = 1 when a = b, and 0 when
a#b.

N
ace(D'!, fgo) = = > Wfor (xfo1) = yies") 3)

1
N i=1

3 METHODOLOGY OVERVIEW

We aim to provide a generic methodology to quantitatively measure
and compare the side-channel adversary’s capabilities, as well as the
effectiveness of defense solutions. To achieve this, deep neural net-
works are adopted to conduct the side-channel analysis and evalua-
tion. The key insight that motivates the design of this methodology
is that the goal of a deep neural network is to learn the relationship
between feature variables and label variables given a number of
training data, and then use this relationship to predict the label from
a given feature. This exactly matches the goal of a side-channel
adversary: learning the relationship between the side-channel ob-
servation and sensitive information, and then predicting the victim’s
sensitive information from the adversary’s observations. Therefore,
a side-channel attack can be modeled as a deep neural network: the
input features of the network are the adversary’s observation, and the
output labels of the network are the victim’s execution information.

ACSAC ’18, December 3-7, 2018, San Juan, PR, USA

attack | Cache Modeling traing | Neural Network)
strate dataset adversary’s
9 _>| Training capability
Aattack Behavior ptrain)
effectiveness
defense fo- of defense
Ndefense Config Testing ace(, for)
dataset
Victim ot Inference

victim Behavior D
program

Figure 1: Methodology overview.

The state-of-the-art deep learning methods can discover such rela-
tionships automatically, and the prediction accuracy can serve as a
metric for evaluating how much information is leaked via the side
channel under a specific attack and system setting.

A key technical challenge in our design is how to generate the
dataset for neural network training and evaluation. One method
is to collect memory traces from real-world attacks in real sys-
tems. While feasible, this method requires implementations of side-
channel attacks and defenses, which are difficult to obtain (e.g., new
hardware designs) and usually very time-consuming. An alternative
solution is to collect memory traces from simulating attacks and de-
fenses. However, a cycle-accurate simulator is extremely slow and
can take several days for simulating a side-channel attack. To solve
this challenge, we propose to use finite-state machines to model the
key characteristics of different attacks and defenses, and generate
neural network datasets. Specifically, the status change of a cache
block (for a reuse-based attack) or a set (for a contention-based
attack or an abort-based attack) is modeled as a state machine. The
adversary’s and victim’s activities can change the states of the cache
block or set. Then the cache in consideration is modeled as the com-
bination of all state machines of its sets or blocks. The adversary’s
observation and victim’s memory activities are collected during the
state machine execution. Using this method we can quickly collect
enough data to train and evaluate the neural network.

Figure 1 shows the overview of our methodology. It consists of
two steps. The first step is to construct the datasets for the neural
network by state machine modeling. We provide a generic method
to build state machines for different attacks and defenses. To build
a state machine, one attack strategy 14¢/4¢k (Equation 4) and one
defense strategy 14¢f€ns¢ (Equation 5) need to be provided. The
definitions of each term in the two strategies can be found in Table
1. The attack strategy will affect the adversary’s behaviors and the
defense strategy will affect the system configurations during cache
modeling. We discuss the impacts of these factors in Section 4.1,
and evaluate the effectiveness of the strategies in Section 6.

The output of the cache modeling step is a training dataset
D!ré4in and testing dataset D?€S?. If the goal is to measure the
adversary’s capability in a side-channel attack, the correspond-
ing attack strategy 19/£9¢k js specified, while the defense strategy
Jdefense s sot as a conventional cache (i.e, set P as null). Then the
built state machine and generated datasets can reflect the adver-
sary’s capability of stealing information. If the goal is to quantify
the effectiveness of a defense solution, the corresponding defense
strategy A9ef€ns¢ js specified, while the attack strategy 19¢1ack
is maximized (i.e., set the highest speed S, coverage C and attack

Tianwei Zhang, Yinqian Zhang, and Ruby B. Lee

T | Attack technique of SET-CHECK (Sec. 2.1)
Attack | S | Relative speed of adversary’s memory access to the victim’s memory access
Strategy | C | Percentage of the critical cache/memory region the adversary can cover

D | Attack duration the adversary needs to discover the side-channel relationship.
Defense | A | Cache architecture, including number of cache sets, set-associativity, etc.
Strategy | P | Cache security policy. This can include cache isolation or randomization (Sec. 2.2)

Table 1: Parameters of attack strategies and defense strate-
gies in modeling side-channel attacks

duration D). Then the state machine and datasets can reflect the
resilience of the defense system against the strongest attack.

Aattack - {T,S,C,D} (4)

Adefense ={A,P) (5)

In addition to the attack strategy and defense strategy, the con-
structed datasets are also determined by the target victim program
(Figure 1), i.e., the victim’s memory traces. Since our goal is to
analyze the effectiveness of the attack strategy or defense strat-
egy, we can fix the victim behavior during cache modeling. In our
experiments, without loss of generality, we model the victim pro-
gram as accessing a random cache block within a critical region
at a fixed speed. It is also possible to use the memory traces of
the victim’s actual program, e.g., AES, as the victim’s behavior to
generate datasets.

The second step is to train the neural network and evaluate its
accuracy. This simulates the process of side-channel analysis and
secret recovery. In the training phase, a neural network model is
built over the training dataset D"%" to reveal the relationship
between the side-channel information and secrets. In the inference
phase, the testing dataset D*¢S? is used to check how accurate this
model is. The evaluation results are used as the metric of the ad-
versary’s capability. This represents how much critical information
the adversary can obtain correctly from his observations. A weak
adversary will have a low accuracy as his observation has little re-
lationship with the secrets. This metric can also be used to quantify
the effectiveness of a defense solution. An effective solution tries to
maximize the loss function and minimize the correlation between
input and output tensors in the model training phase. Then we will
observe a low prediction accuracy in the model inference phase.

In Sec. 4 we show how to model cache activities under different
types of attacks and defenses for datasets generation. In Sec. 5 we
show how to design, train and evaluate the neural network.

4 DATASET CONSTRUCTION

We first describe an abstract state machine model for the side-
channel operations. Then we show how models of specific attacks
and defenses can be derived from the abstract one.

4.1 An Abstract Model

Modeling a single cache object . Figure 2a shows the state ma-
chine of an “object” in cache modeling. An “object” can be an entire
cache set when the adversary acts on the cache set to retrieve in-
formation (e.g., PRIME-PROBE, EvICT-TIME, PRIME-ABORT). It can
also be a memory block when the adversary only needs to operate
on individual memory blocks. (e.g., FLUsH-RELOAD, FLUSH-FLUSH).

Analyzing Cache Side Channels Using Deep Neural Networks

ACSAC ’18, December 3-7, 2018, San Juan, PR, USA

Round 1 CHECK ,_ET Round 2 — — Round ;l — Roundg
mw OO0
HECK ROBE ROBE
CHECK ROBE
w@m@w
y = access Jl =access X1=hit/miss
(a) Single object (b) Multiple objects (a) Single object (b) Multiple objects

Figure 2: The abstract state machine.

— Round 1 o I Round 2 —/]
EVICT TIME EVICT, TIME

EvICT JIME VICT TIME

E\/ICT TIME EVICT TIMI

Io grshort

yl—access

y = access

(a) Single object (b) Multiple objects

Figure 4: EvicT-TIME state machine.

,—Roun 1—| ,—Round2—|
FLUSH FLUSH
@)

USH
G; .
m&@

yl access X1=hit/miss

Y = access

(a) Single object (b) Multiple objects

Figure 6: FLusH-FLUSH state machine.

The cache object is modeled as one of these states based on the SET
and CHECK operations:

Aj: the adversary just finishes CHECk on this object.

Ag: the adversary just finishes SET on this object.

V: this object is accessed by the victim between SET and CHECK.
N: this object is accessed between SET and CHECK, but not by
the victim.

In Figure 2a we show the transition rules with the source/des-
tination states. We also show the adversary’s observations from
CHECK (x in blue) and victim’s activities (y in blue) collected during
the state transitions to form the datasets. Basically the adversary’s
activities (i.e, SET and CHECK), the victim’s activities (y), and other
processes’ activities (not marked in the figures) can cause state
transitions. We describe each possible transition below. Algorithm
1 shows the algorithm of these rules.

e Aj — Ajy:in state Ay, if the adversary conducts SET, the object
jumps to state Ag. Note that we do not consider the transitions

Figure 3: PRIME-PROBE state machine.

Round Round 2—

RELOAD! LUSH,
‘* o ‘*
ELDAD FLUSH

B ELOAD LUSH,
iur #

yl access X1=hit/miss

(a) Single object (b) Multiple objects

Figure 5: FLusH-RELOAD state machine.

Round 1 /= Round 2 —|
IME___ABORT PRIME ORT.

el&.»

PRIME__ABORT

RIME ABORT
G GEGXGE
PRIM BORT PRIM ABORT

yl access

(b) Multiple objects

(a) Single object

Figure 7: PRIME-ABORT state machine.

A1 - Vor A; — N because we assume that the adversary
conducts SET immediately after CHECK.

e Ay — V:in state Ay, if the victim accesses this object, the object
jumps to state V. This access is recorded into the dataset.

e A, — N:in state Ay, if a process other than the victim or the
adversary accesses this object, the object jumps to state N.

e N — V:in state N, if the victim accesses this object, the object
jumps to state V. This access is collected into the dataset.

e N — N: in state N, if a process other than the victim or the
adversary accesses this object, the object stays in state N.

e V — V:in state V, any accesses to this object makes it stay
in state V. This is because state V denotes that this object has
already been accessed by the victim between SET and CHECK.
So other events will not change the state except CHECK. If it is a
victim’s access, it is recorded into the dataset.

e V- Aj:in state V, when the adversary conducts CHECK, the
object jumps back to state A; and the adversary captures some
information caused by the victim’s activity. Such information is
recorded into the dataset.

ACSAC ’18, December 3-7, 2018, San Juan, PR, USA

Tianwei Zhang, Yinqian Zhang, and Ruby B. Lee

Algorithm 1: Modeling a single cache object

Algorithm 2: Modeling multiple cache objects

function StateMachineTransition(State, Activity)
if State = A1 then
if Activity = adversary:SET then
‘ NewState = Ap
Observation = False
end
end
if State = Ay then
if Activity = adversary:CHECK then
‘ NewState = A
Observation = False
end
if Activity = victim:access then
‘ NewState = V
Observation = False
end
if Activity = other:access then
‘ NewState = N
Observation = False
end
end
if State = V then
if Activity = victim:access|other:access then
‘ NewState = V
Observation = False
end
if Activity = adversary:CHECK then
‘ NewState = A1
Observation = True
end
end
if State = N then
if Activity = victim:access then
‘ NewState = V
Observation = False
end
if Activity = other:access then
‘ NewState = N
Observation = False
end
if Activity = adversary:CHECK then
‘ NewState = A1
Observation = True
end

end
return {NewState, Observation}

end

e N — Aj:in state N, when the adversary conducts CHECK, the
object jumps back to state A; and the adversary captures some
information caused by processes other than the victim. Such in-
formation is recorded into the dataset and the adversary cannot
distinguish if this activity is caused by the victim or not.

e Ay — Aj:in state Ap, when the adversary conducts CHECK, the
object jumps to state Aj. The adversary does not capture any
information since no activities occur between SET and CHECK.

Modeling multiple cache objects. To consider all the activities
within the critical cache region, all the objects in this region are
included, with each one modeled as the state machine in Figure 2a.
Figure 2b shows how n cache objects are modeled within the critical
cache region under a side-channel attack. $i¢, S ib and Si¢ denote
that the ith object is in different stages in the jth round. Basically for
each round the adversary conducts SET on each object, waits for a
certain time (could be zero) and then conducts CHECK on each object.
The victim’s memory activity is modeled as randomly accessing one
critical cache block in the critical region at a constant speed. The
adversary’s observation from the CHECK operation, and the victim’s
memory activity form a data sample. The adversary repeats these
operations and a dataset is thus constructed. Algorithm 2 describes
this process.

function DataSetGeneration(Nopject Nround)
forj=1...Nyynq do
fori=1... Nobject do
Jb
s/
while adversary is waiting do
if victim’s access to object then

L= StateMachineTransition(S{a, adversary:SET)

{S].b, -}= StateMachineTransition(S{b, victim:access)
i_
X =1
end
if other access to this object then
‘ {S{b, -}= StateMachineTransition(S{b, other:access)
end
end
Je _
Si» =5)
-\, Observation} = StateMachineTransition(S; ", adversary:CHECK
SJ., Observation} = StateMachineTransition(S/, adversary:C
if Observation = True then
| =
J

end

Jjb

i

end
end

return {x; =[x}, x%, ... xP] yi = [yl y% . yP 1IN

end

4.2 Modeling Specific Attacks

The models of specific side-channel attacks can be derived from
the abstract model with minor changes.

Contention-based attacks. In PRIME-PROBE and EvicT-TIME at-
tacks, a cache set is considered as an object. So we model each
critical cache set as a state machine.

PRrIME-PROBE attack: the modified state machine of a cache set is
shown in Figure 3a. As we described in Sec. 2.1, the PROBE operation
is the PRIME operation for the next round. so the adversary just
needs to conduct one PROBE operation continuously. As a result,
the states A1 and Ay are combined into a new state A1z. For the
dataset, X denotes if the PROBE encounters a cache hit or miss. X is
a hit for the transition A2 — A1z, as no other activities happen in
this cache set during the interval and the adversary’s cache blocks
are not evicted out. X is a miss for transition V+ A1z or N — A1y
as the victim or other processes access this cache set and evict
the adversary’s data out. Y/ denotes if the victim accesses this set
during the interval. It happens for transitions A1 = V,N— V
and V> V.

One change is also required to the model of multiple cache objects
(Figure 3b). Since the SET and CHECK are combined into one opera-
tion, we remove the state Sj’:“ and the SET operation for each round
Jj and each object i. One CHECK (or PROBE) operation is enough in
each round. This operation collects the adversary’s observations,
as well as sets the cache state for the next round.

EvicT-TIME attack: Figure 4a shows the state machine of a cache
set. Since the EvicT and TIME are two different operations, the
A1 and Aj states are separated. X denotes if the measured time
of the interval is long or short!: a short time means there is no
memory access to this set (Az — A1) and a long time means this

Typically the interval in the EvicT-TIME attack is one encryption block, and the
adversary collects a large number of measurements to calculate the average time. Our
model just abstracts the interval as one memory access to ignore the average effort.
This is a special case for EvicT-TIME where the adversary’s capability is maximized. It
still represents the essential feature of EvicT-TIME attack

Analyzing Cache Side Channels Using Deep Neural Networks

set is accessed during this interval (V + A1 or N — Aj). Similarly,
Y denotes a victim’s access to this set.

Figure 4b shows the model of multiple objects in EvicT-TIME.
Different from the abstract one, there are no wait intervals. After
the adversary sets the cache state, he immediately measures the
victim’s access time. Thus the victim’s activity and the adversary’s
observation occur at the same phase.

Reuse-based attacks. In FLusH-RELOAD and FLusH-FLUSH attacks,
a cache block is treated as an object.

FLUSH-RELOAD attack: as shown in Figure 5a, the state machine
in FLUSH-RELOAD is quite similar to EvicT-TIME. The difference
is that an access to this cache block will cause a cache hit for the
adversary’s observation X, as this cache block is brought to the
cache by the victim. If the cache block is not accessed during the
interval, then X is a cache miss. Figure 5b shows how we consider
multiple cache blocks. The model is exactly the same as the abstract
one, with SET as FLusH and CHECK as RELOAD.

FrusH-FLUsH attack: similar to PRIME-PROBE, this attack uses
just one operation FLUsH to both SET and CHECK the target memory
block. So the state machine is also similar (Figure 6a). X is a cache
hit when there is an access to this block and a cache miss when
there is not. The model of multiple cache blocks is also similar to
that of PRIME-PROBE.

Abort-based attacks. In PRIME-ABORT attacks, a cache set is con-
sidered as an object.

PRIME-ABORT attack: different from PrRIME-PROBE attack, this
attack checks the cache set states by observing an abort signal. So
the state machine (Figure 7a) is also different: first, states A; and
A are separate because the adversary has two different operations.
Second, there is no transition Ay — Aj because once the adversary
conducts the PRIME operataion, it will wait until one process evicts
his data out of the cache set and triggers an abort. Third, access
to any set inside the critical region can trigger the abort to the
adversary. So there are no transitions V+— V, N+ Vor N — N.
We will compare the efficiency of PRIME-PROBE attack and PRIME-
ABORT attack caused by these differences in Sec. 6.

Figure 7b shows the model of multiple cache sets. The victim’s
access triggers the abort signal in the adversary’s observation, so
they happen in the same phase. This is similar to EvicT-TIME.

4.3 Modeling Defense Solutions

In addition to the adversary’s behaviors, the cache system and de-
fense solutions that can affect the attack effects also need to be
modeled. We show how to model the cache security policy P in the
defense strategy A9¢/€"s¢_We consider isolation and randomiza-
tion, as introduced in Sec. 2.2.

Isolation. Isolating the adversary’s and victim’s cache activities
indicates that there are no transitions between states Ay (Az), V
and N. So in Figure 2a transitions Ag —» V, A » N, V- A1, N
— Aq, and N = V are removed. By doing so, each object will fall
into one of the three possibilities: restricted to states Aj and Ag,
restricted to state V, and restricted to state N. The specific attack
models in Figures 3a — 7a can be modified in a similar way.

Randomization. We use two examples to illustrate how random-
ization policies are modeled in the cache state machines.

ACSAC ’18, December 3-7, 2018, San Juan, PR, USA

Adding random cache activities: the idea is to add random fake
noise to the adversary’s observation. For attacks that target the
entire cache sets (PRIME-PROBE, EVICT-TIME, PRIME-ABORT), a ran-
dom cache set is selected frequently and dynamically, and one block
from this set is evicted out of the cache [55]. To model such scheme,
state N and the corresponding transitions are used. A random ob-
ject is selected. If the object is in state Ay (Figure 2a), a transition
Ay — N is generated to denote random eviction of the adversary’s
block. Later on this cache set will go back to A and the adversary
observes an activity with the CHECK operation. However, he cannot
distinguish whether the source of this transition is V or N. This
uncertainty can lower the adversary’s prediction accuracy. If the
selected object is in state V, then the object will still stay in state V
after evicting out the victim’s block in this set. This will not add
noise to the adversary’s observation.

For attacks that target individual cache blocks (FLusH-RELOAD,
FLusH-FLUSH), more processes that share the same cache blocks
with the adversary and victim [58] can be added. Similarly, state
N can be used to model the effects of other noisy processes that
the adversary is not interested in. The transition A — N can be
viewed as generating a false alarm to the adversary’s observation.

Randomizing memory-to-cache mapping: this scheme is effective
for contention-based and abort-based attacks, but not for reuse-
based attacks. A mapping table is kept for each process to map the
memory addresses to cache sets. Two random sets are dynamically
swapped in each mapping table to randomize the memory-to-cache
mapping. For each swap the data that belong to that process in
these two sets also need to be evicted out. By doing so each pro-
cess’s memory-to-cache mapping is random and different. When
the adversary captures a cache set access, he can not get its memory
address. This can prevent information leakage.

5 DNN TRAINING AND INFERENCE

5.1 Dataset Processing

The first step is to process the dataset generated from Sec. 4. We
consider a critical cache region with n objects. These objects store
the victim’s secrets. A dataset with S samples is generated. So the
cache activities for S SET-CHECK rounds need to be modeled. In
each round one sample is collected.

The input of a sample can be formatted as an n-dimensional
vector xj = [x}, x?, s xl.”], to denote if the adversary observes an

activity in each object during round i. If x{ = 1, then the adversary
observes an activity in the jth object in round i. For PRIME-PROBE
attack, this is a cache miss in cache set j. For FLUSH-RELOAD and
FLusH-FLUSH attacks, this is a cache hit in cache block j. For PRIME-
ABORT attack, this is an abort event to the adversary’s program. If
x{ = 0, then the adversary does not observe any activity in object j.

The output of a sample can also be formatted to an n-dimensional
vector y; = [y%, yf, -»»Y1'], to denote the access event of each object

by the victim during round i. If y{ = 0, it means the jth object is not

accessed by the victim in this round. If yf = k, it means that the jth
object is accessed by the victim in this round, and it is the kth access
of the victim. For instance, considering a 5-object cache region. If
yo = [0,0,0,0,0], it indicates that the victim does not access the
region in round 0. If y; = [0, 0, 1,0, 0], it means that the victim only

ACSAC ’18, December 3-7, 2018, San Juan, PR, USA

accesses the third object in round 1. If yp = [0, 2,0, 0, 1], it indicates
that in round 2, the victim accesses the fifth object first, and then
the second object. Note that in this way the output also records the
victim’s access order. The adversary’s prediction accuracy of the
objects accessed and their access order in each round is measured.

5.2 Training

Given the training dataset, a neural network is trained to establish
the relationship between the adversary’s observation and victim’s
access. In this paper we choose a multilayer perceptron network
(Sec. 2.3) with three hidden layers. These hidden layers have the
same shape as the input/output (i.e., n-dimensional vector), and the
ReLU activation function is applied to each layer following a linear
transformation (Equation 1). The softmax function is applied to
the final layer to get the output. Our evaluations in Sec. 6 show
that this network architecture is already powerful enough to reveal
information leakage in various side-channel attacks.

The cross entropy is chosen as the loss function. This loss func-
tion denotes how much the adversary’s guessing is wrong on the
training dataset. Stochastic gradient descent is exploited to find the
optimal parameters that can minimize this loss.

5.3 Inference

After obtaining the trained model with optimized parameters, the
prediction accuracy over the testing dataset is measured to quan-
tify the adversary’s capability or the effectiveness of the defense
solution. The prediction accuracy is defined as the ratio of the vic-
tim’s accesses that the adversary can correctly predict over the total
number of victim’s critical accesses.

Specifically, for one sample {x;,y;} collected at round i, we as-
sume that the victim makes k memory accesses. We denote that
these kK memory accesses touch the objects Ij, Iy, ..., [y in chrono-
logical order. According to the data formation rule in Sec. 5.1, for
the ground-truth label y;, yfl =1, yll? =2, .., yfk = k, and the rest
of the elements are all zero.

Then the predicted label is calculated as §; = fy-(x;), which is
also an n-dimensional vector. The top-k elements in 7j; are selected 2.
The values of these elements are changed to 1, 2, ..., k based on the
order discovered by the CHECK operation, while the other elements
in ¢j; are set to zero. The ratio of the top-k elements in ¢; that match
the values of the corresponding elements in y; are checked as the
accuracy of this sample. The total accuracy is the average accuracy
of all the samples in consideration.

We use a 5-object cache region as an example to illustrate the ac-
curacy prediction process. Assume the ground-truth label yo =
[0,0,1,0,0]. If 4o = [0.01,0.02,0.93,0.03,0.01], then the top-1
element is the third one, and the output is converted to o =
[0,0,1,0,0]. This exactly matches yo, and the accuracy of this
sample is 100%. If ijp = [0.01,0.02,0.45,0.51,0.01], then it is con-
verted to 3o = [0,0,0,1,0], and the accuracy becomes 0% since
the model mis-predicts the victim’s access from the third object
to the fourth object. Assume the victim has two accesses in one

2We make the assumption that the adversary knows the number of victim’s memory
accesses in each attack round. This maximizes the adversary’s capability. He can
deduce the number of victim’s accesses in each period by checking the attack time
and knowledge of victim program and runtime characteristics.

Tianwei Zhang, Yinqian Zhang, and Ruby B. Lee

round, and the ground-truth label now becomes y; = [0,0, 1, 2,0].
If the predicted output is j; = [0.01,0.02,0.55, 0.41,0.01], then the
top-2 elements are the third and fourth ones, and the output is con-
verted to 1 = [0, 0, 1, 2, 0]. This prediction gives a 100% accuracy. If
y1 = [0.01,0.02,0.48,0.22,0.27], then the output is post-processed
as y; = [0,0,1,0,2], and the prediction accuracy becomes 50%,
since it only correctly predicts one access out of two.

6 EVALUATION

We write python code to build the state machines and construct
the datasets for different attacks and defenses. Specifically in this
evaluation, we consider a critical cache region of 64 sets with 16
ways. Note this region is not necessarily the whole cache: it can be
the region that stores the victim’s critical information, e.g., cryp-
tographic lookup tables. We assume that the victim’s critical data
are stored in one cache block in each of the 64 sets (for a large
conventional set-associative cache, it is very common that each
critical block is mapped to a different cache set [34]). We model
multiple attack rounds as described in Sec. 4.1. In each round we
record the adversary’s observation X and victim’s access trace Y.

We implement the deep neural network in MxNet (version 0.11.0)
[9]. We train the multilayer perception neural network using sto-
chastic gradient descent with a learning rate of 0.01, and a batch
size of 64. We have 6,400 samples as training dataset by default and
640 samples as testing dataset. We measure the prediction accuracy
over the testing dataset.

6.1 Attack Strategies

We first consider the effects of the attack strategies, A4* ack which
were detailed in Sec. 2.1. To do so, we change and compare different
attack strategies on a conventional cache without any defenses.

Attack techniques. First we compare different attacks within the
same categories, i.e., PRIME-PROBE VS. EvicT-TIME in the contention-
based category, and FLusH-RELOAD VS. FLUSH-FLUSH in the reuse-
based category. We describe the reuse-based category as an example
below. The contention-based category has the same conclusion. For
the state machines, the difference between Figures 6a and 5a is
that in Figure 5a there are two states A1 and Ag while in Figure
6a there is only one Ajpy. If there are no activities happening be-
tween A1 and Ay in Figure 5a, we can simply combine them into
one, and convert the state machine into Figure 6a. So the attack
techniques within the same category should have the same effect.
If there are intervals between two rounds, i.e., between CHECK in
one round and SET in the next round, and the victim has actions
during these intervals (we do not show such transition in Figure
5a), then the adversary cannot capture these actions and will have
a lower prediction accuracy.

Figure 8 shows the comparisons of prediction accuracy in these
two attacks. In this figure, the x-axis is the number of training
epochs and y-axis is the accuracy. We assume that there is a victim
access between each SET and CHECK round. The black line shows
the prediction accuracy of the FLusH-FLUSH attack. The adversary
can achieve 100% accuracy after enough training epochs, indicating
that he can easily figure out all the victim’s accesses with the correct
order. The remaining lines show the adversary’s accuracy in FLUsH-
ReLoAD with different interval sizes between each round. The red

Analyzing Cache Side Channels Using Deep Neural Networks

ACSAC ’18, December 3-7, 2018, San Juan, PR, USA

FLUSH-FLUSH

100%- 100%+

LUSH-REI OAD
interval =0

FLUSH-RELOAD
80%- interval = 0.25 N 80% 1pame.prose

FLust-Revoap
60%- interval = 0. 60%
FLUSH-RELOAD
interval = 0.75

accuracy
accuracy

40%- 40%-
FLUSH-RELOAD
interval =

20%- 20%-

0% 0% T

FLUSH-FLUSH

1009 PRIME-PROBE set = 1

P set=1

80%-

60%-

PRIME-PROBE set = 64 4

accuracy

40%-

20%-

PRIME-ABORT set = 64

T v 0%

0 20 40 60 80 100 0 20
epochs

Figure 8: Comparison between at-

tacks in the same category

epochs

Figure 9: Comparing Contention-
based v.s. Reuse-based attacks

60 80 100 0 20 40 60 80 100
epochs

Figure 10: Comparing Contention-
based v.s. Abort-based attacks

: coverage=1 .
100% 6400 samples 100% 100%. 6400 samples
80% 80% 1 80%-
- 3200 samples - - 3200 samples
S 60% 1 S 60% coverage=05 1 S 60%-
S S S
] S]
3 40%] 8 a0%] 8 a0%
L]] coverage=0.25]
20% 1600 samples B 20% B 20%-{ 1600 samples
0% . , . . . 0% 0% . . . , .
0 50 100 150 200 250 300 20 40 60 80 100 0 50 100 150 200 250 300
epochs epochs epochs
(a) Attack speeds (b) Attack coverages (c) Attack durations
Figure 11: Prediction accuracies with different attack factors
100%] No Partitioning 100%] omeed=0 100% No random memory-caéhe mapping|
80% | 80% | 80% 1
5 oy 5
o 9%]
@ 60% @ 60% spocd=t ©60%
E]] E]
S 40% 3 40%/ speed=2 Sa0% 1
(] (] [}
20%1 Partitioning by way 20%- 16 20% 1
Partitioning by set o Random memory-cache mapping
0% 0% 0% . : . :
0 20 40 60 80 100 0 20 40 60 80 100 0 20 40 60 80 100

epochs

Figure 12: Prediction accuracies for
cache partitioning

line (interval = 0) is the case that the FLUSH operation immediately
follows the RELOAD operation in the previous round. We observe
the attack effect is the same as the FLusH-FLUusH. The blue line
(interval = 0.25) is the case that the RELoAD — FLUSH interval is
1/4 of the FLusH — RELOAD interval. The adversary cannot achieve
100% accuracy as he cannot capture the victim’s access between the
ReLOAD - FLusH interval. The larger the interval is, the lower the
prediction accuracy the adversary gets. The comparison between
PRIME-PROBE and EvicT-TIME has similar results (not shown).

To conclude, if there is no interval between CHECK and SET

operations, the attacks in each category are essentially the same.

Note that we abstract the SET and CHECK operations and treat them
the same in all the attacks. In practice, conducting the CHECck and
SET operations are different for different attacks. This makes these

epochs

Figure 13: Prediction accuracies for
random eviction

epochs

Figure 14: Prediction accuracies for
random memory-cache mapping

attacks different in efficiency. For instance, flushing a cache block
is faster than reloading the cache block. So FLusH-FLusH is claimed
to be faster than FLusH-RELOAD [17]. In EvicT-TIME, the adversary
needs to conduct a large quantity of encryptions and calculate the
average time to obtain the results of the TIME operation. So it also
takes longer time than PRIME-PROBE attack.

Second, we compare contention-based and reuse-based attacks.
Figure 9 shows the results of the PRIME-PROBE attack (black line)
and FLusH-FLUSH attack (red line). We also assume that there is
exactly one victim’s access between each SET and CHECK round.
We observe that these two attacks have the same effects, as they
have the same state machine modeling.

We also abstract the SET and CHECK operations in the two at-
tacks. If we consider their implementation, the attack effects will be

ACSAC ’18, December 3-7, 2018, San Juan, PR, USA

different: the FLusH-FLUSH attack only needs to issue one instruc-
tion for each operation, while the PRIME-PROBE attack needs to
access the entire cache set to complete one operation. So in practice,
FLusH-FLUsH is more efficient than PRIME-PROBE. But it also has
an extra requirement: memory page sharing.

Third, we consider the comparison between PRIME-PROBE and
PRIME-ABORT. The difference between these two attacks is the
CHECK operation: in PRIME-PROBE, the adversary scans each entire
cache set to identify the victim’s footprints; in PRIME-ABORT, the
adversary just waits for the abort signal to capture information —
the victim’s access to any critical cache set can cause the adversary’s
abort, and he cannot distinguish which set is touched by the victim.

Figure 10 shows the results of the two attacks. We consider two
cases: the number of critical cache sets is 1 and 64. From this figure
we can observe that when there is only one target cache set, then
PRIME-PROBE and PRIME-ABORT can both achieve 100% accuracy.
This is straightforward as the adversary can accurately capture the
victim’s access to this set by either PROBE or ABorT. However, when
the number of critical cache sets is 64, the PRIME-PROBE adversary
can achieve 100% accuracy after some training epochs, while the
PRIME-ABORT adversary has a very low prediction accuracy, as he
cannot tell which set is accessed by the victim when he gets an abort
signal. So when the victim’s secrets are stored in multiple cache
sets, the PRIME-PROBE attack is more efficient as it can get more
fine-grained information about each set. In practice, the PRIME-
ABORT is easier and more practical to implement as it does not need
to do anything for the CHECK operation, while the PRIME-PROBE
needs to scan the entire cache set.

Attack factors. We consider other factors that can affect the attack
effects. We use the PRIME-PROBE attack as an example. Other attacks
have similar conclusions.

First we consider the attack speed. This factor can significantly
affect the feasibility of attacks: the faster the adversary can conduct
SET-CHECK, the more fine-grained information he can infer from
the cache states. A lot of techniques have been proposed to increase
the adversary’s speed relative to the victim’s accesses [19, 57].

Figure 11a shows the model prediction accuracy when the ad-
versary conducts the PRIME-PROBE at different speeds. We set the
relative speed of PRIME-PROBE to the victim’s access as 1 (black line:
the victim has one access within one PRIME-PROBE round), 0.5 (red
line: the victim has two accesses within one round) and 0.25 (blue
line: the victim has four accesses within one round). We observe
that lower relative speed leads to lower accuracy. When the relative
speed is 1, the adversary can easily figure out all the accesses in
the correct order. When the relative speed is smaller, the victim
issues more cache accesses within one round. This decreases the
adversary’s accuracy because the adversary cannot recognize the
relative order of these two accesses. Such uncertainty causes low
prediction accuracy.

Second, we consider attack coverage, defined as the ratio of the
critical objects that the adversary can cover. The higher coverage
the adversary can achieve, the more information he can obtain.

Figure 11b shows the prediction accuracy under different cov-
erages for the PRIME-PROBE attack. The baseline is the case where
the adversary can affect all the objects (coverage=1), and the neural
network model can achieve 100% accuracy. When the coverage is

Tianwei Zhang, Yinqian Zhang, and Ruby B. Lee

reduced to 0.5, the adversary can only interfere with half of the
victim’s memory accesses, so the accuracy decreases to around 50%.
When the coverage is 0.25, the accuracy drops to 25%. A coverage
of 1/n gives an accuracy of approximately 1/n X 100%.

Third we consider the attack duration. The attack duration is
determined by the number of attack rounds (i.e., number of training
samples) required to identify the side-channel relationship. The
adversary expects a short attack duration, which might enable him
to collect enough samples for training before the victim makes any
changes or deploys defenses.

Figure 11c shows the prediction accuracy of PRIME-PROBE attack
with different numbers of training samples. From this figure we
observe that reducing the number of samples does not affect the
accuracy. It only takes longer time to analyze these samples to gen-
erate the model. This indicates that the neural network is powerful
to reveal the side-channel relationship even with a small number
of training samples, at the cost of longer offline analysis time.

6.2 Defense Strategies

Next we show how to use the neural network approach to quantify
the effects of different defense solutions. We evaluate two cate-
gories of defenses: isolation and randomization. We maximize the
adversary’s capability, i.e., the relative speed of SET-CHECK to the
victim’s access is 1, the cache region coverage is 1, and the adversary
can collect arbitrary number of training samples.

Isolation. We use the PRIME-PROBE attack as an example to mea-
sure the effectiveness of isolation. We can physically partition the
CPU cache into two zones (by sets or by ways). One zone is al-
located to the victim and the other is allocated to the adversary.
Other isolation approaches on other attacks (e.g., disabling page
sharing to defeat FLusH-RELOAD or FLUsH-FLUsH attacks) have sim-
ilar results. Figure 12 shows the model prediction accuracy with
no cache partitioning (black line), partitioning by ways (red line)
and partitioning by sets (blue line). We can see that both of the two
partitioning policies can reduce the prediction accuracy to close to
zero. When the cache is partitioned by sets, the adversary cannot
observe any cache misses as the victim cannot interfere with the
adversary’s data. When the cache is partitioned by ways, the ad-
versary are always cache misses caused by himself as the number
of ways allocated to him is reduced. In either case the adversary’s
observation is totally independent of the victim’s activities.

Randomization. We consider two randomization approaches, as
introduced in Sec. 2.2. The first one is to add random cache activities
to the adversary’s observation. We use the random eviction policy
in PRIME-PROBE attack as an example, where a cache block in a
random cache set is periodically selected to be evicted out. Other
policies of adding random cache activities for other attacks (e.g.,
adding noisy processes in reuse-based attacks) are essentially the
same and have similar results. Figure 13 shows the model prediction
accuracy at different random eviction speeds (i.e., how many cache
blocks are evicted during one PRIME-PROBE round). We can observe
that a faster eviction speed can significantly reduce the model
prediction accuracy. When the eviction speed is 16, the prediction
accuracy is 0.1, indicating that the adversary’s observation has a
very weak dependency on the victim’s activities.

Analyzing Cache Side Channels Using Deep Neural Networks

ACSAC ’18, December 3-7, 2018, San Juan, PR, USA

—Conventional H —SP
---Correct H ---Correct

3
3

]
]

3

Probability
g

Probability

¢
¢

g

—RE1000 : RP
—RE10 : ---Correct
---Correct :

3
]

F]
F]

Probability

Probability

Fl

g

; I R
50 200 EY 200

KéyByte Value KéyByte Vilue

(a) Conventional cache (b) Statically partitioned cache

KeyByte Vilue ® * KeéyByte Vdlue ** 2

(c) Random eviction cache (d) Random permutation cache

Figure 15: Simulation results of PRIME-PROBE attacks [55] on different types of secure caches

The second approach is to randomize the memory-to-cache
mappings to defeat contention-based or abort-based side-channel
attacks (Random Permutation [51], NewCache [33, 49]). We use
PRIME-PROBE attack as an example, and randomly and dynami-
cally change the mapping from memory addresses to hardware-
remapped cache sets for the adversary’s and victim’s processes.
Figure 14 shows the accuracy of the adversary’s prediction of the
victim’s memory traces, from his observation, with and without
random memory-to-cache mapping mechanisms. When the random
mapping is enabled, the adversary’s observation has no relationship
with the victim’s memory trace due to the dynamic and random
mapping. The prediction accuracy is very low, close to random
guessing.

7 METHODOLOGY VALIDATION

To validate the deep-learning based approach, we also conducted
actual attacks to confirm some results of our side-channel analysis
from Sec. 6. Here we only show the validation and comparison
about different defense strategies.

Recall that in Sec. 6.2 we show the quantification results of
PRIME-PROBE attack under different defense policies as a repre-
sentative (Figures 12, 13 and 14). So we adopt the results of actual
PRrIME-PROBE attacks from [55] for comparison. Figure 15 shows the
simulation results from the gem5 platform, a popular cycle-accurate
simulator. The victim runs an AES-128 encryption program (i.e.,
the key length is 16 bytes). The adversary runs the PRIME-PROBE
attack [36] to steal the encryption key. The two programs share the
same level 1 cache, and different defense policies are implemented.

Figure 15 shows the recovery results of the first key byte. The
values of the other 15 key bytes can be leaked in a similar way. The
x-axis shows the possible values of this key byte (0 — 255). The
y-axis is the probability of the key-byte value from the attack. Thus
the solid red line is the probability distribution of key-byte values
the adversary obtains. We also show the correct key value as dotted
blue lines in the figures.

When no defense is implemented (Figure 15a), 8 values (out of
256) are more likely than others (more than 10% probabilities from
the attack results), and the correct key-byte value is among them.
So the adversary is able to narrow down the key-byte scope, and
the attack on this conventional cache succeeds. When the cache
is statically partitioned (SP) between the victim and the adversary

(Figure 15b), the attack does not produce any distinguished candi-
date keys. Thus the attack on partitioned cache fails. We achieve the
same conclusion for the random permutation policy (Figure 15d).
For random eviction policy (Figure 15¢), we consider two random
eviction speeds: RE1000 (a random cache block is evicted every
1000 memory accesses - in red) and RE10 (a block is evicted every
10 memory accesses - in black). We can see that random eviction
cache is still vulnerable to the PRIME-PROBE attack. A faster random
eviction speed leaks less information to the adversary. Comparing
Figures 12, 13, 14 and 15, we confirm that the results from the neural
network analysis are consistent with the results from actual attacks.

8 RELATED WORK

Different models and methods were proposed to evaluate side-
channel attacks. They can be mainly classified into three categories.

The first category proposes new metrics. Some work used mutual
information and guessing entropy to evaluate the feasibility of key-
recovery [45], estimate the upper bound of information leakage [26],
improve the adversary’s strategy [25], and evaluate the security of
defenses [55]. Cafiones et al. [8] built Mealy machine and adopted
Markov chain to quantify the amount of information absorbed by
the cache, and the amount of information extracted by the adversary.
Some work adopted the success rate metric [45] to calculate the
probability that the adversary can detect a memory access [12]
or determine the best attack strategy [40]. A more popular metric
is to calculate the correlation between the victim’s execution and
adversary’s observation. Several studies followed this direction, e.g.,
time-driven analytic model [47], Side-channel Vulnerability Factor
(SVF) [10], timing SVF [5], Cache Side-channel Vulnerability (CSV)
[54].

The second category uses information flow tracking to capture
side-channel information leakage. Porras and Kemmerer designed
the technique of covert flow trees to systematically detect and
identify covert channels between processes [38]. New hardware
languages were designed which use static information flow tracking
to verify side-channel leakage in hardware design [14, 53]. He and
Lee built an analytic probabilistic information flow tracking model
to evaluate side-channel vulnerabilities of different caches [20].

The third category includes formal verification of side channels.
Svenningsson and Sands [46] built models of timing side-channel
leakage from the program code level. Bacelar et al. [3] adopted the
self-composition technique to verify the non-interference property

ACSAC ’18, December 3-7, 2018, San Juan, PR, USA

of cryptographic software, thus to evaluate the effectiveness of
side-channel countermeasures.

Different from these prior studies, we adopt a neural network to
quantify side channels. Compared to other methods, our approach
has the following advantages: (1) metrics proposed by prior work
assume that the adversary’s observation and victim’s execution
have a linear relationship [5, 10, 47, 54], which greatly limits their
applicability. In contrast, our neural network model can discover
non-linear relationships and can be applied to evaluate more types
of side channels; (2) some prior work need to manually deduce
the relationship between the victim and the adversary based on
prior knowledge about how the adversary steals the secrets [25, 40].
In contrast, our approach does not need such prior knowledge.
We only need to feed the adversary and victim’s behaviors into
the neural network, and the network will automatically reveal
the relationship for us. This significantly reduces the difficulty of
side channel analysis; (3) some approaches are designed for one
specific type of cache side-channel attacks [5, 10, 47, 54, 55]. Some
approach can only be used for evaluating the security mechanisms
of cache architectures [55] or cache replacement policies [8]. Our
methodology is flexible to quantify different attack strategies and
types, as well as defense strategies.

9 CONCLUSION

This work proposes a novel deep learning based methodology to
analyze cache side channels. We treat the side-channel attack as
a neural network with the adversary’s observations as the inputs
and the victim’s activities as the outputs. This neural network can
automatically discover the side-channel relationship, and evaluate
the prediction accuracy. We build state machines to model differ-
ent side-channel attacks and defenses, and use model prediction
accuracy as a metric to quantify the effectiveness of these strategies.
The essence of side-channel attacks is to learn and predict the
critical information from the observed side-channel information.
This agrees with the goal of deep learning. So this method is not
limited to cache-based side channel analysis. Future work include
extending this method to other types of side channel evaluation,
and discovering new side-channel attacks using deep learning.

REFERENCES

[1] [n.d.]. Kernel Samepage Merging. http://www.linux-kvm.org/page/KSM.

[2] Onur Acii¢mez, Billy Bob Brumley, and Philipp Grabher. 2010. New Results on
Instruction Cache Attacks. In Intl. Conf. on Cryptographic Hardware and Embedded
Systems.

[3] J. Bacelar Almeida, Manuel Barbosa, Jorge S. Pinto, and Barbara Vieira. 2013.

Formal verification of side-channel countermeasures using self-composition. Sci.

Comput. Program. (2013).

Daniel J. Bernstein. 2005. Cache-timing attacks on AES. Technical Report.

Sarani Bhattacharya, Chester Rebeiro, and Debdeep Mukhopadhyay. 2012. Hard-

ware Prefetchers Leak: A Revisit of SVF for Cache-Timing Attacks. In Hardware

and Architectural Support for Security and Privacy.

[6] Joseph Bonneau and Ilya Mironov. 2006. Cache-Collision Timing Attacks against

AES. In Lecture Notes in Computer Science series 4249. Springer.

Billy Bob Brumley and Risto M. Hakala. 2009. Cache-Timing Template Attacks.

In Intl. Conf. on the Theory and Application of Cryptology and Information Security:

Advances in Cryptology.

[8] Pablo Carfiones, Boris Kopf, and Jan Reineke. 2017. Security analysis of cache
replacement policies. In International Conference on Principles of Security and
Trust.

[9] Tiangi Chen, Mu Li, Yutian Li, Min Lin, Naiyan Wang, Minjie Wang, Tianjun
Xiao, Bing Xu, Chiyuan Zhang, and Zheng Zhang. 2015. MXNet: A Flexible
and Efficient Machine Learning Library for Heterogeneous Distributed Systems.

O

[7

Tianwei Zhang, Yinqian Zhang, and Ruby B. Lee

CoRR abs/1512.01274 (2015). arXiv:1512.01274 http://arxiv.org/abs/1512.01274
[10] John Demme, Robert Martin, Adam Waksman, and Simha Sethumadhavan. 2012.
Side-channel Vulnerability Factor: a Metric for Measuring Information Leakage.
In ACM/IEEE Intl. Symp. on Computer Architecture.
[11] Craig Disselkoen, David Kohlbrenner, Leo Porter, and Dean Tullsen. 2017.
Prime+Abort: A Timer-Free High-Precision L3 Cache Attack using Intel TSX. In
USENIX Security Symposium.
Leonid Domnitser, Nael Abu-Ghazaleh, and Dmitry Ponomarev. 2010. A Pre-
dictive Model for Cache-based Side Channels in Multicore and Multithreaded
Microprocessors. In Intl. Conference on Mathematical Methods, Models and Archi-
tectures for Computer Network Security.
Leonid Domnitser, Aamer Jaleel, Jason Loew, Nael Abu-Ghazaleh, and Dmitry
Ponomarev. 2012. Non-monopolizable Caches: Low-complexity Mitigation of
Cache Side Channel Attacks. ACM Transactions on Architecture and Code Opti-
mization (2012).
Andrew Ferraiuolo, Rui Xu, Danfeng Zhang, Andrew C Myers, and G Edward Suh.
2017. Verification of a practical hardware security architecture through static
information flow analysis. In Intl. Conf. on Architectural Support for Programming
Languages and Operating Systems.
Daniel Genkin, Adi Shamir, and Eran Tromer. 2014. RSA key extraction via
low-bandwidth acoustic cryptanalysis. In International Cryptology Conference.
Springer, 444-461.
Ian Goodfellow, Yoshua Bengio, Aaron Courville, and Yoshua Bengio. 2016. Deep
learning. Vol. 1. MIT press Cambridge.
[17] Daniel Gruss, Clémentine Maurice, Klaus Wagner, and Stefan Mangard. 2016.
Flush+Flush: A Fast and Stealthy Cache Attack. In Conference on Detection of
Intrusions and Malware and Vulnerability Assessment.
Daniel Gruss, Raphael Spreitzer, and Stefan Mangard. 2015. Cache Template
Attacks: Automating Attacks on Inclusive Last-level Caches. In USENIX Security
Symposium.
David Gullasch, Endre Bangerter, and Stephan Krenn. 2011. Cache Games —
Bringing Access-Based Cache Attacks on AES to Practice. In IEEE Symposium on
Security and Privacy.
Zecheng He and Ruby B Lee. 2017. How secure is your cache against side-channel
attacks?. In IEEE/ACM International Symposium on Microarchitecture.
Gorka Irazoqui, Thomas Eisenbarth, and Berk Sunar. 2015. S$A: A Shared Cache
Attack That Works across Cores and Defies VM Sandboxing — and Its Application
to AES. In IEEE Symposium on Security and Privacy.
Taesoo Kim, Marcus Peinado, and Gloria Mainar-Ruiz. 2012. STEALTHMEM:
System-level Protection Against Cache-based Side Channel Attacks in the Cloud.
In USENIX Security Symposium.
Paul Kocher, Daniel Genkin, Daniel Gruss, Werner Haas, Mike Hamburg, Moritz
Lipp, Stefan Mangard, Thomas Prescher, Michael Schwarz, and Yuval Yarom. 2018.
Spectre Attacks: Exploiting Speculative Execution. arXiv preprint arXiv:1801.01203
(2018).
Paul Kocher, Joshua Jaffe, and Benjamin Jun. 1999. Differential Power Analysis.
In Advances in cryptology-CRYPTO 99. Springer, 789-789.
Boris Képf and David Basin. 2007. An information-theoretic model for adaptive
side-channel attacks. In ACM Conf. on Computer and Comms. Security.
Boris Képf, Laurent Mauborgne, and Martin Ochoa. 2012. Automatic quantifica-
tion of cache side-channels. In Intl. Conference on Computer Aided Verification.
Yann Le Cun, LD Jackel, B Boser, JS Denker, HP Graf, I Guyon, D Henderson, RE
Howard, and W Hubbard. 1989. Handwritten Digit Recognition: Applications of
Neural Network Chips and Automatic Learning. IEEE Communications Magazine
27, 11 (1989), 41-46.
Peng Li, Debin Gao, and Michael K. Reiter. 2014. StopWatch: A Cloud Architecture
for Timing Channel Mitigation. ACM Transactions on Information and System
Security (2014).
Moritz Lipp, Daniel Gruss, Raphael Spreitzer, Clémentine Maurice, and Stefan
Mangard. 2016. ARMageddon: Cache Attacks on Mobile Devices.. In USENIX
Security Symposium.
[30] Moritz Lipp, Michael Schwarz, Daniel Gruss, Thomas Prescher, Werner Haas,
Stefan Mangard, Paul Kocher, Daniel Genkin, Yuval Yarom, and Mike Hamburg.
2018. Meltdown. arXiv preprint arXiv:1801.01207 (2018).
Fangfei Liu, Qian Ge, Yuval Yarom, Frank Mckeen, Carlos Rozas, Gernot Heiser,
and Ruby B. Lee. 2016. CATalyst: Defeating Last-Level Cache Side Channel At-
tacks in Cloud Computing. In IEEE International Symposium on High Performance
Computer Architecture.
Fangfei Liu and Ruby B. Lee. 2014. Random Fill Cache Architecture. In IEEE/ACM
International Symposium on Microarchitecture.
Fangfei Liu, Hao Wu, Ken Mai, and Ruby B. Lee. 2016. Newcache: Secure Cache
Architecture Thwarting Cache Side-Channel Attacks. IEEE Micro 36, 5 (2016).
Fangfei Liu, Yuval Yarom, Qian Ge, Gernot Heiser, and Ruby B. Lee. 2015. Last-
Level Cache Side-Channel Attacks are Practical. In IEEE Symposium on Security
and Privacy.
Yossef Oren, Vasileios P Kemerlis, Simha Sethumadhavan, and Angelos D
Keromytis. 2015. The spy in the sandbox: Practical cache attacks in javascript
and their implications. In ACM Conference on Computer and Communications

[12

=
&

[14

[15

[16

(18

[19

[20

[21

[22

~
&

[24

[25

[26

[27

[28

[29

[31

[32

w
&

(34

[35

http://www.linux-kvm.org/page/KSM
http://arxiv.org/abs/1512.01274
http://arxiv.org/abs/1512.01274

Analyzing Cache Side Channels Using Deep Neural Networks

[40]

[42

[43]

[44

[45

[46]

[54

[55

[56

[57

[58

(59

[60

)

]

]

Security.

Dag Arne Osvik, Adi Shamir, and Eran Tromer. 2006. Cache Attacks and Coun-
termeasures: the Case of AES. In RSA Conference on Topics in Cryptology. 1-20.
Colin Percival. 2005. Cache Missing for Fun and Profit. In BSDCan.

P.A. Porras and R.A. Kemmerer. 1991. Covert flow trees: a technique for identify-
ing and analyzing covert storage channels. In IEEE Computer Society Symp. on
Research in Security and Privacy.

Jean-Jacques Quisquater and David Samyde. 2001. Electromagnetic Analysis
(ema): Measures and Counter-measures for Smart Cards. Smart Card Program-
ming and Security (2001), 200-210.

C. Rebeiro and D. Mukhopadhyay. 2012. Boosting Profiled Cache Timing Attacks
With A Priori Analysis. IEEE Trans. on Information Forensics and Security (2012).
Herbert Robbins and Sutton Monro. 1951. A stochastic approximation method.
The annals of mathematical statistics (1951), 400-407.

Frank Rosenblatt. 1958. The Perceptron: A Probabilistic Model for Information
Storage and Organization in the Brain. Psychological review 65, 6 (1958), 386.
David E Rumelhart, Geoffrey E Hinton, and Ronald] Williams. 1986. Learning
Representations by Back-propagating Errors. nature 323, 6088 (1986), 533.
Jicheng Shi, Xiang Song, Haibo Chen, and Binyu Zang. 2011. Limiting Cache-
based Side-channel in Multi-tenant Cloud using Dynamic Page Coloring. In
IEEE/IFIP International Conference on Dependable Systems and Networks Work-
shops.

Francois-Xavier Standaert, Tal G. Malkin, and Moti Yung. 2009. A Unified Frame-
work for the Analysis of Side-Channel Key Recovery Attacks. In Annual Intl.
Conference on Advances in Cryptology: the Theory and Applications of Crypto-
graphic Techniques.

Josef Svenningsson and David Sands. 2010. Specification and verification of side
channel declassification. In Intl. Conf. on Formal Aspects in Security and Trust.
Kris Tiri, Onur Aciigmez, Michael Neve, and Flemming Andersen. 2007. An
analytical model for time-driven cache attacks. In International Workshop on Fast
Software Encryption.

Bhanu C. Vattikonda, Sambit Das, and Hovav Shacham. 2011. Eliminating Fine
Grained Timers in Xen. In ACM Workshop on Cloud Computing Security.
Zhenghong Wang and Ruby.B. Lee. 2008. A Novel Cache Architecture with
Enhanced Performance and Security. In IEEE/ACM International Symposium on
Microarchitecture.

Zhenghong Wang and Ruby B. Lee. 2006. Covert and Side Channels Due to
Processor Architecture. In Annual Computer Security Applications Conference.
Zhenghong Wang and Ruby B. Lee. 2007. New Cache Designs for Thwarting
Software Cache-based Side Channel Attacks. In ACM International Symposium
on Computer Architecture.

Yuval Yarom and Katrina Falkner. 2014. FLUSH+RELOAD: A High Resolution,
Low Noise, L3 Cache Side-channel Attack. In USENIX Security Symposium.
Danfeng Zhang, Yao Wang, G. Edward Suh, and Andrew C. Myers. 2015. A
Hardware Design Language for Timing-Sensitive Information-Flow Security. In
Intl. Conf. on Architectural Support for Programming Languages and Operating
Systems.

Tianwei Zhang, Si Chen, Fangfei Liu, and Ruby B. Lee. 2013. Side Channel
Vulnerability Metrics: the Promise and the Pitfalls. In Hardware and Architectural
Support for Security and Privacy.

Tianwei Zhang and Ruby B. Lee. 2014. New Models of Cache Architectures Char-
acterizing Information Leakage from Cache Side Channels. In Annual Computer
Security Applications Conference.

Xiaokuan Zhang, Yuan Xiao, and Yinqian Zhang. 2016. Return-Oriented Flush-
Reload Side Channels on ARM and Their Implications for Android Devices. In
ACM Conference on Computer and Communications Security.

Yingian Zhang, Ari Juels, Michael K. Reiter, and Thomas Ristenpart. 2012. Cross-
VM Side Channels and Their Use to Extract Private Keys. In ACM Conference on
Computer and Communications Security.

Yingian Zhang, Ari Juels, Michael K. Reiter, and Thomas Ristenpart. 2014. Cross-
Tenant Side-Channel Attacks in PaaS Clouds. In ACM Conference on Computer
and Communications Security.

Yingian Zhang and Michael K. Reiter. 2013. DiiPpel: Retrofitting Commodity Op-
erating Systems to Mitigate Cache Side Channels in the Cloud. In ACM Conference
on Computer and Communications Security.

Ziqiao Zhou, Michael K Reiter, and Yinqian Zhang. 2016. A Software Approach
to Defeating Side Channels in Last-level Caches. In ACM Conference on Computer
and Communications Security.

ACSAC ’18, December 3-7, 2018, San Juan, PR, USA

	Abstract
	1 Introduction
	2 Background
	2.1 Cache Side-channel Attacks
	2.2 Cache Side-channel Defenses
	2.3 Deep Neural Networks

	3 Methodology Overview
	4 Dataset Construction
	4.1 An Abstract Model
	4.2 Modeling Specific Attacks
	4.3 Modeling Defense Solutions

	5 DNN Training and Inference
	5.1 Dataset Processing
	5.2 Training
	5.3 Inference

	6 Evaluation
	6.1 Attack Strategies
	6.2 Defense Strategies

	7 Methodology Validation
	8 Related Work
	9 Conclusion
	References

