
Framekernel: A Safe and Efficient Kernel Architecture
via Rust-based Intra-kernel Privilege Separation

Yuke Peng
∗

Southern University of Science

and Technology, China

Hongliang Tian
∗

Ant Group, China

Jinyi Xian

Southern University of Science

and Technology, China

Shuai Zhou

Southern University of Science

and Technology, China

Shoumeng Yan

Ant Group, China

Yinqian Zhang
B†

Southern University of Science

and Technology, China

ABSTRACT

This paper introduces the framekernel architecture, a novel

approach to operating system (OS) design that utilizes safe

language-based, intra-kernel privilege separation. This ar-

chitecture combines the security advantages of microkernels

with the performance efficiencies of monolithic kernels. A

framekernel is composed of a privileged OS Framework and

de-privileged OS Services. The Framework encapsulates all

low-level, unsafe operations into high-level, safe abstrac-

tions, thereby enabling the Services to implement a wide

array of functionalities in a safe language. The primary chal-

lenge in designing framekernels lies in maintaining a mini-

mal Trusted Computing Base (TCB)–the Framework– while

supporting extensive functionalities. This paper outlines the

design principle and rules that facilitate this balance. Our

Rust-based framekernel prototype, Asterinas, validates the

framekernel concept by supporting over 130 Linux system

calls and a broad range of OS features and device drivers,

based on a significantly reduced TCB.

CCS CONCEPTS

• Security and privacy → Operating systems security; •

Software and its engineering→ Operating systems.

∗
Both authors contributed equally to this research.

†
Corresponding author: yinqianz@acm.org

This work is licensed under a Creative Commons Attribution International
4.0 License.
APSys ’24, September 4–5, 2024, Kyoto, Japan
© 2024 Copyright held by the owner/author(s). Publication rights licensed
to ACM.

ACM ISBN 979-8-4007-1105-3/24/09
https://doi.org/10.1145/3678015.3680492

KEYWORDS

Operating Systems, Rust, Memory Safety, Framekernel

ACM Reference Format:

Yuke Peng, Hongliang Tian, Jinyi Xian, Shuai Zhou, Shoumeng Yan,

and Yinqian Zhang
B
. 2024. Framekernel: A Safe and Efficient Ker-

nel Architecture via Rust-based Intra-kernel Privilege Separation.

In ACM SIGOPS Asia-Pacific Workshop on Systems (APSys ’24), Sep-
tember 4–5, 2024, Kyoto, Japan. ACM, New York, NY, USA, 7 pages.

https://doi.org/10.1145/3678015.3680492

1 INTRODUCTION

Memory safety is crucial for operating systems because it

helps prevent unauthorized or incorrect memory access,

thereby reducing the risk of crashes, data corruption, and

security breaches. Operating system kernels are typically

written in languages like C and C++ that do not inherently

provide memory safety, so achieving this often requires for-

mal verification. One prominent example is seL4 [7], the

first formally verified microkernel. In seL4-based operating

systems, most services run in user space on top of the mi-

crokernel, isolating them from the trusted computing base

(TCB). While this approach enhances security by reducing

the TCB size, it introduces significant communication over-

head between the microkernel and the user-space services.

Alternatively, it’s possible to formally verify the memory

safety of a monolithic kernel, as shown by the CertiKOS

project [5]. However, formal verification of a monolithic

kernel demands extensive manual effort and becomes in-

creasingly challenging as the codebase grows in size and

complexity. Consequently, this approach may not be practi-

cal for large-scale kernels with substantial legacy code.

More recent work in operating system design focuses

on using memory-safe programming languages to address

memory safety at a more fundamental level. Examples of

these are Verve [12], Biscuit [4], and RedLeaf [10], written

in C#, Go, and Rust, respectively. However, even in these

safer languages, certain low-level operations that are crucial

for kernel-level tasks, such as direct pointer manipulation

https://doi.org/10.1145/3678015.3680492
https://doi.org/10.1145/3678015.3680492
https://creativecommons.org/licenses/by/4.0/
http://crossmark.crossref.org/dialog/?doi=10.1145%2F3678015.3680492&domain=pdf&date_stamp=2024-09-04

APSys ’24, September 4–5, 2024, Kyoto, Japan Yuke Peng, Hongliang Tian, Jinyi Xian, Shuai Zhou, Shoumeng Yan, and Yinqian Zhang B

Microkernels Monolithic kernels Framekernel

seL4[7] RedLeaf[10] Verve[12] Biscuit[4] Asterinas

Kernel Languages C Rust C# Go Rust

Comm. Overheads Large Small Small Small Small

Drivers in TCB No Yes Yes Yes No

User Languages Any Rust C# Any Any

Table 1: A comparison between prior representative

memory-safe OS kernels and Asterinas, our framek-

ernel prototype. Among them, Asterinas is the first

one that satisfies all criteria for a practical, general-

purpose OS kernel.

or hardware register interactions, require “escape hatches”

where safety guarantees are bypassed. To mitigate the risks

associated with these unsafe operations, the design of these

kernels encapsulates them within higher-level APIs that are

presumed to be safe. These APIs are supported by relatively

small, carefully scrutinized cores. In Verve, this core is called

the "Nucleus." Biscuit relies on the Go runtime to manage

low-level operations, while RedLeaf employs a microkernel

architecture. The strength and weakness of these work are

summarized in Table 1.

The feasibility of writing a feature-rich, general-purpose

OS kernel in a safe language using a small, trusted core re-

mains uncertain. One might expect that the small cores of

these kernels would be feature-rich and serve as the sole TCB

of kernel memory safety, but this is not always the case. For

example, the core of Verve [12] only has built-in support for

four I/O devices, meaning that adding more device drivers de-

mands extending the TCB further. In RedLeaf [10], device dri-

vers depend on “trusted libraries”, which contain unsafe code

outside the core’s boundaries. Furthermore, RedLeaf does

not support hardware-isolated user processes. Biscuit [4] is

similarly limited. Though Biscuit only implements 58 sys-

tem calls and two relatively complete drivers, it contains 90

uses of Go’s unsafe routines inside the core for purposes like

writing user memory and accessing device registers. For all

three kernels, the TCBs of these three kernels go beyond

their cores and tend to grow larger with the addition of OS

features and drivers.

To support the development of general-purpose operating

systems with a solid yet minimal foundation, we propose

a novel OS architecture called framekernel. In this architec-

ture, a kernel is divided into two distinct parts: a privileged

part that contains low-level operations without safety guar-

antees and a de-privileged part that is strictly written in a

memory-safe language. The privileged part, known as the

OS Framework (or simply “the Framework”), offers secure

abstractions to support the de-privileged part, which con-

tains the OS Services (referred to as “the Services”). The

Services are responsible for implementing various OS fea-

tures and device drivers while relying on the Framework’s

secure underpinnings.

The framekernel architecture combines the security ad-

vantages of a microkernel with the performance benefits of

a monolithic kernel. Similar to a monolithic kernel, framek-

ernel modules coexist within the same address space, facili-

tating communication through shared memory and function

calls. However, unlike traditional monolithic kernels, the

memory safety of the entire kernel relies exclusively on the

Framework. This approach yields a compact TCB, akin to

that of a microkernel, enhancing overall system security.

The primary challenge in designing a framekernel mirrors

that of a microkernel: maintaining a minimal TCB while sup-

porting rich functionalities. However, a significant difference

exists—a microkernel achieves isolation through hardware-

based methods, whereas a framekernel utilizes a language-

based approach for intra-kernel privilege separation. There-

fore, we have adapted the minimality principle of microker-

nels [6] to suit framekernels:

The minimality principle. A component is tolerated
inside the privileged OS Framework only if moving it outside
the Framework would prevent the de-privileged OS Services
from implementing required functionalities safely.

Following this principle, we have established a set of rules

to guide the separation: for each class of OS resources or

functions, what should remain within the Framework and

what can be safely delegated to the Services:

• Separate kernel- anduser-spaceCPU states.The Frame-

work should provide abstractions allowing the Services to

inspect and manipulate CPU registers of user-space pro-

cesses. This ability is essential for the Services to handle

system calls or CPU exceptions from the user space freely.

In contrast, the Services should not be allowed to arbitrarily

manipulate kernel-mode CPU registers, as these registers

are crucial for kernel memory safety. Otherwise, the Ser-

vices could compromise the control flow integrity of the

kernel by modifying the program counter or stack pointer.

• Separate typed and untyped memory. Accessing main

memory with raw pointers is unsafe by nature but is a com-

mon demand throughout a kernel. For example, to read

inputs from or write outputs to the user space, the kernel

has to access the memory specified by user pointers. As an-

other example, device drivers often need to exchange data

with their devices by accessing DMAable data structures

or buffers directly. To accommodate such a common us-

age, we propose to classify memory into two classes: typed

vs untyped. Typed memory is relevant to kernel memory

safety. One obvious example is the code, stack, and heap

of a safe language kernel as they store type-safe objects;

Overriding such memory corrupts kernel memory safety.

Untyped memory, on the other hand, is irrelevant to ker-

nel memory safety. For example, the memory pages are

mapped to a user space or those prepared for DMA to/from

Framekernel: A Safe and Efficient Kernel Architecture via Rust-based Intra-kernel Privilege Separation APSys ’24, September 4–5, 2024, Kyoto, Japan

devices can be treated as untyped as the kernel does not

trust such memory nor should it store type-safe objects on

them. Thus, the Framework should provide abstractions to

allow management and manipulation of untyped memory.

• Separate task switching and scheduling. Multitasking

is a crucial feature of most modern kernels, which must

be supported by the Framework. Therefore, the process

of context switching, which includes the error-prone and

unsafe logic of saving and restoring CPU states, must be

performed within the Framework. However, scheduling

strategies (e.g., Linux’s CFS) are complex to implement and

can be decoupled from context switching. Thus, scheduling

strategies should be moved to the Service and pluggable

into the Framework.

• Separate event dispatching and handling. A kernel

is responsible for handling system events such as CPU ex-

ceptions and external interrupts. The registration of han-

dler routines for these events involves low-level, unsafe

operations and hence must be managed by the Framework.

However, handling CPU exceptions originating from user

space or external interrupts from devices does not necessi-

tate unsafe operations. As such, this responsibility can be

appropriately delegated to the Services.

• Separate system and peripheral devices.We classify

devices into two categories: system devices and peripheral

devices. System devices (or controllers) manage fundamen-

tal aspects of the system. A logic bug, rather than a safety

one, in a system device driver can breach fundamental as-

sumptions of the kernel, potentially compromising kernel

memory safety. Examples of system devices on the x86 ar-

chitecture include APIC and IOMMU. In contrast, peripheral

devices like storage, network, and graphic devices do not im-

pact the system as extensively. Given these distinctions, the

Framework should limit its abstractions to only expose the

I/O ports or memory spaces of peripheral devices. Moreover,

to mitigate potential bugs in the safe drivers of peripheral

devices that might corrupt typed memory via DMA, the

Framework must enable IOMMU. These strategies collec-

tively foster safe driver development while ensuring kernel

memory safety.

Guided by the minimality principle and the five rules, we

develop a framekernel prototype named Asterinas for the

x86-64 architecture, using Rust for its implementation. This

prototype has been released as open-source [2]. As shown

in Figure 1, Asterinas comprises two components: the priv-

ileged Asterinas Framework and the de-privileged Aster-

inas Services. The Asterinas Framework offers a safe,

expressive, and minimal foundation for crafting secure and

efficient kernel code. Asterinas Framework encapsulates

all low-level, unsafe operations that manage and interact

Figure 1: Architecture of Asterinas, a prototype of

framekernel.

with the hardware and user space into high-level, safe ab-

stractions, providing the ability to manage user-space CPU

states and untyped memory, customize task scheduling poli-

cies and event handling logic, and access the I/O ports and

memory of peripheral devices. With these abstractions, As-

terinas Services can implement a rich set of OS features in

safe Rust. The design and security invariants of the Asteri-

nas Framework are further discussed in Section 4.

Building upon this foundation, Asterinas Services im-

plement a substantial subset of Linux features, including

preemptive scheduling, file systems (e.g., Ext2), sockets (e.g.,

TCP/UDP over IPv4), and device drivers (e.g., VirtIO-blk

and Virtio-net). These features collectively support over 130

Linux system calls. The entire Asterinas codebase com-

prises over 50,000 lines of Rust code, with the Framework

accounting for only about 20%—a significant reduction of

TCB compared to other Rust-based kernels like RedLeaf,

which has a TCB of 60%. See Section 5 for more detail.

As the development of additional OS subsystems and de-

vice drivers progresses, we anticipate that the size ratio of the

Framework to the entire codebase will decrease even further,

This will allow us to add more functionalities while keeping

a small TCB for memory safety. As of now, Asterinas does

not perform as well as Linux due to its immaturity. We are

working hard on incorporating performance optimizations.

Our experience so far has found no inherent limitations in

the framekernel architecture that prevents Asterinas from

achieving the same level of performance as Linux.

2 RUST FOR KERNEL DEVELOPMENT

Rust is an efficient system programming language featuring

strong memory safety and thread safety guarantees, making

it a preferable option for operating system development [1,

3, 8, 10, 11]. Rust has also made its way into Linux [9].

Rust establishes its safety guarantees through its own-

ership model, which requires the compiler to manage all

APSys ’24, September 4–5, 2024, Kyoto, Japan Yuke Peng, Hongliang Tian, Jinyi Xian, Shuai Zhou, Shoumeng Yan, and Yinqian Zhang B

references to objects to prevent concurrent mutations and

memory-related errors. However, this ownership model in-

herently restricts the programming language’s expressive

power, posing challenges for operating system development

that often involves low-level and concurrent system accesses.

Therefore, Rust offers the “unsafe” keyword as a way to by-

pass the language’s strict type system and its ownership

model when needed.

However, bypassing the type system means that OS de-

velopers must take responsibility for ensuring type safety,

thereby maintaining the assumptions on which the Rust

compiler relies. Failure to do so would invalidate the safety

guarantees provided by the ownership model. In these cases,

the compiler often cannot verify whether the unsafe code

adheres to its expected constraints.

The Rust documentation offers a non-exhaustive list of

practices to avoid undefined behaviors in typical user-space

applications. However, when working in the kernel space,

using the unsafe mechanism requires additional care and

consideration due to the increased complexity and potential

risks. For example, the Control flow integrity requires the

Services logic, trap handlers, user programs, and so on should

run in their program orders.

3 THE FRAMEKERNEL ARCHITECTURE

In this paper, we answer the question of whether it is feasible

to develop a feature-rich, general-purpose OS kernel using a

safe programming language, supported by a minimal trusted

“core”. Our solution is the framekernel architecture, which

divides the kernel into a privileged OS Framework and de-

privileged OS Services. The Framework consolidates all low-

level, unsafe operations into high-level, safe abstractions,

enabling the Services to safely implement a broad array of

OS features and device drivers.

This section outlines the trust model of a framekernel,

details its design goals, and discuss the concepts of typed and

untyped memory, which have been mentioned in Section 1.

3.1 Trust Model

We describe which hardware and software components a

framekernel trusts and which it does not. The memory safety

of a framkernel depends solely on these trusted components.

The hardware TCB includes the CPU and system devices

(or controllers). On an x86 machine, these system devices

include Memory Management Unit (MMU), Input-Output

Memory Management Unit (IOMMU) and Advanced Pro-

grammable Interrupt Controller (APIC). A framekernel does

not trust peripheral devices, such as block devices or network

interface cards connected through the PCI/PCI-E bus.

The software TCB consists of the toolchain for the safe

language, the privileged OS Framework of the framekernel,

and the bootloader and other firmware that runs before the

framekernel. The de-privileged OS Services or user-space

processes running atop the framekernel are not trusted.

3.2 Design Goals

The framekernel architecture demands the OS Framework

to meet the following four design goals simultaneously.

• Soundness. The Framework is considered sound if no

undefined behaviors may be triggered via its API by any

safe code, provided that the safe code is verified by the

toolchain.

• Expressiveness. The Framework should enable develop-

ers to implement a wide range of OS functionalities in the

safe language using its APIs. It is especially important for

the Framework to enable safe driver development, consider-

ing that device drivers often constitute a significant portion

of the codebase in a fully-fledged OS kernel, such as Linux.

• Minimalism. As a principal component of the TCB, the

Framework should be as small as possible. It should not in-

corporate any functionality that can be safely and efficiently

implemented outside of the Framework.

• Efficiency. The APIs provided by the Framework should

incur minimal overheads. Ideally, these APIs should be real-

ized as zero-cost abstractions.

It is particularly challenging to achieve both soundness

and expressiveness at the same time. Expressiveness requires

delegating more OS resources or controls to the Services, but

this delegation increases the risk of memory safety issues,

hindering the soundness guarantees. To strike the right bal-

ance, we have articulated five rules in Section 1.

3.3 Typed vs Untyped Memory

Typed memory refers to the physical memory regions that

can potentially compromise the system’s memory safety.

These regions include the system code or data segments,

the Rust heap, and the regions used by system devices. To

ensure system soundness, the Framework implements secu-

rity measures to protect these regions including preventing

untrusted entities from direct access to typed memory and

enforcing the restrictions imposed by the Framework’s APIs.

Typed memory can be converted to untyped memory and

vice versa. During system runtime, the size of typed memory

may dynamically expand or shrink. For example, when the

MMU establishes a newmapping, it allocates a physical mem-

ory region from the pool of untyped memory and reclaims

the memory when it removes a mapping. To ensure memory

protection during these conversions, the Framework incor-

porates appropriate compile-time and runtime measures to

safeguard the integrity and security of the system.

Framekernel: A Safe and Efficient Kernel Architecture via Rust-based Intra-kernel Privilege Separation APSys ’24, September 4–5, 2024, Kyoto, Japan

4 ASTERINAS FRAMEWORK

Figure 1 presents the architecture of framekernel, which

includes the Framework and the Services. The Framework

provides the Services with five functionalities 1) Untyped

memory access, 2) User-space CPU states modification, 3)

Task Scheduling, 4) Event handling, and 5) Peripheral devices

I/O access. In addition to these components, the Framework

provides utilities that require unsafe code (Section 4.6).

4.1 Untyped Memory Access

The Framework employs Frame to help the Services access

untyped memory. Frame is a structure defined in the Frame-

work and each instance of Frame is assigned an index corre-

sponding to a physical page.

A Frame allocator manages the untyped memory regions.

It establishes all untyped memory regions during system

initialization. The Framework may request memory page

allocation or deallocation at runtime, leading to conversions

between typed and untyped memory. The conversion is

achieved using Rust’s drop mechanism, which allows the

reclamation of the typed memory and its return to untyped

memory. The Framework maintains Inv1 and Inv2 for mem-

ory management to ensure memory safety.

Inv1: IOMMU maps to untyped memory pages.

Inv2: For the user space, MMU creates mappings only to

untyped memory.

The Framework lets the Services pass in a Frame instance

as a parameter when establishing the MMU or IOMMU map-

ping. A Frame object owned by the Services always points to
a valid untyped memory page. Thus, the Framework allows

the Services to map virtual addresses to a physical mem-

ory page that the Frame points to. The Framework takes

ownership of the Frame to keep it from reclamation.

4.2 User-Space CPU States Modifications

The Framework uses UserMode structure to protect different
CPU states. UserMode allows the Services to enter the user

mode with the specified CPU states. However, the Frame-

work uses typed memory to keep the Services from accessing

the kernel CPU states, which ensures the control flow in-

tegrity of user programs and exception handlers while keep-

ing the efficient function calls and system calls interfaces.

Inv3 summarizes the measures taken by the Framework.

Inv3: Kernel CPU states must reside in the typed memory.

4.3 Task Scheduling

Tasks abstract CPUs’ execution flows, supporting context

switches and scheduling. Tasks follow Inv3 to ensure con-

text switches will not affect control flow integrity. Besides,

the Framework does not implement a scheduling algorithm.

Instead, it provides a Rust trait for the Services so that the

Services can register a scheduler of their choice. Moreover,

the Framework sets up a guard page to defend against stack

overflows which brings to the corruption of typed memory

and unintentional changes to irrelevant execution contexts.

Inv4 gives the property for the integrity of stacks.

Inv4: Kernel’s execution contexts must be immune to

corruptions, adding runtime checks if necessary.

4.4 Event Handling

System events can be divided into two categories: external

interrupts and CPU exceptions. Design considerations for

addressing these events differ.

External interrupts are used to address asynchronous events

that interact with external devices or systems. The Frame-

work provides IrqLine structure to do events callback. Each
IrqLine instance is associated with a specific interrupt num-

ber. When an external interrupt occurs, the Framework iden-

tifies the corresponding IrqLine instance based on the in-

terrupt number and invokes the registered callback function.

However, some CPU architectures do not distinguish be-

tween CPU exceptions and external interrupts. For instance,

in x86-64, PCIe devices can signal some of the CPU excep-

tions through Message Signaled Interrupt by modifying the

IRQ number. To prevent the CPU exception handler from per-

forming illegal operations in this situation, the Framework

introduces Inv5 to fortify the CPU exception handler.

Inv5: CPU exception handler must check whether the

exception happened before performing operations.

4.5 Peripheral Devices I/O Access

The I/O of devices is categorized into two forms: Port I/O

(PIO) and memory-mapped I/O (MMIO). In the Framework,

these are represented as IoPort and IoMem, respectively.
Both the IoPort and IoMem instances are associated with a

specific range of PIO or MMIO.

Tomanage PIO access, the Framework employs the IoPort
distributor, which ensures that peripheral drivers cannot ac-

cess the I/O ports used by system device drivers. The distrib-

utor accomplishes this through a two-step process. Firstly,

during initialization, it creates a CPU architecture-specific

port range. Secondly, the system device drivers within the

Framework can use an internal API provided by the IoPort
distributor to exclude the I/O ports used by system devices.

Similarly, the Framework uses the IoMem distributor to

manage MMIO access. However, the IoMem distributor ex-

cludes the physical memory regions based on the memory

distribution. This ensures that the allocated IoMem does

not cross boundaries and access physical memory regions

APSys ’24, September 4–5, 2024, Kyoto, Japan Yuke Peng, Hongliang Tian, Jinyi Xian, Shuai Zhou, Shoumeng Yan, and Yinqian Zhang B

rCore RedLeaf Tock Asterinas

Peripheral drivers G# G# #
File systems # # #
Network stacks # # #
Schedulers #
IPC and Signals #
TCB 100% 60.34% 72.68% 20.89%

Table 2: A comparison between the TCB size of differ-

ent Rust kernels. : all crates within the subsystem are

included in the TCB;G# only some crates are included

in the TCB;# no crate is included.

beyond its intended scope, thereby safeguarding against out-

of-bounds memory accesses. Summarizing the above steps,

the Framework introduces Inv6 and Inv7.

Inv6: System device driver must remove its I/O access in

the distributor when system is initializing.

Inv7:MMIO distributor must exclude physical memory.

4.6 Concurrent Utilities

The Framework provides concurrent utility types whose

implementation must rely on unsafe Rust, e.g., concurrent

locks and concurrent data collections. There are two types

of unsafe used by utilities. The first type of unsafe is used

to implement Send and Sync functionalities such as concur-

rent locks. These locks are a crucial tool for Rust operating

systems. The second type of unsafe is UnsafeCell, which
is used to break Rust’s reference restrictions and implement

high-performance data structures or concurrent locks. Due

to Rust’s reference restrictions and performance limitations,

some data structures, such as linked lists, can be challenging

to implement using only safe Rust. Therefore, the Frame-

work allows such data structures to exist, but they require

extensive testing to ensure accurate implementation.

5 ASTERINAS SERVICES

On top of Asterinas Framework, we develop Asterinas

Services, which implement a substantial subset of Linux

features, such as virtual memory, processes, IPC, VFS, and

sockets, providing over 130 system calls. It supports multiple

file systems (e.g., Ext2, exFAT32, procfs, devfs, and ramfs),

socket types (e.g., TCP, UDP, and Unix domain), and device

drivers (e.g., VirtIO-console, VirtIO-blk, and VirtIO-net). All

these functionalities of Asterinas Services are written in

safe Rust. Asterinas Services demonstrates that Asterinas

Framework is expressive enough to implement general-

purpose, feature-rich OS kernels.

Overall, Asterinas consists of over 50,000 lines of Rust

code, withAsterinas Framework comprising approximately

20% of all code, representing the size of the TCB. The remain-

der is attributed to Asterinas Services. We compare the

TCB size ratio of Asterinas with other existing Rust-based

kernels in terms of the entire codebase size. The comparative

results are detailed in Table 2. Notably, For our TCB analysis,

we evaluate each Rust crate in its entirety, classifying it as

TCB or non-TCB based on whether unsafe Rust is allowed

or not. Thus, the TCB of a kernel encompasses all crates

identified as TCB within that kernel.

6 RELATEDWORK

RedLeaf [10] is a microkernel OS that relies on Rust’s type

safety and memory safety for isolation, rather than hard-

ware isolation mechanisms. It does not allow the use of

unsafe keyword in user domains and only permits the kernel

and trusted libraries to use unsafe. Asterinas is similar to

RedLeaf but with two significant differences. Firstly, Asteri-

nas still uses hardware isolation to run programs developed

in multiple languages, as it aims to be general-purpose and

provides Linux-compatible ABI. Secondly, Asterinas pro-

vides a device driver framework, which eliminates the need

for writing trusted libraries for peripheral drivers.

Tock [8] is an embedded operating system that employs

Rust safety features to support SoCs with limited hardware

protection measures. Tock divides the kernel into trusted

core libraries that can use unsafe code and untrusted cap-

sules that are not allowed to use unsafe code. The design

of Asterinas and Tock is different due to the inherent dif-

ferences between embedded and general-purpose systems.

Compared to embedded systems, general-purpose systems

must support complex applications and drivers, which makes

our task more challenging. Moreover, Tock’s design causes

the TCB to expand as the number of device drivers increases,

leading to a significant increase in the difficulty of TCB audit.

7 CONCLUSION

This paper introduces the framekernel architecture which

merges the security of microkernels with the performance of

monolithic kernels by employing safe language-based intra-

kernel privilege separation. The prototype of the framekernel

architecture, Asterinas, effectively demonstrates the effec-

tiveness of this approach by implementing over 130 Linux

system calls and supporting various OS features with a TCB

ratio of about 20%.

ACKNOWLEDGMENTS

Yinqian Zhang is in part supported by National Key R&D

Program of China (No. 2023YFB4503902), CCF-ANT Funds

(CCF-AFSG RF20220012 and CCF-AFSG RF20230211), as well

as several research grants from Ant Group. The authors

from Ant Group are supported by the Leading Innovative

and Entrepreneur Team Introduction Program of Zhejiang

(Grant No. TD2019001).

Framekernel: A Safe and Efficient Kernel Architecture via Rust-based Intra-kernel Privilege Separation APSys ’24, September 4–5, 2024, Kyoto, Japan

REFERENCES

[1] Andy-Python-Programmer. 2024. Aero OS. https://github.com/Andy-

Python-Programmer/aero.

[2] Asterinas. 2024. The code repository of Asterinas. https://github.com

/asterinas/asterinas.

[3] Kevin Boos, Namitha Liyanage, Ramla Ijaz, and Lin Zhong. 2020.

Theseus: an Experiment in Operating System Structure and State

Management. In 14th USENIX Symposium on Operating Systems

Design and Implementation (OSDI 20). USENIX Association, 1–19.

https://www.usenix.org/conference/osdi20/presentation/boos

[4] Cody Cutler, M. Frans Kaashoek, and Robert T. Morris. 2018. The

benefits and costs of writing a POSIX kernel in a high-level lan-

guage. In 13th USENIX Symposium on Operating Systems Design and

Implementation (OSDI 18). USENIXAssociation, Carlsbad, CA, 89–105.

https://www.usenix.org/conference/osdi18/presentation/cutler

[5] Ronghui Gu, Zhong Shao, Hao Chen, Xiongnan (Newman) Wu, Jie-

ung Kim, Vilhelm Sjöberg, and David Costanzo. 2016. CertiKOS: An

Extensible Architecture for Building Certified Concurrent OS Ker-

nels. In 12th USENIX Symposium on Operating Systems Design and

Implementation (OSDI 16). USENIX Association, Savannah, GA, 653–

669. https://www.usenix.org/conference/osdi16/technical-

sessions/presentation/gu

[6] LIEDTKE Jochen. 1994. On 𝜇-Kernel Construction. Proc 15th SOSP,

1994 (1994).

[7] Gerwin Klein, Kevin Elphinstone, Gernot Heiser, June Andronick,

David Cock, Philip Derrin, Dhammika Elkaduwe, Kai Engelhardt,

Rafal Kolanski, Michael Norrish, Thomas Sewell, Harvey Tuch, and

Simon Winwood. [n. d.]. seL4: Formal Verification of an OS Kernel.

In Proceedings of the ACM SIGOPS 22nd Symposium on Operating

Systems Principles (New York, NY, USA, 2009-10-11) (SOSP ’09). As-

sociation for Computing Machinery, 207–220. https://doi.org/10.114

5/1629575.1629596

[8] Amit Levy, Bradford Campbell, Branden Ghena, Daniel B. Giffin,

Pat Pannuto, Prabal Dutta, and Philip Levis. 2017. Multiprogram-

ming a 64kB Computer Safely and Efficiently. In Proceedings of the

26th Symposium on Operating Systems Principles (Shanghai, China)

(SOSP ’17). Association for ComputingMachinery, New York, NY, USA,

234–251. https://doi.org/10.1145/3132747.3132786

[9] Linux. 2024. Rust — The Linux Kernel Documentation. https://docs.k

ernel.org/rust/index.html.

[10] Vikram Narayanan, Tianjiao Huang, David Detweiler, Dan Appel,

Zhaofeng Li, Gerd Zellweger, and Anton Burtsev. 2020. RedLeaf: Isola-

tion and Communication in a Safe Operating System. In 14th USENIX

Symposium on Operating Systems Design and Implementation (OSDI

20). USENIX Association, 21–39. https://www.usenix.org/conference/

osdi20/presentation/narayanan-vikram

[11] rcore os. 2023. rCore. https://github.com/rcore-os/rCore.

[12] Jean Yang and Chris Hawblitzel. 2010. Safe to the Last Instruction:

Automated Verification of a Type-Safe Operating System. In PLDI.

Association for Computing Machinery, Inc. https://www.micros

oft.com/en-us/research/publication/safe-to-the-last-instruction-

automated-verification-of-a-type-safe-operating-system/

https://github.com/Andy-Python-Programmer/aero
https://github.com/Andy-Python-Programmer/aero
https://github.com/asterinas/asterinas
https://github.com/asterinas/asterinas
https://www.usenix.org/conference/osdi20/presentation/boos
https://www.usenix.org/conference/osdi18/presentation/cutler
https://www.usenix.org/conference/osdi16/technical-sessions/presentation/gu
https://www.usenix.org/conference/osdi16/technical-sessions/presentation/gu
https://doi.org/10.1145/1629575.1629596
https://doi.org/10.1145/1629575.1629596
https://doi.org/10.1145/3132747.3132786
https://docs.kernel.org/rust/index.html
https://docs.kernel.org/rust/index.html
https://www.usenix.org/conference/osdi20/presentation/narayanan-vikram
https://www.usenix.org/conference/osdi20/presentation/narayanan-vikram
https://github.com/rcore-os/rCore
https://www.microsoft.com/en-us/research/publication/safe-to-the-last-instruction-automated-verification-of-a-type-safe-operating-system/
https://www.microsoft.com/en-us/research/publication/safe-to-the-last-instruction-automated-verification-of-a-type-safe-operating-system/
https://www.microsoft.com/en-us/research/publication/safe-to-the-last-instruction-automated-verification-of-a-type-safe-operating-system/

	Abstract
	1 Introduction
	2 Rust for Kernel Development-0.1em
	3 The Framekernel Architecture
	3.1 Trust Model
	3.2 Design Goals
	3.3 Typed vs Untyped Memory

	4 Asterinas Framework
	4.1 Untyped Memory Access
	4.2 User-Space CPU States Modifications
	4.3 Task Scheduling
	4.4 Event Handling
	4.5 Peripheral Devices I/O Access
	4.6 Concurrent Utilities

	5 Asterinas Services
	6 Related Work
	7 Conclusion
	Acknowledgments
	References

