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ABSTRACT

This paper presents the design, implementation and evalu-
ation of a system called Diippel that enables a tenant vir-
tual machine to defend itself from cache-based side-channel
attacks in public clouds. Diippel includes defenses for time-
shared caches such as per-core L1 and L2 caches. Exper-
iments in the lab and on public clouds show that Diippel
effectively obfuscates timing signals available to an attacker
VM via these caches and incurs modest performance over-
heads (at most 7% and usually much less) in the common
case of no side-channel attacks. Moreover, Diippel requires
no changes to hypervisors or support from cloud operators.

Categories and Subject Descriptors

D.4.6 [OPERATING SYSTEMS]: Security and Protec-
tion—Information flow controls

General Terms

Security

Keywords

Side-channel attack; cross-VM side channel; cache-based side
channel

1. INTRODUCTION

The threat of side-channel attacks in multi-tenant public
clouds is becoming a realistic security concern [29, 38]. In
such attacks as demonstrated to date, shared CPU caches
enable virtual machines (VM) administered by competing
organizations to exfiltrate sensitive information from each
other. This has recently been shown to be possible despite
considerable interference and background “noise” from the
hypervisor and other activities on the machine [38].

Most approaches to address these attacks have focused on
altering the cloud platform in some way (see Sec. 2). How-
ever, to our knowledge, these defenses have not gained trac-
tion in existing public clouds. Rather, a typical tenant of
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a public cloud concerned about these attacks is left with
little choice but to try to defend itself. One approach is
to construct its software to resist side channels (e.g., [21,
18, 11]), but these techniques can result in significant slow-
down. A second approach is to run its VMs on an isolated
machine (possibly verifying this isolation using side chan-
nels itself [37]), though existing cloud providers that offer
this service charge more for it.

In this paper we explore a third possibility, namely a
method by which a tenant can construct its VMs to au-
tomatically inject additional noise into the timings that an
attacker might observe from caches. Since these timings
are the most common side-channels by which an attacker
infers sensitive information about a victim VM, injecting
noise into them will generally make the attacker’s job more
difficult. Our implementation of this idea, called Diippel®,
modifies only the guest OS kernel and is general enough to
protect arbitrary types of user-space applications. Diippel
can be configured to protect the user-space application, any
dynamically linked libraries it uses, or both. Diippel does
not need support from hypervisors or cloud providers. To
our knowledge, our scheme is the first work that provides
tenant VM OS-layer mitigation of cross-VM side channels.

Unlike the noise overcome by previous attacks, the noise
injected by Diippel is designed specifically to confound at-
tacks mounted via timing the per-core L1 cache (or per-core
L2 cache, if present) on the platform. Diippel does so by
repeatedly cleaning the L1 cache alongside the execution of
its tenant workload, at a pace that it adjusts based upon
the possibility with which timings reflecting the workload
execution could actually have been observed from another
VM. We also discuss extensions of Diippel to defeat timing
attacks via other time-shared resources such as the branch
prediction cache, should attacks via this cache [4, 3, 14]
someday be adapted to a virtualized setting. We empha-
size, however, that even with just addressing the L1 cache,
Diippel already interferes with all known cryptographic side-
channel attacks that have been demonstrated in a virtualized
SMP environment. (See Sec. 8 for further discussion on this
point.)

Overhead of Diippel is modest. In tests on Amazon EC2,
we show that file download latencies and server through-
put over a TLS-protected connection from an Apache web
server suffer by at most 4% when Diippel is configured to

!Diippel takes its name from a radar countermeasure de-
veloped by the German Luftwaffe during World War 11, in
which aircraft disperse clouds of tiny pieces of material to
interfere with radar.



protect the OpenSSL library. We also demonstrate using
the PARSEC benchmarks and other programs that compu-
tational workloads suffer by up to 7% when the applications
are protected by Diippel. We believe that these overheads
are acceptable given the substantial challenge involved in de-
fending against cache-based side-channels with no help from
the underlying hardware or hypervisor.

The rest of this paper is organized as follows. We discuss
related work in Sec. 2. We present necessary background
in Sec. 3 and then present the design of Diippel in Sec. 4
and Sec. 5. We describe our implementation in Sec. 6 and
its evaluation in Sec. 7. We discuss possible extensions and
limitations in Sec. 8 and conclude in Sec. 9.

2. RELATED WORK

Side-channel attacks on CPU microarchitectures for ex-
tracting cryptographic keys from a victim entity have been
studied in different contexts. The particular form of these
attacks with which we are concerned are access-driven at-
tacks, in which the attacker runs a program on the system
that is performing the cryptographic operation of interest.
The attacker program monitors usage of a shared hardware
component to learn information about the key, e.g., the
data cache [27, 25, 24, 31, 13], instruction cache [1, 2, 38],
floating-point multiplier [5], or branch-prediction cache [4,
3]. Our work specifically aims at defending against access-
driven cache-based side-channel attacks in the cloud, an
example of which was recently demonstrated by Zhang et
al. [38].

Countermeasures to cache side-channel attacks can be ap-
plied to various layers in a computer system. In mitigating
cross-VM side channels, prior works can roughly be classi-
fied into one of the following categories, based on the layer
in which the countermeasure is implemented.

Hardware-layer approaches. The first category includes
proposals of new cache designs by applying the idea of re-
source partitioning (e.g., [26, 33, 34, 12]) or access random-
ization (e.g., [34, 35, 16]) to mitigate timing channels in CPU
caches on the hardware layer. Other works have proposed
approaches to eliminate fine-grained timing sources in hard-
ware designs [20]. Compared to implementations in other
layers, hardware methods usually have lower performance
overhead. However, adoption of new hardware techniques is
a complex process, which may involve considerations of side
effects (e.g., power consumption) and economic feasibility.
Therefore, it might take years before these techniques are
merged into production and finally used in clouds.

Hypervisor-layer approaches. Countermeasures in the
second category intend to mitigate cache timing side chan-
nels by adapting the hypervisor. One direction along this
line is to hide nuances in the program execution time, ei-
ther by providing a fuzzy timer [32] or by forcing all exe-
cutions to be deterministic [6]. However these approaches
will exclude many applications that rely on a fine-grained
timer from running in the cloud. A conceptually similar but
more comprehensive solution is provided by Li et al. [19],
in which all sources of timing channels a VM can observe
are identified and categorized; they are mitigated either by
aggregating timing events among multiple VM replicas, or
by making them deterministic functions of other channels.
Another direction is to partition the shared resources in the
hypervisor [28, 30, 17]. In particular, Raj et al. [28] statically

partition the last level cache (LLC) into several regions and
allow VMs to make use of different regions by partitioning
physical memory pages accordingly. Kim et al. [17] improved
the performance by dynamically partitioning the LLCs and
extended the protection to L1 cache as well.

OS-layer approaches Previous OS-layer approaches were
mostly proposed to defend against cross-process side-channel
attacks, e.g., [27, 31, 13]. To our knowledge, our approach
is the first to modify the OS layer to mitigate cross-VM side
channels.

Application-level approaches. The last approach is to
construct side-channel resistant software implementations.
For example, the program counter security model [21, 11]
eliminates key-dependent control flows by transforming the
software source code. Other efforts focus on side-channel
free cryptographic implementations (e.g., [18]). These ap-
proaches incur significant overheads in some cases (e.g., Cop-
pens et al. [11] indicate up to 24x).

3. BACKGROUND
3.1 CPU Caching Architectures

Modern CPU microarchitectures extensively make use of
hardware caches to speed up expensive operations. The
hardware caches on an x86 platform may include data caches,
instruction caches, translation lookaside buffers (TLB), trace
caches, branch target buffers (BTB) in the branch prediction
unit, etc. These caches are similar in their functionalities.
The most commonly known caches are data and instruc-
tion caches sitting between the processor cores and the main
memory, establishing a storage hierarchy in which each level
stores the interim data for the next level storage system for
quick reference. Most contemporary multi-core processors
are equipped with separate L1 data and instruction caches
for each core, plus one (or two) unified LLC for the whole
CPU package. In some Intel CPUs, a unified L2 cache exists
per core, mediating data exchange between L1 caches and
the LLC. Modern cache sizes range from several kilobytes
(KB) to several gigabytes (GB). They are usually organized
as a sequence of blocks denoted cache lines with fixed size.
Caches are usually set-associative. A w-way set-associative
cache is partitioned into m sets, each with w lines of size b. If
the size of the cache is denoted by ¢, we have m = ¢/(w x b).

3.2 Cache-based Side-Channel Attacks

A technique commonly used in cache-based access-driven
side-channel attacks is the PRIME-PROBE protocol. Although
in previous works, the attacker and victim in this protocol
would typically be OS processes, we describe the protocol
here with the attacker and defender being virtual machines,
to illustrate the threats relevant to the cloud.

In a PRIME-PROBE protocol, as introduced by Osvik et
al. [25], a VCPU (a virtual CPU belonging to a VM) U of
the attacker’s VM spies on a victim’s VCPU V by measuring
the cache load in a given cache in the following manner:

PRIME: U fills one or more cache sets.

IDLE: U waits for a prespecified PRIME-PROBE interval
while the cache is utilized by V.

PROBE: U times the duration to refill the same cache sets
with the same data to measure V’s cache activity on those
sets.



Cache activity induced by V' during the interval between
U’s PRIME and PROBE will evict U’s data from the cache sets
and replace them with V’s. This will result in a noticeably
higher timing measurement in U’s PROBE phase than if there
had been little activity from V. Of course, PROBing also
accomplishes PRIMing the cache sets (i.e., evicting all data
other than U’s), and so repeatedly PROBing, with one PRIME-
PROBE interval between each PROBE, eliminates the need to
separately conduct a PRIME step.

A CPU cache, in regard to side-channel attacks, is ei-
ther time-shared by the attacker and victim, or simultane-
ously shared by the two entities. An example of a time-
shared cache is the L1 cache in an SMT-disabled? proces-
sor, in which the cache is dedicated to a single CPU core
and can only be shared by two threads running on the same
core in turns. It has been shown in previous research that
SMT facilitates CPU-based side channel attacks because two
threads can simultaneously use CPU resources [27, 31, 1, 2,
4]. As most cloud infrastructures disable SMT for perfor-
mance or security purposes (see Sec. 8.2), per-core caches in
these environments are time-shared, and so Diippel focuses
on defending against side channels in this case.

4. GOALS

The anticipated attack scenario is in public IaaS clouds,
where the attacker has full control of a VM co-located with
the Diippel-protected VM and is capable of exploiting per-
core caches as side channels to exfiltrate sensitive informa-
tion. We assume the underlying CPU is based on x86 archi-
tecture and is not equipped with SMT. Such hardware con-
figurations dominate modern public clouds. The two VMs
in question may time-share the same CPU core, thus time-
sharing the L1 instruction cache, L1 data cache, the unified
L2 cache (if any), BTBs, TLBs and other caching architec-
tures in a CPU core. We further assume the attacker can
obtain a copy of the software stack running in the Diippel-
protected system and so can experiment with it to learn the
cache behavior that it induces. The cloud provider controls
the hypervisor, which operates as is—it neither facilitates
the side-channel attacks nor does anything to thwart such
threats.

In light of this threat model, we have the following goals
for Diippel:

GOAL 1. Diippel should mitigate side-channel attacks via
time-shared caches.

The implementation of Diippel that we develop here ad-
dresses side channels using the L1 (or, if any, L2) per-core
caches, which are time-shared caches. The principles for
addressing side channels in these caches should apply to ad-
dressing them in other time-shared caches, as well.

GOAL 2. Diippel should not require any hypervisor modi-
fication.

An important design principle of Diippel is to permit its
adoption by cloud tenants on modern cloud infrastructures
without any additional support from the cloud providers.

GoOAL 3. Dippel should not require modifying applications
or libraries.

24«SMT” is Simultaneous Multi-Threading, or HyperThread-
ing in Intel’s terminology.

Though many secrets that might be targeted in side-channel
attacks are handled in applications and third-party linked li-
braries, the sheer number and diversity of applications and
libraries makes modifying all of them an unattractive propo-
sition. Instead, a goal for Diippel is to protect such secrets
without modifications to these components. We therefore
adopted the guest OS kernel as the (sole) location in which
to implement our techniques.

GOAL 4. Diippel should induce little performance over-
head.
To be used in practice, Diippel must impose little perfor-
mance burden on the system. This may require Diippel to
operate in different modes during its lifecycle.

S. CLEANSING TIME-SHARED CACHES

Because attacks on time-shared caches must involve cache
PROBing via CPU preemption, the intuition behind Diippel
is that a guest VM (and the OS that runs on it) can protect
its own execution against side-channel attacks by adding
noise to these caches very frequently so that side-channel
readings by the attacker are confounded by noise added be-
tween PRIMES and PROBES.

5.1 Basic Design

Diippel employs periodic cache cleansing to mitigate side
channels in time-shared caches, e.g., L1 data/instruction
caches and unified, per-core L2 caches, if any. The principles
for addressing these caches could be used to address branch
predication caches, as well. The basic idea is illustrated in
Fig. 1. As described in Sec. 3.2, PRIME-PROBE protocols on
time-shared caches work as illustrated in Fig. 1(a): the at-
tacker periodically preempts the victim’s VCPU by gaming
the hypervisor scheduler and then PROBEs the cache, which
takes some time due to cache/memory access latency. Af-
ter the attacker relinquishes the physical CPU, the victim
VCPU is scheduled for a short period until the attacker pre-
empts it again.

Periodic cache cleansing, as illustrated in Fig. 1(b), works
by cleansing the time-shared cache (ideally) between the at-
tacker’s PROBEs. Specifically, cleansing involves Diippel it-
self PRIMing the cache in random order until all of the entries
have been evicted. The cache cleansing process is accom-
plished by an kernel thread that is periodically invoked by
Diippel.

Key to the success of this technique is a fine-grained reso-
lution timer in the guest OS kernel that can be periodically
triggered to execute cache cleansing. There are several pos-
sible timers that might be utilized for this purpose:

e Hardware Timers On x86 platforms, the hardware
timers include the programmable interval timer (PIT),
the local advanced programmable interrupt controller
timer (Local APIC), the high precision event timer
(HPET), and the advanced configuration and power
interface (ACPI) power management timer. Perfor-
mance monitoring units (PMU) can also be regarded
as a type of hardware timer, since they can be set
to trigger upon hardware events that occur with pre-
dictable rates. In modern IaaS clouds, e.g., Amazon
EC2 and Rackspace, most guest VMs run on paravirtu-
alized Xen platforms. However, in such settings, none
of the above hardware timers can be set to trigger by
a guest VM.
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(a) Attackers exploits time-shared caches by preempt-
ing victim VCPUs.
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(b) Periodic time-shared cache cleansing.

Figure 1: Attack and defense on time-shared caches

e Software Timers A software timer may be as com-
plex as a Linux high-resolution timer (hrtimer) or as
simple as a piece of code that busy loops and peri-
odically invokes the execution of the timer handling
code using interrupts. These interrupts can include
network I/O interrupts and inter-processor interrupts
(IPI), the latter of which was used by Zhang et al. [38].
In paravirtualized VMs, although IPIs are also virtual-
ized (as are I/O interrupts), they offer more stable and
shorter interrupt delays. The delay of an IPI timer can
be as low as 3us, while that of the hrtimer is usually
higher than 15 to 20us.

The timers used in Diippel are hrtimers and software timers
generated by IPIs. Periodic cache cleansing activities can
operate in two modes: sentinel mode and battle mode. The
sentinel mode is used when frequent cache cleansing is not
critical, and thus the interval between two cleansings can
be longer—as long as Diippel can detect abnormal activi-
ties and switch to battle mode quickly. The hrtimers are
employed in sentinel mode because it induces lower perfor-
mance overhead (conforming to GOAL 4). The much more
rapid IPI timers are used in the battle mode, where inter-
vals between cache cleansings are required to be as short as
possible and the performance overhead is less of a concern
when under active side-channel attacks.

5.2 Optimizations

We discuss in this section a few design optimizations that
reduce the performance impact of Diippel.

5.2.1 Limiting the Protection Scope

Diippel’s periodic cleansing of the .1 cache impacts the
performance of the victim’s application. As such, ideally
Diippel would be triggered only when necessary. Fortu-
nately, we can limit the scope of protection by allowing the
users of Diippel to define specific operations as sensitive so
that cache cleansing is triggered only when sensitive oper-
ations run. For instance, in a TLS-protected web server,
cryptographic routines in the OpenSSL library might be
considered sensitive operations. The goal is to automati-
cally enable Diippel when needed and disable Diippel when
sensitive operations finish.

Diippel implements this mechanism by exploiting CPU
page-level execution protections. Diippel first marks the
memory pages that contain the instructions of the sensi-

tive operations as non-executable. Thus every time these
instructions are executed, page faults trigger Diippel. Then
Diippel can disable the execution protection to prevent fur-
ther page faults and start the cache cleansing timer to trigger
cleansing each of the time-shared caches N times (Sec. 5.1).
At the end of the N-th cleansing, the execution protection
is re-enabled.

If N is very small, unfinished sensitive operations will
trigger the page fault again to initiate another N timer
interrupts, and the overhead of frequently changing page-
level protections can be huge. If N is too big, Diippel will
keep running after the sensitive operation ends. In our de-
sign, Diippel dynamically adjusts N with the following algo-
rithms: N changes value in the range of [Nmin, Nimaz], each
time by adding A. A may vary in the range of [Apmin, Amaz]
and [—Amaz, —Amin]. If the page fault takes place right af-
ter (i.e., no more than a threshold of L cycles) re-enabling
execution protection, A doubles if it was positive or becomes
Anin otherwise; if the page fault happens later than L, A
doubles in the negative direction or becomes —A iy,

Alternative Approaches. Instead of exploiting page ex-
ecution protection, another way to dynamically enable and
disable Diippel is to modify the user level application. For
example, to protect dynamically linked libraries, the most
convenient way is to modify the procedure linkage table en-
tries of the relevant processes so that every library call re-
lated to the protected library function will first go through
a wrapper function. Similarly it is possible to use preloaded
libraries to overwrite (to provide a wrapper for) the library
routines. In order to protect sensitive operations in the exe-
cutables, one either needs to instrument the functions in the
executables or insert breakpoints and use ptrace to inter-
cept SIGTRAP signals sent to the protected process. These
approaches, however, violate GOAL 3 and so are not adopted
by Diippel.

5.2.2  Skipping Unnecessary Cache Cleansings

We further optimize Diippel to skip unnecessary cache
cleansings. Before cleansing the L1 cache (and any other
time-shared caches), Diippel first determines if the VCPU
it is running on has been preempted since it last ran on the
VCPU. If preemption took place, it then determines if the
process interrupted by the current timer interrupt is related
to the sensitive operations to be protected. If both answers
are yes, Diippel will cleanse the cache; otherwise, it skips
the cache cleansing step.

A paravirtualized Xen guest VM can detect VCPU pre-
emption by exploiting shared data structures between the
guest and the hypervisor. In particular, Xen uses a shared
memory page that contains a value of the timestamp counter
to help the guest VM keep track of the system time. The
counter value is updated at every hypervisor context switch
if it is different from the version stored in the hypervisor,
which is only changed every one second. At the end of each
cache cleansing, Diippel modifies the shared counter value by
one, which compared to the 64-bit counter value is rather
small. (Greater changes may confuse the guest OS.) The
next context switch will force a change of the counter value,
and therefore will be detected by Diippel. One caveat is
that the guest can voluntarily relinquish the VCPU, as well,
which occurs when the VCPU is idle or at certain points
during VCPU setup. Diippel instruments the code locations
at which the guest VM kernel issues hypercalls to relinquish



the VCPU, to help distinguish voluntary context switches
and VCPU preemptions.

6. IMPLEMENTATION

We implemented Diippel as a kernel component (1.4K
lines of C code) in paravirtualized Linux that runs on Xen
guest virtual machines. Specifically, our prototype imple-
mentation modifies Linux kernel v2.6.32. It operates on
both Xen 4.0 hypervisors in our lab setting and Xen 3.0
hypervisors (as reported) in Amazon Web Services.

Architecture. We provided an entry in the /proc file sys-
tem which allows user-space tools to input user specified pa-
rameters to Diippel. These parameters include names of the
protected applications and libraries. (It is currently possible
to protect a subset or all of the libraries in one or multiple
processes.) Our implementation extends the memory region
management component of the Linux kernel to monitor the
creation, deletion and splitting of the memory regions re-
lated to the protected applications and libraries. A list of
pointers to these memory regions is maintained by Diip-
pel. This list is adjusted dynamically by Diippel with the
creation and termination of the protected processes. Read-
Copy-Update (RCU) synchronization mechanisms are used
to guarantee exclusive modifications and wait-free reads to
this data structure with very low overhead. All memory
pages belonging to the memory regions maintained in the
list are disallowed to be executed by modifying the corre-
sponding page table entries. This can be enforced by modify-
ing the default page protection flags of the memory regions,
which will be propagated to all newly mapped memory pages
due to on-demand paging [9]. Although the same memory
pages can also be mapped to other processes in the system,
they can be executed normally since they have separate page
tables.

We also instrumented the page fault handler so that every
page fault goes through an additional check: faults caused
by user-space execute accesses to pages that are already in
memory are passed to Diippel to further examine if the faults
take place in the protected memory regions. As such page
faults are otherwise rare, the performance overhead caused
by modifications to the critical page fault handling proce-
dure is minimal.

Workflow of Diippel. The main logic of Diippel works
as follows: Diippel traps the page faults caused by execut-
ing the protected memory regions, and it then enables the
page execution for all pages belonging to the list of mem-
ory regions. Then it initiates the periodic cache cleansing.
After N cleansings have been performed, Diippel stops and
enables page-execution protection in the page tables, indi-
cating the end of a protection epoch.

Additionally, a counter recording the times a VCPU is
preempted is maintained by Diippel to determine in which
mode it should operate cache cleansing, i.e., sentinel mode
or battle mode (Sec. 5.1). If the counter is greater than a
threshold—empirically determined as 10 in our evaluation
(see Sec. 7)—Diippel enters the battle mode; otherwise it
runs in sentinel mode. The counter is updated as an expo-
nential moving average (or EMA) of the number of VCPU
preemptions in the current and previous time epochs, with
A = 0.5 where )\ is a constant that determines the depth of
memory of the EMA [15] . Each time epoch is roughly 1ms
(rounded down to a number of CPU cycles that is a power

Try to grab TOKEN

Preempted
recently?
YE

S

Cleanse L1 caches

page level
protection

Try to send IPI to others
(release TOKEN)

Figure 2: A token-based IPI synchronization algo-
rithm.

of 2 for efficiency). Even if the attacker is aware of Diippel’s
parameters and refrains from preempting the victim (and so
PROBIng) less than 10 times per ms to cause Diippel to stay
in sentinel mode, the L1 caches will nevertheless be cleansed
at least 50 times per millisecond.

Cache cleansing modes and operations. When oper-
ated in sentinel mode, Diippel induces periodic timer inter-
rupts and then tries to detect preemption (see Sec. 5.2.2) on
all VCPUs. Once a preemption on a VCPU is detected, it
sends an IPI to launch the next timer on that VCPU. As
more preemptions are detected, Diippel enters battle mode,
in which it will send IPIs to all the other cores that are
available to process the IPI interrupts. The reason for send-
ing IPIs to all such VCPUs (vs. only one) is to avoid cases
where the VCPU being sent an IPI is not running (e.g.,
is preempted or out of credit to run), thereby causing the
cache-cleansing interrupts to pause.

We implemented a token-based VCPU synchronization al-
gorithm in Diippel (shown in Fig. 2) to avoid race condi-
tions. An atomic variable serves as the token and one or
more VCPUs simultaneously in the IPI context will try an
atomic exchange to grab the token. So, only one VCPU will
get it. After the cache cleansing job is done (or skipped),
the VCPU with the token will try to send IPIs to all other
VCPUs that have finished the last-round cache cleansing to
pass along the token. As such, releasing tokens may not al-
ways be successful. Failure in passing the token or detection
of another VCPU preemption at this point will force it to
go over the cache cleaning cycle again. If the preemption
counter goes below the threshold value, Diippel jumps back
to sentinel mode.

7. EVALUATION

7.1 Security Evaluation

In this section, we report the results of our security evalu-
ation of Diippel in a lab environment. Our lab testbed was
equipped with a single-socket quad-core Intel Core 2 Q9650
processor with an operating frequency of 3.0GHz. It had two
levels of caches: both L1 data and instruction caches were



8-way set-associative and 32KB in size; two 24-way 6MB
unified L2 caches, each served two CPU cores. All caches
had 64-byte cache lines. We ran a Xen 4.0 hypervisor on
the hardware; Dom0, the management domain in Xen, was
given a single VCPU.

To evaluate Diippel under attack, i.e., when it operates
with the presence of a side-channel attacker, we assigned
two VCPUs to the VM that ran Diippel, and two VCPUs
to a co-resident attacker VM. We facilitated the attack by
pinning the VCPUs to the physical cores so that one attacker
VCPU and one Diippel VCPU shared the same L1 caches.
Diippel was configured to cleanse both the L1 data cache
and the L1 instruction cache.

7.1.1 Attacking a “Dummy” Victim

Victim. The “dummy” victim application in these exper-
iments had two “dummy” functions composed of “nop” in-
structions. The instructions in each of them were mapped
to different regions in the L1 instruction cache, occupying
all cache lines in several cache sets. The victim application
executed in a loop, alternating between these two functions.
As such, the victim had distinguishable access patterns in
the L1 instruction cache—all cache sets associated with the
two functions were thoroughly evicted while other cache sets
were almost entirely untouched.

Attacker. We leveraged the side-channel attack code of
Zhang et al. [38], which exploits IPIs to periodically pre-
empt the victim VCPU and PRIME-PROBE the L1 instruc-
tion cache to collect timing results from each cache set. The
two VCPUs in the attacker’s VM have different roles: the
IPI VCPU keeps looping and periodically sends IPIs to the
attacker VCPU. The attacker VCPU is otherwise idle and
only executes cache PROBing functions when triggered by re-
ceiving IPIs. The interval between two consecutive IPIs sent
to the attacker VCPU is determined by the attacker, and is
varied in our experiments as a tuned parameter. Each cache
PROBIng takes about 42000 CPU cycles (roughly 14us), and
one hypervisor context switch takes about 600 cycles. The
IPI intervals, therefore, are the desired PRIME-PROBE inter-
vals plus the time required for PROBing and context switches.
Longer IPI intervals will give more chances to the victim to
run, but multiple functions may run in the same PRIME-
PROBE interval, leaving the cache too noisy to interpret.
Shorter IPI intervals may cause more than one IPI to be
delivered at the same time, making the PRIME-PROBE pro-
tocol fail. The range for the attacker’s IPI interval that we
evaluated was from 50000 CPU cycles to 90000 cycles.

Effectiveness of cache cleansing. Our first attempt in
evaluating the effectiveness of Diippel’s cache cleansing was
to measure the fraction of cache lines not evicted by Diippel
prior to the attacker PROBing the cache. Information leaks
can happen either when Diippel is not run between the at-
tacker’s PRIME and PROBE, or when Diippel is run but it
does not have enough time to cleanse the entire cache be-
fore being preempted by the attacker. The results of our
tests are shown in Fig. 3(a). From the graph, we can see
that when the attacker chooses a long IPI interval (>70000
cycles) or a short IPI interval (<65000 cycles), the potential
information leak is minimal.

When the attacker’s IPI interval is short (<65000 cycles),
contention may result in IPIs issued by Diippel being sig-
nificantly delayed or even “starved” by the attacker. How-

0.3
0.25

e
&)

fraction of cache
(=1
= o

o
o @
n

009, %000y 7000y 8000y %000y
attacker’s IPI intervals (cycles)

(a) Average fraction of cache potentially occupied by
victim application data upon preemption

1 * * *

fraction of prime-probe trials
=1
wn

50000 60000 70000 8()000 90000
attacker’s IPI intervals (cycles)

(b) IPI intervals during which the victim application
executed at all

Figure 3: Cache cleansing effectiveness under differ-
ent attacker IPI intervals.

ever, recall that Diippel is designed to repeatedly cleanse
the cache if it detects preemption; so even with less frequent
IPI interrupts, Diippel will still consume most of the CPU
time in cache cleansing to make sure the victim secret is
not leaked through side channels. With longer IPI intervals
(>70000 cycles), the IPIs issued by Diippel will be delivered
on time and Diippel is able to finish the cache cleansing with-
out being preempted, thus allowing the victim to run nor-
mally while being protected. However, when the IPI inter-
val is between 65000 and 70000 cycles, Diippel only gets to
cleanse a fraction of the cache before being preempted. This
is the worst-case scenario for Diippel’s protection scheme.
Fig. 3(b) also helps illustrate this phenomenon. The y-axis
in this figure is the fraction of attacker’s PRIME-PROBE trials
in which the victim application ran at all.

In the worst case, when the attacker’s IPI interval is 66000
CPU cycles, about 25% of the cache lines are not evicted by
Diippel but might contain victim application data. This
provides the opportunity for some information leakage to
the attacker, but the risk is far less than in the absence
of Diippel. Fig. 4 shows the attacker’s cache readings from
the PRIME-PROBE trials in this case. Each column in the
heatmap represents the cache set indicated on the x-axis; the
y-axis is the index of PRIME-PROBE readings. In Fig. 4(a) we
can see that without Diippel, the attacker can easily observe
the cache pattern (the alternating cache usage on the left)
of the victim application. In contrast, even with 25% of the
cache lines possibly containing victim application data not
evicted by Diippel, as shown in Fig. 4(b), the victim’s cache
patterns are substantially obfuscated.

More quantitatively, in this worst-case scenario we mea-
sured the difference, for each cache set, of the average PROBE
results (averaged over 100000 PRIME-PROBE trials) for that
cache set when one dummy function ran versus the aver-
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Figure 4: Attacker’s view of L1 instruction cache
timings. The x-axis represents the cache sets; the
y-axis represents the attacker’s prime-probe trials.
The darker the cell in the heatmap, the longer it
takes the attacker to probe the cache.

age for that cache set when the other dummy function did.
Without Diippel enabled, this difference-per-cache-set, av-
eraged over all cache sets, was 32.7 cycles with a standard
deviation of 13.2 cycles. However, cache sets to which one or
the other dummy function mapped clearly divulged which
dummy function had executed, exhibiting a difference-per-
cache-set up to 190 CPU cycles — almost 12 standard de-
viations above the mean. (By comparison, the maximum
difference-per-cache-set among cache sets not associated with
either dummy function was only 22 cycles.) With Diippel
enabled, the difference-per-cache-set, averaged over all cache
sets, was 3.3 cycles with a standard deviation of 2.1 cycles.
Among those cache sets to which either dummy function
mapped, the maximum difference-per-cache-set dropped to 8
cycles, which is less than three standard deviations above the
mean and, moreover, even less than the maximum difference-
per-cache-set among cache sets not associated with either
dummy function (which stayed basically unchanged from the
Diippel-disabled case). In this respect, Diippel brought the
timings of the cache sets occupied by the dummy functions
largely “in line” with the timings of other cache sets.

7.1.2  Case Study: Square and Multiply

As a case study, we examined the victim application at-
tacked by Zhang et al. [38], namely the modular exponentia-
tion implementation in the 1ibgcrypt v.1.5.0 cryptographic
library, which uses a textbook square-and-multiply algo-
rithm. In this attack, the goal of the attacker was to ex-
tract a secret exponent used in this routine by PROBing the
L1 instruction cache to infer the sequence of squares and
multiplies executed. Here we focus on the accuracy of the
first stage of the Zhang et al. attack, which involves classi-
fication of PRIME-PROBE timing vectors using a three-class
support vector machine (SVM) — one class for “square”, one
for “multiply”, and one for “other”. While subsequent stages
of the attack pipeline can filter out a small rate of misclas-
sifications, a reasonably accuracy of the SVM classifications
is necessary for the attack to work.

Classification

Square Multiply Other
Square [ 1740 (0.84) 43 (0.02) 298 (0.14)
& Multiply | 14 (0.01) 2213 (0.94) 123 (0.05)
Other | 272 (0.05) 225 (0.04) 5072 (0.91)
(a) w/o Diippel
Classification
Square Multiply Other
Square [ 26 (0.01) 699 (0.39) 1055 (0.59)
OQ“ Multiply 26 (0.01) 938 (0.48) 987 (0.51)
Other 86 (0.01) 3367 (0.54) 2816 (0.45)

(b) w/ Diippel

Figure 5: Confusion matrix of SVM classification in
tests in Sec. 7.1.2.

Training the SVM was performed using the same approach
as taken in the Zhang et al. work. In particular, to collect
data for training, the “victim” repeatedly performed modu-
lar exponentiations, while informing the data collector via
shared memory when it begins or ends a square or multiply.
In this way, the data collector could associate its PROBE re-
sults of the L1 instruction cache with the ground-truth op-
eration that was being performed when the PROBE was per-
formed. Like Zhang et al. [38] we used a linear kernel in the
SVM classifier. In each experiment, the SVM was trained
with the labeled 90000 PRIME-PROBE results and then tested
on an additional 10000 PRIME-PROBE results.

Fig. 5 shows the confusion matrix that resulted from an
experiment in which both training and testing were con-
ducted with Diippel disabled (Fig. 5(a)) and one in which
both training and testing were conducted with Diippel en-
abled (Fig. 5(b)). With Diippel disabled, the SVM classifies
the testing PROBE results with accuracy over 90%, which
is well enough in our experience to enable the subsequent
stages of the Zhang et al. attack. When Diippel is enabled,
however, the SVM classification fails badly with an accu-
racy of only about 38%. In our experience, continuing the
Zhang et al. attack from this point would be extremely dif-
ficult. This is, of course, not a proof that no exploitable
side-channel still exists, and it is conceivable that a persis-
tent and adaptive attacker could still make progress; how-
ever, we believe that Diippel should substantially increase
the complexity of doing so.

7.2 Performance Evaluation

We conducted the performance evaluation of Diippel pri-
marily in a public cloud environment, Amazon Web Services.
The specification of processors in the Amazon EC2 cloud en-
vironment was not of our own choice. But through cpuid
instructions, we determined that the platform was equipped
with two 2.4GHz Intel Xeon E5645 processors, each of which
had six cores per package with hyper-threading supported
but disabled. Its L1 data caches were 32KB, 8-way set-
associative; L1 instruction caches were also 32KB but with
only 4 ways. One 8-way unified L2 cache was dedicated to
each core, with 256KB capacity. Additionally, it had one
12MB 16-way L3 cache per CPU package. All caches had
64-byte cache lines. The shared info pages [10, Ch. 3| re-
ported the Xen version to be xen-3.0-x86_64. The number
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Figure 6: Diippel’s overheads for file download la-
tency with different file sizes. Labels on top of the
bars represent the baseline latency (without Diip-
pel) in ms.

of Dom0 VCPUs was unknown. As in the lab settings, we
implemented Diippel in Linux kernel v2.6.32 in the cloud.
Diippel was configured to protect the L1 caches and the
unified L2 cache.

7.2.1 Securing TLS Libraries

In the following experiments we evaluate the performance
overhead of Diippel when protecting apache2 processes and
the OpenSSL library (libcrypto.so) to which they were
linked. We are particularly interested in preventing side
channel attacks against the cryptographic operations pro-
vided by libcrypto.so during the Transport Layer Secu-
rity (TLS) protocol used in https connections. We ran an
apache 2.2.24 web server with libcrypto.so version 1.0.0.
We ran the web server in one VM in the EC2 cloud and ran
the client in another VM in the same availability zone in
order to minimize network latency.

File download latency Fig. 6 shows results of an exper-
iment to test the impact of Diippel on file download la-
tency. We ran apache bench on the client and requested
static pages with varying file sizes. The results reported are
average values of 10000 requests for each file size. These ex-
periments show that the impact of Diippel on file download
latency was less than 4% in the worst case.

File download throughput Fig. 7 shows the file down-
load throughput degradation induced by Diippel in our web
server experiments. In these experiments, we used another
web server performance measurement tool, httperf [22], to
produce the largest rate of requests for a 177-byte file (the
default index.html file installed with apache2) for which
the server could keep up. In order to saturate a server
with 2 VCPUs, the requests were sent from 2 clients running
httperf from distinct machines in the same availability zone
in AWS; for the 4-VCPU server, 4 clients were employed in
the test. Only one request was issued per connection and the
SSL sessions were not reused. The timeout value for which
httperf waited for the server’s response was set to 1s. We
confirmed by running the top utility that at its saturation
point the server was CPU-bound; the throughput and server
CPU usage both reached their limits simultaneously. Thus
the throughput degradation was actually caused by Diip-
pel rather than other factors. As this figure illustrates, the
maximum throughput of the 2-VCPU server dropped from
267.1 replies per second to 258 replies per second, yielding a
degradation of 3.4%. In the 4-VCPU case, the server’s max-
imum throughput dropped only 1.4%, decaying from 545.3
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Figure 8: Runtime overhead of Diippel for different
applications. Labels on top of the bars represent the
baseline runtime (without Diippel) in seconds.

replies per second to 537.7 replies per second. In all cases,
the throughput overheads induced by Diippel were modest.

Local experiments We repeated the above file download
latency and throughput experiments in a more controlled en-
vironment in our lab. In these tests, the clients and server
were connected through a 1Gb/s LAN. The qualitative re-
sults shown in Fig. 6 and Fig. 7 persisted in our local tests,
e.g., with an induced latency degradation by Diippel of at
most 3% and a throughput degradation of at most 2.1%.

7.2.2  Securing Other Applications

We also evaluated Diippel in protecting other applications.
We first picked three applications, blackscholes, canneal
and dedup, from the PARSEC benchmarks [7, 8] to simu-
late different types of applications. blackscholes simulates
financial analysis and, in particular, calculates the prices of
a portfolio of options using Black Scholes partial differential
equations. canneal uses cache-aware simulated annealing
to design chips that minimize routing costs. dedup is short
for “deduplication,” which is a compression approach that
combines global and local compression in order to obtain a
high compression ratio. We selected these benchmark appli-
cations to represent CPU-bound applications with different
amounts of memory and cache usage. The inputs to these
benchmarks were native (see [8]) and the number of threads
was the same as the number of VCPUs in the VM. We spec-
ified the entire executables to be sensitive, and so Diippel
was always enabled while the programs were running.

In addition, we selected three applications that involve
cryptographic operations, which are more likely to be of in-
terest to attackers: GnuPG, encfs, and scp. GnuPG is part
of the GNU project and implements the OpenPGP stan-
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Figure 9: Victim VCPU preemptions per ms (expo-
nential moving average) induced by co-located ap-
plication in lab.

dard. We evaluated the time for it to decrypt a 1GB file en-
crypted using ElGamal encryption, with Diippel specified to
protect libgcrypt.so. encfs is an encrypted filesystem in
userspace. By encrypting a 1GB file, we evaluated the run-
time of its file-encryption procedure with Diippel protecting
its libcrypto.so library. scp is a network data transfer
protocol built on top of secure shell (ssh). We transferred a
1GB file using scp to evaluate the latency overhead due to
Diippel, again configured to protect libcrypto.so. All ex-
periments above were run 10 times (except for dedup which
was run 30 times due to large variance) on a 2-VCPU server
in the AWS cloud. The average runtime degradations are
shown in Fig. 8. As can be seen there, Diippel induced less
than 7% performance overhead in all cases.

7.2.3  Sentinel/Battle Mode Switching

As described in Sec. 5.1 and Sec. 6, a switch from sentinel
mode to battle mode occurs whenever the moving average of
the number of VCPU preemptions per millisecond exceeds
an empirically determined, fixed threshold of 10 in our pro-
totype. We developed a set of experiments to examine if
this threshold will trigger spurious mode switches when co-
located with regular, benign applications. In particular, we
employed techniques similar to that described in Sec. 5.2.2
to detect VCPU preemptions. Instead of trying to detect
a VCPU preemption during each timer interrupt, we tested
VCPU preemptions in a loop so that every preemption was
captured. We first ran experiments in our local testbed in
which an application running on another VM (with only one
VCPU) was pinned to share a core with the VM in which
we counted preemptions. As such, the number of VCPU
preemptions caused by the benchmark application on the
shared CPU core was counted. Fig. 9 illustrates the boxplot
of the number of VCPU preemptions per millisecond (ex-
ponential moving average), where each box shows the first,
second and third quartiles, each whisker extends to cover
points within 1.5x the interquartile range, and outliers are
marked with plus signs (“+7). As shown, these benchmark
applications rarely caused the exponential moving average of
VCPU preemptions to exceed the threshold of 10; e.g., the
apache2 web server induced a false alarm rate of 3% and
all other benchmarks induced no false alarms. It is worth
noting that in this test the apache2 web server had been
saturated already.
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Figure 10: Performance overhead (averaged over
five runs) when under prime-probe attacks on L1
instruction caches, w/ and w/o Diippel.

We also ran experiments in the Amazon EC2 cloud, specif-
ically on four distinct instance types (“ml medium”, “ml

large”, “m1 xlarge” and “cl large”) in each of three different

availability zones in the US East region (“us-east-la”, “us-
east-1¢” and “us-east-1d”). The experiments were conducted
from 8:00am Aug 10, 2013 to 8:00am Aug 11, 2013. Since
we had no knowledge of the applications co-located with our
VMs in the cloud, we assumed that the co-resident VMs and
their applications were “benign” in terms of side channels.
In these tests, the mazrimum false alarm rate witnessed on
any of these machines was 8.22 x 1075,

7.2.4  Performance Overhead When Being Attacked

Cache-based side-channel attacks, especially on the L1
cache, are essentially also performance degradation attacks.
Moreover, Diippel will further degrade the whole system’s
performance when being attacked. In Fig. 10 we show the
results of our lab evaluation of the runtime overhead on
blackscholes, canneal and dedup benchmarks under side-
channel attacks on the L1 instruction caches, with and with-
out Diippel. The victim was pinned to run only on the core
being attacked for these tests. As can be seen in the figure,
the attacker alone degraded the victim’s performance by up
to two orders of magnitude, and Diippel only compounded
that cost. Suffering such a denial-of-service may be prefer-
able to succumbing to side-channel attacks. Moreover, since
VCPUs are usually not pinned in real clouds, the duration
of such a denial-of-service can be expected to be short.

8. DISCUSSION
8.1 Extensions of Diippel

Extension to other cache side channels. In principle,
Diippel can defend against side-channel attacks on other
types of time-shared caches, as well. For instance, the BTB
and TLB can be cleansed together with L1 caches. However,
BTB attacks were only demonstrated in non-virtualized sys-
tems, while cross-VM attacks on TLBs are unlikely because
TLBs are flushed on context switch.

Extension to other clouds. Diippel can be implemented
in the guest OS for cloud platforms other than Amazon, as
well, as long as the virtualization substrate supports paravir-
tualized Xen guests and customized OS kernels. We expect
Diippel to also work on Rackspace and GoGrid, for example.



Extension to kernel routines. Diippel can be extended
to protect sensitive operations in the guest OS kernel, as
well. The difficulty, however, is that the Linux kernel is
monolithic, and so the code and data memory sections of
kernel routines are not cleanly separated from the rest of the
kernel. Diippel will have to look for all memory pages that
contain kernel routines and mark them as non-executable.

8.2 Limitations

SMT-enabled cloud platforms. When SMT is enabled
on processors, some time-shared caches can become simul-
taneously shared caches (e.g., L1 caches). Diippel may not
be effective in this case. However, from our previous expe-
rience [38], as well as prior documented evidence [27, 25],
SMT-enabled CPUs are more vulnerable to side-channel at-
tacks. Moreover, as clouds often charge by CPU comput-
ing units, with SMT-enabled cores the estimated computing
units per VM would become unreliable if more than one
VCPU shared the same CPU core at the same time. There-
fore, we anticipate that cloud providers will not enable SMT
in production clouds for both security and accounting con-
siderations.

The simultaneously shared caches. A simultaneously
shared cache, e.g., the last level cache, might also be tar-
geted by side-channel attacks. Again, Diippel does not ad-
dress this possibility. Compared with time-shared caches,
PROBing simultaneously shared caches can be done with-
out VCPU preemption and with frequencies limited only
by the cache and memory access latencies and the sizes
of the caches utilized. Although fine-grained cache obser-
vations are possible in such situations, the challenges that
attackers face to extract sensitive information may be pro-
hibitive. The first challenge stems from the fact that most
LLCs are physically indexed. As such, attackers must have
prior knowledge of the physical addresses of the memory
regions of the victim application [23], which is usually allo-
cated dynamically and may vary each time it is run. Second,
exploiting last level caches when the victim and attacker
run on different cores can be sensitive to cache coherence
properties. For example, PROBing on an LLC in an exclu-
sive caching hierarchy (as compared with inclusive caches)
will not invalidate contents in the lower-level caches of an-
other core. As such, the victim’s activity may be hidden in
lower level caches and never leaked to the last level cache
at all. Moreover, to our knowledge, last level caches in the
processors used in cloud platforms usually serve more than
two cores; in this case, side-channel observations are subject
to more background noise from cores that are not running
the victim application. We believe for these reasons, side-
channel attacks in simultaneously shared caches in virtual-
ized SMP environments have been limited so far to extract-
ing only coarse information [29] or have needed to leverage
additional hypervisor features (e.g., sharing memory pages
between the victim and attacker VMs [36]).

9. CONCLUSION

In this paper, we presented Diippel, a system to mit-
igate cache side channels in public clouds by retrofitting
commodity operating systems. Diippel cleanses time-shared
caches (e.g., per-core L1 and L2 caches) to confound side
channels through them. We detailed our implementation of
Diippel in Linux for paravirtualized Xen, demonstrated the

security effectiveness of our prototype in tests on lab ma-
chines, and evaluated the performance impact of our proto-
type on a public cloud. To our knowledge, Diippel is the first
general and efficient technique to enable tenants to defend
themselves from cache-based side-channel attacks in public
clouds, without help from the hypervisor or cloud operator.
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