
Engraft: Enclave-guarded Raft on Byzantine Faulty Nodes
Weili Wang∗†

12032870@mail.sustech.edu.cn
Southern University of Science and

Technology

Sen Deng∗†
12032873@mail.sustech.edu.cn

Southern University of Science and
Technology

Jianyu Niu†
niujy@sustech.edu.cn

Southern University of Science and
Technology

Michael K. Reiter
michael.reiter@duke.edu

Duke University

Yinqian Zhang†‡
yinqianz@acm.org

Southern University of Science and
Technology

ABSTRACT

This paper presents the first critical analysis of building highly
secure, performant, and confidential Byzantine fault-tolerant (BFT)
consensus by integrating off-the-shelf crash fault-tolerant (CFT)
protocols with trusted execution environments (TEEs). TEEs, like
Intel SGX, are CPU extensions that offer applications a secure exe-
cution environment with strong integrity and confidentiality guar-
antees, by leveraging techniques like hardware-assisted isolation,
memory encryption, and remote attestation. It has been specu-
lated that when implementing a CFT protocol inside Intel SGX,
one would achieve security properties similar to BFT. However,
we show in this work that simply combining CFT with SGX does
not directly yield a secure BFT protocol, given the wide range of
attack vectors on SGX. We systematically study the fallacies in such
a strawman design by performing model checking, and propose
solutions to enforce safety and liveness. We also present Engraft,
a secure enclave-guarded Raft implementation that, firstly, achieves
consensus on a cluster of 2𝑓 + 1 machines tolerating up to 𝑓 nodes
exhibiting Byzantine-fault behavior (but well-behaved enclaves);
secondly, offers a new abstraction of confidential consensus for
privacy-preserving state machine replication; and finally, allows
the reuse of a production-quality Raft implementation, BRaft, in
the development of a highly performant BFT system.

CCS CONCEPTS

• Security and privacy → Distributed systems security; For-
mal security models.

KEYWORDS

fault tolerance; model checking; trsuted execution environments

∗Equal contribution.
†Affiliated with the Research Institute of Trustworthy Autonomous Systems and the
Department of Computer Science and Engineering.
‡Corresponding author.

This work is licensed under a Creative Commons Attribution
International 4.0 License.

CCS ’22, November 7–11, 2022, Los Angeles, CA, USA
© 2022 Copyright held by the owner/author(s).
ACM ISBN 978-1-4503-9450-5/22/11.
https://doi.org/10.1145/3548606.3560639

ACM Reference Format:

Weili Wang, Sen Deng, Jianyu Niu, Michael K. Reiter, and Yinqian Zhang.
2022. Engraft: Enclave-guarded Raft on Byzantine Faulty Nodes. In Proceed-
ings of the 2022 ACM SIGSAC Conference on Computer and Communications
Security (CCS ’22), November 7–11, 2022, Los Angeles, CA, USA. ACM, New
York, NY, USA, 15 pages. https://doi.org/10.1145/3548606.3560639

1 INTRODUCTION

Consensus algorithms have been employed in modern production
systems to increase their reliability and availability, by replicating
data and computation across a group of computers. Sophisticated
protocols must be implemented to ensure the group collectively
behaves as if it is a single machine, internally reaching agreement
on the computation state. Consensus algorithms are also seen in de-
centralized computing systems such as permissioned blockchains,
which employ a group of machines to distribute trust among multi-
ple mutually distrusting entities.

A classic abstraction of such distributed systems is state ma-
chine replication [55], where data and computation are replicated
among multiple machines and transitions among states are coor-
dinated such that non-faulty machines maintain consistent copies
of the state machine. Crash fault-tolerant (CFT) coordination pro-
tocols ensure such consistency despite failures including machine
crashes, network faults, and network partitions, while Byzantine
fault-tolerant (BFT) protocols additionally overcome a limited num-
ber of malicious replica compromises, operator mistakes, and soft-
ware errors. As such, BFT protocols usually have more compli-
cated communication patterns and worse performance. BFT proto-
cols (e.g., PBFT [20]) can tolerate up to 𝑓 faulty machines among
3𝑓 + 1 machines, whereas most CFT protocols (e.g., Paxos [38] and
Raft [48]) tolerate up to 𝑓 faulty machines out of 2𝑓 + 1 machines.

The emergence of commercial hardware support for trusted
execution environments (TEEs) or “enclaves” (e.g., SGX), which
isolate software and data from compromises and mistakes on the
host platforms, suggests an alternative design point beyond these
CFT and BFT options. In brief, by executing a CFT protocol within
enclaves, one might achieve a combination of properties: assured
safety (consistency) despite Byzantine faults in the platforms host-
ing the enclaves—but not within the enclaves—and assured liveness
(progress) and performance provided that at least a majority of
enclaves remain functional and are permitted unfettered communi-
cation with one another. Indeed, this alternative has been leveraged
in a number of efforts (e.g., [11, 15, 29, 54]), implicitly assuming that
this combination provides the safety, liveness, and performance

https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://doi.org/10.1145/3548606.3560639
https://doi.org/10.1145/3548606.3560639

CCS ’22, November 7–11, 2022, Los Angeles, CA, USA Weili Wang, Sen Deng, Jianyu Niu, Michael K. Reiter, and Yinqian Zhang

properties mentioned above. For instance, Signal integrates Raft
into SGX for secure value recovery [11], TEEKAP [29] leverages
in-enclave Raft and threshold secret sharing to build self-expiring
data objects, and CCF [54] ports Raft into SGX for permissioned
confidential blockchains.

In this paper, we question this basic premise and perform the
first critical evaluation of the conditions under which CFT and
TEEs together provide the promises outlined above. By leveraging
automated model-checking tools, TLC [70], we identify the assump-
tions made in a popular and widely used CFT design, Raft [48], to
achieve safety and liveness on crash-faulty machines and reveal
incongruities between these assumptions and the assurances that
SGX provides on Byzantine faulty nodes. First, SGX’s lack of state
continuity opens the door to rollback attacks, which are fatal for
CFT protocols depending on persistent storage (e.g., Raft) since
they assume persistent data is always fresh, which is true in CFT.
Second, the timeout-driven leader election mechanism in Raft can
be manipulated by an adversary with system privileges, which leads
to compromises of livenss.

We hence propose mitigations to close these gaps, thereby plac-
ing this conventional wisdom about “CFT+TEEs” on a more solid
footing. For instance, to preserve state continuity of Raft nodes and
prevent rollback attacks, we propose tiks, a distributed in-memory
key-value storage inside SGX enclaves for storing Raft meta data.
Compared to alternative solutions, such as hardware monotonic
counters [13, 59] and ROTE [45], tiks is the only practical solution
in cloud settings that offers both state continuity and recoverability.

Informed by this experience, we then report our design and
implementation of Engraft, a secure ENclave-Guarded Raft imple-
mentation that reuses a production-quality Raft implementation,
BRaft [1], in the development of a highly performant BFT system.
Engraft achieves consensus on a cluster of 2𝑓 + 1 machines toler-
ating up to 𝑓 nodes exhibiting Byzantine-fault behavior.

We provide a prototype implementation of Engraftwith 3kLoC
C++ code atop the BRaft code base. We evaluate Engraft with
Intel SGX in both LAN and WAN settings using virtual machines in
three geo-distributed data centers hosted in a public cloud. We com-
pare the performance of Engraft with both BRaft and Chained-
Damysus [25], a recent BFT system that leverages SGX to improve
resilience (but not confidentiality). The results show that Engraft
achieves comparable performance. The source code for Engraft is
released in [4].

To summarize, our contributions are as follows:
• We present a systematic analysis of the safety and liveness issues
behind the idea of combining CFT protocols and TEEs to achieve
highly performant and confidential BFT consensus.
• We leverage model checking to assist automated identification
of safety and liveness violations caused by threats specific to SGX.
Our work provides the first example of the modeling and checking
of these properties under such a threat model.
• We propose tiks, a distributed in-memory key-value storage for
rollback prevention. Compared to alternative solutions, it offers
both state continuity and recoverability.
• We implement and evaluate Engraft, a system that reuses a
production-quality Raft implementation to achieve consensus on
a cluster of 2𝑓 + 1 nodes tolerating up to 𝑓 Byzantine faulty nodes.

2 BACKGROUND

2.1 Consensus Algorithms

2.1.1 Crash fault tolerance (CFT). A machine suffers a crash fault
if it halts execution prematurely. The seminal work by Lamport
[38, 39], referred to as Paxos, has served as a general solution to
crash fault tolerance. However, Paxos is difficult to understand and
to implement correctly in practice. To overcome this, Ongaro and
Ousterhout proposed Raft [48], a CFT algorithm that is easy to
understand and has been implemented in many practical systems
such as distributed databases [14].

As a representative CFT protocol, Raft consensus can support
a cluster of 2𝑓 + 1 machines with at most 𝑓 faulty machines. In
Raft, a node may stay in one of the three states, follower, candidate
and leader. Raft nodes use two basic RPCs, i.e., AppendEntries and
RequestVote tomaintain the consistency of a persistent log storage,
and every log entry records its term, its index, and a command to
be applied on the state machine. The term and log index serve as
logical clocks in the Raft protocol.

Raft log replication. In a normal case, there is one leader in the
cluster interacting with clients and multiple followers replicating
the log. Upon receiving a client request, the leader generates an
uncommitted log, replicates it by sending an AppendEntries RPC
to the followers, marks it as committed after receiving responses
from the majority of the followers, applies it to the state machine,
and finally replies to the client.

Raft leader election. To recover from leader crashes, followers
set up election timers and become candidates once timers expire. As
such, the leader needs to send heartbeat signals (by issuing Appen-
dEntries RPCs with empty log entries) to followers periodically to
legitimate its leadership (by resetting followers’ election timer). In
the leader election, a candidate firstly increases its term, votes for
itself, and then requests votes from other followers. A follower will
vote for a candidate if and only if the following conditions hold: (1)
The follower has not voted for any other candidates of the same
term. (2) The candidate’s term and index of the last log must be as
new as the follower.

The above constraints ensure that at any term, only one candi-
date can receive votes from the majority and become the leader.
If a candidate fails to collect votes, it will repeat the above proce-
dure (increase term and request votes) indefinitely until it succeeds,
discovers the leader at the current term, or observes a higher term.

To recover from the crash, Raft persists internal states and then
recovers from them. Specifically, the current term of a state machine,
vote information (whom it voted for), and replicated logs are stored
on the disk.

2.1.2 Byzantine fault tolerance (BFT). Lamport et al. [41] first pro-
posed the Byzantine generals problem, in which a group of ma-
chines has to reach agreement of the same output in the presence
of malicious attacks, operator mistakes, and software errors. Com-
pared with CFT protocols, BFT protocols usually have more compli-
cated communication mechanisms and worse performance because
of dealing with arbitrary faults. BFT protocols can tolerate up to 𝑓

faulty machines among 3𝑓 + 1machines (instead of 2𝑓 + 1machines
in CFT protocols).

Engraft: Enclave-guarded Raft on Byzantine Faulty Nodes CCS ’22, November 7–11, 2022, Los Angeles, CA, USA

2.2 Software Guard Extension

Intel Software Guard eXtensions (SGX) [30] is the most prevalent
TEE realization, intending to provide shielded execution environ-
ments, i.e., enclaves, for programs. In summary, SGX offers the
following security guarantees.

Isolation. SGX programs can be divided into trusted and untrusted
components. ECALL interfaces are called from the host to enter the
enclave, while OCALL interfaces are called inside the enclave to
request untrusted services like system calls.

Sealing. SGX supports sealing, a procedure using the sealing key
to encrypt in-enclave data and storing it in the external storage.
With an optional strict key derivation policy, the sealing key is only
accessible to the enclave creating it.

Attestation. SGX provides both local and remote attestation to
facilitate the identification of enclaves. The local attestation is con-
ducted to verify whether the counterpart is running inside the
enclave on the same platform, while the remote attestation is used
to tell whether the remote party is shielded by legitimate enclaves
with expected properties (e.g., updated microcode and specified
enclave identity).

2.3 Model Checking

Model checking [46] is a technique that can model a system and
determine whether the system satisfies given security properties.
The input of the model checker is usually a specification of the
system and some expected properties. The model checker can verify
whether the properties are met or not. If not, it reports a specific
counterexample: an execution-trace that violates the property.

TLA+. TLA+ is a high-level formal specification language devel-
oped by Lamport [40] for modeling and validating programs and
systems, especially for concurrent and distributed ones based on
TLA (Temporal Logic of Actions) [37]. TLA+ provides a uniform
mathematical language to model the systems or properties.
• Variables and Constants: Users can specify multiple variables
when modeling system states, which will change as the state
changes. By contrast, constants remain the same in all states.
• States, Steps, Behaviors: The set of specified variables constitutes
the state. A pair of successive states form a step, and a continuous
sequence of states forms a behavior.
• Specification: The specification of a system describes the state
transition over time. A canonical form of a TLA+ specification is:

𝑆𝑝𝑒𝑐 ≜ 𝐼𝑛𝑖𝑡 ∧ □[𝑁𝑒𝑥𝑡]𝑣𝑎𝑟𝑠 ,

where 𝑖𝑛𝑖𝑡 is the initial state, 𝑣𝑎𝑟𝑠 is a tuple of variables, and 𝑛𝑒𝑥𝑡
is an action. 𝑆𝑝𝑒𝑐 denotes the entire state space of the system that
one wants to check. Starting from the initial state, one action at
a time is elected to transfer the system state to another until the
entire state space is traversed.

TLC. TLC is an explicit-state model checker implemented by Yu, et
al. [70] to check both safety and liveness properties of TLA+ speci-
fications. TLC can perform two basic modes: simulation and model
checking. The simulation mode begins with a random initial state
and then repeatedly chooses a next state to a depth specified by

the user, while the model-checking mode tries to check all pos-
sible behaviors and build the graph of all reachable states using
breadth-first search.

3 OVERVIEW

3.1 Problem Statement

In this paper, we investigate the security properties of a CFT pro-
tocol (i.e., Raft) running inside trusted execution environments
(i.e., Intel SGX). Intuitively, by combining the integrity guarantees
provided by SGX and the crash tolerance provided by CFT, one
would easily achieve consensus even with Byzantine behaviors. For
instance, Avocado [15] explicitly claims that “We design a secure
replication protocol, which builds on top of any high-performance
non-Byzantine protocol–our key insight is to leverage TEEs to preserve
the integrity of protocol execution, which allows to model Byzantine
behavior as a normal crash fault.” Similar assumptions have been
made in some other studies [11, 29, 54].

However, this seemingly correct statement might not withstand
scrutiny, since it has been shown that SGX is vulnerable to various
attacks (including state replay attacks [45]). Therefore, it is expected
that a CFT implementation inside SGX enclaves is also susceptible
to these threats; yet it is unclear to what extent is such a strawman
design vulnerable and, if so, how to fix these issues. Therefore, the
research goals of this paper are twofold.

Security analysis: Given the threat model of Intel SGX, we will
investigate whether a vanilla Raft implementation inside SGX en-
claves could achieve safety and liveness properties. The answer
will bring forth the following new insights into the development of
TEE-assisted distributed systems.
• We explore the security impacts of SGX-related threats on dis-
tributed protocols. To the best of our knowledge, such investiga-
tion has never been performed in prior studies.
• We leverage formal methods (e.g., model checking) to assist the
automated identification of safety and liveness issues caused by
these SGX-related threats. It is yet unclear how such threats can
be modeled and checked with model checking tools.
• We design new solutions to mitigate SGX-related threats in the
distributed settings. While some countermeasures have been pro-
posed in the literature, our aim is to minimally patch the design
of Raft with countermeasures customized for Byzantine settings.

System design: The paper also aims to build a highly secure, per-
formant, and confidential BFT protocol (which we call Engraft)
by porting a production-quality CFT implementation into SGX en-
claves. We envision three important merits of the resulting protocol:
• Highly secure. Whereas most BFT protocols assume less than 1/3
faulty nodes to function, CFT protocols relax the requirement to
1/2, yielding a more practical and scalable solution for real-world
use cases. A BFT solution that combines CFT and SGX would
achieve the same effect with Byzantine fault assumptions.
• Performant. CFT protocols, such as Raft, have been thoroughly
studied and understood; production-quality implementations of
CFT protocols, such as BRaft [1], have been well maintained as
open-source projects and used widely in real-world settings. More-
over, SGX is a hardware feature commercially available on most

CCS ’22, November 7–11, 2022, Los Angeles, CA, USA Weili Wang, Sen Deng, Jianyu Niu, Michael K. Reiter, and Yinqian Zhang

server-end Intel processors1. A straightforward integration of
a highly performant BRaft with Intel SGX would satisfy most
industry-level use cases.
• Confidential. SGX naturally provides confidentiality to code and
data inside enclaves. Therefore, by porting the CFT protocol into
enclaves, confidentiality of the state replicas can be achieved as a
by-product.

3.2 Threat Model

We consider a distributed system with a set of 𝑛 = 2𝑓 + 1 SGX-
enabled machines that collectively provides services to clients in
partially synchronous networks. We assume at most 𝑓 machines
can be controlled by a malicious operator A at any time. The ma-
licious operator A can launch, suspend, resume, and terminate
SGX enclaves at her will. She also controls the CPU scheduling,
memory management, and I/O operations. She can conduct attacks,
for example, to breach the enclaves’ state continuity [31], by pro-
viding the enclaves with stale persistent states (e.g., older versions
of encrypted files) instead of the latest ones.

However, we assume SGX is secure and software protected
within SGX enclaves preserves its integrity and confidentiality
during its computation, by leveraging techniques such as memory
isolation, encryption and remote attestation. Specifically, transient
execution attacks [22, 57, 61] that leak enclave memory and attes-
tation keys are outside the scope of this paper, as Intel has already
provided microcode patches that mitigate these vulnerabilities [8].
Micro-architecture side-channel attacks that leak secret values by
observing enclave memory access patterns are still possible. But
we assume countermeasures have been implemented at the soft-
ware level, especially for cryptographic libraries (as is the case of
OpenSSL and Intel SGX SSL). As such, the corrupted machines can
only affect the availability of the software inside the enclaves but
not its correctness.

4 SECURITY ANALYSIS

In this section, we perform a systematic analysis of the core com-
ponent of Engraft—SgxBraft, a vanilla porting of BRaft inside
enclaves—in the context of SGX-related security threats. Our anal-
ysis is assisted by a model checking tool, which models a compre-
hensive list of attack vectors and automates the analysis to identify
vulnerabilities.

4.1 Threat Modeling

The core logic of a Raft node is implemented inside an enclave,
which protects its confidentiality and integrity. But it still needs to
interact with the outside world to (1) save its state to the local disk
for crash recovery, and to (2) communicate with other nodes to
maintain the consensus of the distrusted system. These interactions
introduce additional attack vectors to SgxBraft. We categorize
these attack vectors into two classes: filesystem manipulation and
network manipulation.
• Filesystem manipulation. In the Raft protocol, three variables are
persistent in the filesystem: currentTerm, votedFor and log. Upon

1While Intel has discontinued support of SGX in 12th Core processors, SGX will be
continued in server-end processors [6].

Table 1: Byzantine behaviors via filesystem manipulation.

Items Explanation

fs_currentTerm- decrease variable currentTerm
fs_currentTerm+ increase variable currentTerm

fs_votedFor- drop vote information
fs_votedFor+ vote for other servers

fs_log- drop log entries
fs_log+ append log entries

Table 2: Byzantine behaviors via network manipulation.

Items Explanation

nw_RequestVote_term- decrease term
nw_RequestVote_term+ increase term

nw_RequestVote_lastLog- decrease lastLog
nw_RequestVote_lastLog+ increase lastLog

nw_AppendEntries_term- decrease term
nw_AppendEntries_term+ increase term

nw_AppendEntries_preLog- decrease preLog
nw_AppendEntries_preLog+ increase preLog

nw_AppendEntries_leaderCommit- decrease leaderCommit
nw_AppendEntries_leaderCommit+ increase leaderCommit

nw_AppendEntries_entries+ modify log entries

crash, Raft needs to restore these persistent variables from the
disk to recover its state. The adversary that controls the OS could
modify the persistent storage or provide a stale state to SgxBraft.
We summarize the Byzantine fault behaviors via filesystem ma-
nipulation in Table 1.
• Network manipulation. There are two types of RPC messages in
Raft: RequestVote RPC and AppendEntries RPC.Without proper
protection, the adversary is able to insert or modify the content
of messages sent between the enclaves. We summarize Byzantine
behaviors via network manipulation in Table 2.

4.2 Model Checking Safety Properties

To automate the analysis of the safety properties of SgxBraft,
we leverage the TLC model checker [70]. Similar to other formal
methods, model checking requires explicit specification of attack
primitives that the adversary relies upon to construct sophisti-
cated attack steps with which the desired properties are eventually
compromised. To systematically enumerate all attack primitives
considered in our threat model, we classify all possible Byzantine
behaviors into two categories (see Sec. 4.1) and carefully examine
how each of the key elements in the Raft protocol can be manipu-
lated by Byzantine behaviors of either category. Accordingly, we
extend the TLA+ formal specification of Raft from the original Raft
paper [48] with 17 Byzantine behaviors listed in Table 1 and Table 2.
Each of these Byzantine behaviors is modeled as an action in TLA+.
For each Byzantine behavior, we use the TLC model checker to
examine four safety properties of Raft [48]: election safety, log
matching, leader completeness, and state machine safety.

Engraft: Enclave-guarded Raft on Byzantine Faulty Nodes CCS ’22, November 7–11, 2022, Los Angeles, CA, USA

We derive the TLA+ specification of the four safety properties
and list them in the full version of the paper [63] due to the space
limitation. It is worth noting that while the original work by Ongaro
has provided the TLA+ specifications of the Raft protocol, it did
not perform checking using the TLC model checker (see [47, sec.
8.2]). Therefore, our work provides the first successful attempt to
formally check the four safety properties of Raft using TLC.

We note that we employ model checking primarily as a tool for
automated extraction of attack traces if there are any. TLC cannot
be used to prove the correctness of SgxBraft. This is because
the unbound variables (e.g., terms, log entries) used in Raft lead
to an infinite search space, which cannot be exhausted by TLC.
In fact, while model checking has been used to validate specific
properties of simple network protocols [27], it is rarely used to prove
correctness of complex distributed systems. The most common use
of model checkers is to detect bugs in such designs [18, 36].

TLC setup. In its configuration, TLC requires specifying the num-
ber of total nodes and malicious nodes in the cluster. Without loss
of generality, in each test case, we model and check two configu-
rations: a three-node cluster with one malicious node (i.e., 𝑓 = 1)
and a five-node cluster with two malicious nodes (i.e., 𝑓 = 2). All
tests were run in the TLC simulation mode. When the search space
exceeded twenty billion states for each configuration, the search
process was terminated. The result of model checking was a list
of attack traces that would lead to violation of one of the safety
properties. If no attack traces are reported, it suggests TLC fails to
identify attacks within the twenty billion states. On average, each
test finished in approximately eight hours on a platform equipped
with 32GB memory and an Intel Core i7-10700 CPU.

N1

N2

N3

N4

N5

1 2

1

1

1

1

2

2

1 2

(a)

1

1 2

1 2

1

1

1 2

(b)

1

1 3

1 3

1 3

1 3

3

(c)

1 2index

Figure 1: Illustration of an attack traces for Byzantine behav-

ior #5: fs_log-.

Model checking results. TLC reported attack traces for 8 out of
the 17 Byzantine behaviors we specified. The results are shown in
Table 3. Five Byzantine behaviors caused by filesystem manipula-
tion can violate one of the safety properties, while TLC reported
three of eleven Byzantine behaviors related to network manipula-
tion are effective.

Case study.We illustrate the attacks due to Byzantine behavior #5
in Fig. 1. In Byzantine behavior #5, the adversary provides stale log
entries when recovering from crashes. As shown in the figure, N1
and N2 are malicious nodes; N3, N4, and N5 are benign. In Fig. 1(a),

all nodes are at term 2, which is recorded in the persistent storage.
N1 is the leader that replicates the log entry to N2 and N3. At this
point, the log entry of term 2 has been replicated to a majority of
nodes, and therefore it is considered committed.

Next, as shown in Fig. 1(b), N1 is crashed by the adversary and
restarted with stale log entries (per Byzantine behavior #5). The
consequences of the attack are twofold: (1) The log entry of index
2 is lost on N1; and (2) N1 becomes a follower. As such, a leader
election is triggered. As we assume in this case the adversary only
rolls back log entries but not the terms, all nodes advances to term
3. Although N2 and N3 have newer logs and hence will not vote
for N5, it is still possible for N1, N4, and N5 to vote for N5. Assume
N5 is elected as the new leader for term 3.

In Fig. 1(c), N5 receives the client request and appends the log
with term 3. It then replicates the log to all other nodes, causing
the log entry from term 2 to be overwritten. Two out of four safety
properties were violated: leader completeness, as the new leader
N5 doesn’t have the log entry committed from term 2, and state
machine safety, as N2 and N5 apply different log entries at index 2.

Countermeasures. To counter the safety violations due to filesys-
tem and network manipulation listed in Table 3, we propose three
categories of countermeasures.
• File encryption. The root cause of Byzantine behavior #4 and #6 is
that the adversary can arbitrarily modify the content of persistent
files, which can be prevented using file encryption (see Sec. 6.2.1).
• Rollback prevention. Byzantine behavior #1, #3 and #5 can be
launched by rollback attacks, which can be prevented using state
continuity mechanisms (see Sec. 5.1).
• Network encryption and authentication. Byzantine behavior #10,
#13, #15 can be prevented using authentication and encrypted
channels between nodes (see Sec. 6.2.2).

4.3 Model Checking Liveness Properties

We perform model checking with TLC to systematically analyze
the liveness properties of SgxBraft. To our knowledge, this is
the first attempt to model check liveness properties of consensus
protocols. We specifically consider the liveness property in the
leader election phase. We build models for two separate cases, one
with the preVote mechanism [47] and one without. As Raft’s leader
election procedure relies on timeout mechanisms extensively, we
model one timer for each node using a TLA+ variable. We model
the passage of time as a TLA+ action, which decreases the timer
value by one for all non-leader nodes. Once a timer expires, i.e.,
decreases to zero, it sends a RequestVote RPC (modelled as a TLA+
action) to all other nodes.

As with the case of safety checking, each model contains a five-
node cluster with two malicious nodes. Our analysis only considers
one attacker behavior—dropping messages to and from the enclave
on the malicious nodes. Therefore, we model such behavior as an
action in TLA+. The liveness property considered is that a benign
node can be eventually elected as leader. This is modelled as a
temporal property, as shown below:

<> ∃𝑖 ∈ 𝐵𝑒𝑛𝑖𝑔𝑛_𝑆𝑒𝑟𝑣𝑒𝑟 : 𝑠𝑡𝑎𝑡𝑒 [𝑖] = 𝐿𝑒𝑎𝑑𝑒𝑟

CCS ’22, November 7–11, 2022, Los Angeles, CA, USA Weili Wang, Sen Deng, Jianyu Niu, Michael K. Reiter, and Yinqian Zhang

Table 3: Analysis results for different Byzantine behaviors.

No. Byzantine Behaviors

Safety Properties

Election Safety Log Matching Leader Completeness State Machine Safety
1 fs_currentTerm- × × × ×
2 fs_currentTerm+ - - - -

3 fs_votedFor- × × × ×
4 fs_votedFor+ × × × ×
5 fs_log- - - × ×
6 fs_log+ - × × ×
7 nw_RequestVote_term- - - - -

8 nw_RequestVote_term+ - - - -

9 nw_RequestVote_lastLog- - - - -

10 nw_RequestVote_lastLog+ - - × ×
11 nw_AppendEntries_term- - - - -

12 nw_AppendEntries_term+ - - - -

13 nw_AppendEntries_preLog- - × × ×
14 nw_AppendEntries_preLog+ - - - -

15 nw_AppendEntries_entries - × × ×
16 nw_AppendEntries_leaderCommit- - - - -

17 nw_AppendEntries_leaderCommit+ - - - -

Legend:×: Safety Properties Violated. - : TLC can’t report violation within twenty billion states, running ten times.

L

F

F

F

F

L

P

P

P

F

a c

L

C

P

P

P F

F

F

L

F P

L

Node 1

Node 2

Node 3

Node 4

Node 5

state d

P

P

F

C

L

P

P

F

L

F

F

F

F

b e f a

Figure 2: Illustration of an attack trace that breaks liveness

in leader election. Node 1 and node 2 are malicious nodes

while the others are benign. 𝐿, 𝐹 , 𝑃 , and 𝐶 denote 𝐿𝑒𝑎𝑑𝑒𝑟 ,

𝐹𝑜𝑙𝑙𝑜𝑤𝑒𝑟 , 𝑝𝑟𝑒𝐶𝑎𝑛𝑑𝑖𝑑𝑎𝑡𝑒 and 𝐶𝑎𝑛𝑑𝑖𝑑𝑎𝑡𝑒 respectively.

where 𝐵𝑒𝑛𝑖𝑔𝑛_𝑆𝑒𝑟𝑣𝑒𝑟 represents the set of all benign nodes and
𝑠𝑡𝑎𝑡𝑒 [𝑖] = 𝐿𝑒𝑎𝑑𝑒𝑟 denotes that node 𝑖 is the 𝐿𝑒𝑎𝑑𝑒𝑟 ; <> represents
temporal logic ”𝐸𝑣𝑒𝑛𝑡𝑢𝑎𝑙𝑙𝑦” in TLA+.

Model checking results. TLC reports a liveness property vio-
lation for the leader election procedures, both with and without
preVote. The root cause in both cases is that the Raft leader elec-
tion procedure relies on Heartbeat-based timeout and request-vote
mechanisms, which are susceptible to manipulation by the OS.

The attack trace generated for leader election with preVote is
listed in Fig. 2. Node 1 and node 2 are malicious while the others
are benign. At state 𝑎, node 1 is the leader. It discards all Heartbeat
messages sent to the node 2, 3, and 4; hence all followers except
node 5 become the preCandidate at state 𝑏. The preCandidate clus-
ter consisting of node 2, 3 and 4 votes for each other to become
candidates. However, node 2 drops the vote requests from node 3
and node 4, such that node 2 does not vote for nodes 3 and 4. As a
result, only node 2 can obtain the majority votes (i.e., three votes)
to become a candidate with the current term plus one at state 𝑐 .

Then it sends requestVote messages to all other nodes to collect
votes, and is elected as the new leader at state 𝑑 . After that, node 2
repeats the above steps, and node 1 becomes leader again, causing
the entire system to return to its initial state 𝑎. As malicious node
1 and node 2 may take turns to become the leader, the liveness
property is violated.

Countermeasures. To ensure that the benign node can be elected
as leader, we introduce a client alert mechanism such that leader
elections can be triggered by mechanisms other than the absence
of heartbeats and that the benign nodes have a chance of winning
the election (see Sec. 5.2).

5 SYSTEM DESIGN

In this section, we present our design of Engraft that provides a
highly secure, performant, and confidential BFT implementation.
Due to the space limitation, we defer the safety and liveness proofs
to the full version of the paper [63]. Engraft contains three compo-
nents: SgxBraft, a vanilla implementation of BRaft inside enclaves;
tiks, a Trustworthy distributed In-memory Key-value Storage (KV
store); and mld, a mechanism that detects and preempts misbehav-
ing leaders. The latter two components are proposed to counter the
safety and liveness violations we discovered in Sec. 4, respectively.

5.1 tiks: Rollback Prevention

To provide rollback prevention, a trustworthy monotonic counter
service is necessary. However, monotonic counter APIs (available in
Linux SGX SDKs before v2.9) exposed to SGX enclaves require Intel
Converged Security and Management Engine (CSME) [21], an Intel
chipset with controversial security concerns [5, 7, 28]. Recent Intel
processors, especially server-end products, are not equipped with
CSME. Moreover, monotonic counter APIs have been removed from
SDKs since v2.9. Therefore, current Intel SGX platforms do not offer
any trustworthy means for rollback prevention. Moreover, lever-
aging hardware TPMs drastically expands the TCB and introduces

Engraft: Enclave-guarded Raft on Byzantine Faulty Nodes CCS ’22, November 7–11, 2022, Los Angeles, CA, USA

issues like Cuckoo attack [49]. As such, building a distributed sub-
system for preventing state rollback appears to be the only viable
solution. In this paper, we propose tiks, a trustworthy in-memory
KV store tightly integrated in Engraft to prevent rollback attacks.

5.1.1 Persistent Files. According to Table 3, all persistent variables
in Raft are vulnerable to rollback attacks, including currentTerm,
votedFor and log. As such, in BRaft, the following two persistent
files need to be guarded with freshness.
• Raft meta file. The Raft meta file contains two variables related
to voting, i.e., votedFor and currentTerm.
• Log data file. The log data file stores all log entries.

5.1.2 Rollback Protection Requirements. One would hope to ensure
freshness of the Raft meta file and the log data file by using trusted
monotonic counters. Unfortunately, trusted monotonic counters are
not panaceas [59]. If the node increases the counter first and then
persists the data together with the increased counter value, there is
a short time window between the counter increment and the data
persistency in which a node cannot recover from crashes [45]. This
is because there is no persisted data corresponding to the updated
counter. If one chooses to persist the data before increasing the
counter, it is possible for an adversary to bind the same counter
value with multiple persistent files, breaking safety [59].

This “recoverability or safety” dilemma is unavoidable when us-
ing trusted counters to preserve state continuity. The root cause is
that counter increment and data persistence are two separate opera-
tions. To securely use monotonic counters for the desired purposes,
one must ensure atomicity when combining the two operations.
In Engraft, we propose tiks to substitute trusted counters and
provide a safe and recoverable rollback protection.

5.1.3 tiks Overview. The design goal of tiks is not to build a
generic solution for rollback prevention. Rather, the design is cus-
tomized for Engraft. Particularly, since there are at least 𝑓 + 1
benign and operational nodes out of the total 2𝑓 + 1 nodes in a
Engraft cluster, it is possible to store data in a distributed storage
by leveraging the 𝑓 + 1 correct nodes, instead of the local disks.
tiks adopts a customized version [45] of the echo broadcast proto-
col [53], which we will describe in Sec. 5.1.5.

The Raft meta file can be stored in tiks directly, since votedFor
and currentTerm are small variables that take less than a hundred of
bytes. However, the size of the log data file increases rapidly when
appending logs, which is too big to be stored in tiks. Therefore,
we create a new file, the log meta file, to store the hash value of
the log data file, and store the log meta file in tiks while keeping
the log data file on the local disks. As updates of the log data file
are frequent, calculating its hash value frequently would become
inefficient. Therefore, we adopt a chained hash design for the log
meta file. We will describe this in detail in Sec. 5.1.7.

5.1.4 Distributed Key-value Storage. tiks is a distributed in-memory
KV store that protects its data inside the enclaves. A node of En-
graft also serves as a node of tiks. tiks only stores two files, the
Raft meta file and the log meta file. Therefore, in a three-node clus-
ter, a total of six files are stored in tiks, which are associated with
six different keys. Moreover, we attach a monotonic index to each
file to indicate its latest version and thus a key-value item in the

KV store has a structure of ⟨key, ⟨index, file⟩⟩, where ⟨index, file⟩ is
a 2-tuple and file stores either a Raft meta file or a log meta file.
We design two schemes, storage update and recovery, on top of this
KV store abstraction, to ensure that a crashed node can recover
its state. We detail these two schemes next but defer their security
analysis to the full version of the papaer [63].

5.1.5 Storage update. To enforce immutability, which requires that
any KV store updates will be reflected in the subsequent reads, tiks
adopts a two-round communication protocol. Specifically, after the
storage updating node updates its own KV store, it performs two
RPCs to update other KV stores: Store and ConfirmStore. The
workflow is shown in Fig. 3, where Node 1 in a three-node cluster
is updating its state.

Node 1 Node 2 Node 3

Store

Store

Reply

Update
KV store

Reply
Collect resp.

ConfirmStore

Update
KV store

ConfirmStore

Check
KV store

Check
KV store

Reply
Reply

Collect resp.

Round 1

Round 2

Figure 3: Workflow of storage update in tiks.

• The first round. First, the updating node specifies the key of the
to-be-updated file (either a Raft or log meta file) and its content
in the Store RPC requests. A correct node receiving the Store
RPC request will faithfully update its own KV store and return a
response. If the updating node can collect at least 𝑓 responses, it
then passes the first round. Otherwise, it re-sends the Store RPCs.
• The second round. To prevent a rollback attack against tiks, a
second-round communication is necessary. Specifically, the updat-
ing node sends a ConfirmStore RPC request to 𝑓 nodes that have
responded in the first round, with the same content as the Store
RPC. A correct node that receives a ConfirmStore request will
reply with a boolean value to indicate success, if it has responded
the Store RPC and its KV store contains an item identical to the
one in the request; otherwise, it ignores the request. If the updat-
ing node finally collects at least 𝑓 responses to its ConfirmStore,
it is assured that the updated file has been safely stored in tiks;
otherwise, the write has failed and must be reattempted.
To update the log data file, which is stored on the disk, the

updating node should perform a fsync system call before updating
the log meta file in tiks to maintain recoverability.

5.1.6 Storage Recovery. Engraft nodes maintain the KV store by
themselves in normal phase but they need to retrieve the distributed
storage from others after crashes since the storage only resides in
memory. The storage retrieval algorithm goes as follows.

When a node is not crashed, it could directly read from its own
KV store to fetch data, since all updates to its own files must be

CCS ’22, November 7–11, 2022, Los Angeles, CA, USA Weili Wang, Sen Deng, Jianyu Niu, Michael K. Reiter, and Yinqian Zhang

in its own KV store (not necessarily true for others’ files). But a
crashed node has to follow the following steps for storage recovery:
• Step 1: Inquiry. The crashed node issues RetrieveStorage RPCs
to all nodes in the cluster until it has successfully collected at least
𝑓 + 1 responses. Upon receiving the RetrieveStorage request, a
correct node should reply with its entire KV store.
• Step 2: Reconstruction: With at least 𝑓 + 1 copies of the KV store,
the requesting node reconstructs its own KV store one item at
a time. For each item, it compares the index of the item from
each received copy and picks one with the largest index. After
reconstructing the KV store, the requesting node should write
back its own states using Store and ConfirmStore RPCs.
When there are one or more aborted store attempts, index con-

flict may happen. For example, a node that has successfully stored
its Raft meta file at index 𝑙 − 1 may crash during the process of
storing a newer Raft meta file (denoted as RaftMeta1) at index 𝑙 .
After recovery, the node may restore its Raft meta file at index
𝑙 − 1 and later crash again when storing a different Raft meta file
(denoted as RaftMeta2) at index 𝑙 . In this case, during recovery, the
node may observe RaftMeta1 and RaftMeta2 at the same index 𝑙 .
We call this situation index conflict.

By design, tiks handles index conflicts by consulting with the
Engraft leader. Though the existence of index conflict impedes
the selection of one file with the largest index, a recovering node is
able to restore its term (i.e., currentTerm).

First, currentTerm is set to the highest term appearing in the
retrieved Raft meta files that have the largest index (denoted as 𝑙).
Then, the recovering node keeps waiting for a leader whose term
(denoted as term′′) is equal or larger than its own, i.e., term′′ ≥
currentTerm.

After discovering a leader, the recovering node handles index
conflict as follows. First, if there is index conflict on the Raft meta
file at index 𝑙 , the node synchronizes its currentTerm to that of the
leader, sets its votedFor as the leader, and then updates its Raft meta
file at index 𝑙 . Second, if there is an index conflict on the log meta
file at the largest index 𝑘 , the node synchronizes its log storage
with the leader, and updates its log meta file at index 𝑘 in tiks.

5.1.7 Log Hash Summary. The log meta file stores the chained hash
of the log data file. The final hash value of the chain is called the log
hash summary, denoted as ℎ. At any time, the log data file contains
log entries from index 𝑎 to index 𝑏, denoted [𝑙𝑜𝑔𝑎, 𝑙𝑜𝑔𝑏], where 𝑙𝑜𝑔𝑖
is the log entry with index 𝑖 . ℎ𝑖 denotes the chained hash value
calculated up to 𝑙𝑜𝑔𝑖 (hence ℎ = ℎ𝑏). ℎ0 is a bitstring of 256 zeros.
The most common operations on the log is to append a log entry.
When 𝑙𝑜𝑔𝑖 is appended, the nodes compute ℎ𝑖 = 𝐻 (ℎ𝑖−1 +𝐻 (𝑙𝑜𝑔𝑖)),
where 𝐻 is the hash function and + denotes the concatenation of
two bitstrings. Each ℎ𝑖 is stored temporarily for the last committed
log entry 𝑙𝑜𝑔𝑖 and any uncommitted log entries appended after it.

There are two scenarios in which log entries are removed [47]:
(1) when a snapshot of the logs is taken, all committed log entries
(the ones from the beginning) are deleted. (2) When uncommitted
log entries conflict with the leader’s, the conflicted log entries (the
ones from the end) are removed. As such, to delete the log entries
before 𝑙𝑜𝑔𝑎 , the node updates ℎ𝑎 = 𝐻 (ℎ0 + 𝐻 (𝑙𝑜𝑔𝑎)), and then
updates ℎ by re-computing the chained hash values of [𝑙𝑜𝑔𝑎, 𝑙𝑜𝑔𝑏].
To delete log entries after 𝑙𝑜𝑔𝑏 , the node simply makes ℎ = ℎ𝑏 .

Log recovery. To recover from crash, a node first retrieves the log
meta file from the KV store and obtains the log hash summary ℎ. It
then computes the last chained hash value from the log data file
and compares it with ℎ. Inconsistency indicates rollback attacks.

5.2 mld: Malicious Leader Detector

mld is designed to guarantee liveness in Engraft. Since Raft adopts
a strong leader model, a malicious leader is able to launch DoS
attacks or censorship attacks. Moreover, by corrupting multiple
nodes, the attacker can ensure that one of the malicious nodes she
controls is elected as the leader at any time.

5.2.1 Liveness Requirements. Liveness mandates that a client’s
request is eventually executed by the server cluster. In Engraft,
liveness involves three requirements. Once the network becomes
synchronous (eventually happens in the partial synchrony model)
and these three requirements are met, liveness can be achieved [20,
sec. 4.5.2].
1. Misbehavior exposure: There is a mechanism in place to preempt

the current leader if its misbehavior, i.e., not processing client
requests in time, is evident.

2. Election of a benign leader: A benign leader is eventually elected.
3. Uninterrupted reign: A reign of a benign leader, who faithfully

processes all requests, cannot be disrupted.

5.2.2 Client Alerts. Similar to conventional BFT systems, Engraft
leverages the clients to alert misbehavior of the leader. Specifically,
if a client has not received responses from the leader within a time
limit, it broadcasts the request to all nodes in the cluster, using a
new ClientAlert RPC. The ClientAlert RPCs serve as alerts to
benign nodes that the current leader may not behave normally.

Upon receiving a ClientAlert request, a follower first relays the
request to the leader and then sets up a timer for malicious leader
detection. If the leader is benign, it will broadcast the ClientAlert
response to all followers and the client, to show that it has processed
the client’s regular request. If the current leader does not reply to
the follower with a ClientAlert response before the timer expires,
the follower enters the preVote stage. If at least 𝑓 + 1 followers enter
pre-voting, a new leader will be elected.

Note that in Engraft, the request processing flow is done inside
enclaves and hence the code integrity is guaranteed. The code of
Engraft specifies that the leader answers a ClientAlert RPC
with a to-be-appended log containing the client request. As such,
the attacker who operates the leader node only has two options: 1)
reply to ClientAlert RPC and append the log; 2) refuse to reply to
ClientAlert RPC and then lose the leader authority.

6 IMPLEMENTATION

This section presents some implementation details, including tech-
niques for security enhancement and performance optimization.

6.1 BRaft Porting

We implemented Engraft for Linux using the Open Enclave SDK
(version: 0.17.0), on the top of BRaft (version: 1.1.1) [1], an open
source implementation of the Raft protocol. There are three key
components of BRaft:

Engraft: Enclave-guarded Raft on Byzantine Faulty Nodes CCS ’22, November 7–11, 2022, Los Angeles, CA, USA

• Core Raft logic. The core Raft logic implements the Raft consensus
algorithm.
• RPC framework. The RPC framework is responsible for sending
and receiving network packets, providing services to the core Raft
logic code.
• Thread management. BRaft leverages coroutines atop pthread
for efficient thread management. Each pthread worker manages
a queue to store its assigned tasks (i.e., coroutines) and keeps
track of the execution context of every coroutine, including a
local variable stack and CPU register values, to enable fast context
switches between coroutines.
As components of BRaft are tightly coupled, we treat BRaft as a

whole and port all three components into the enclaves, including
the core Raft logic, the RPC framework, and the coroutine manage-
ment. As such, the coroutine synchronization is rather efficient in
Engraft because coroutines are scheduled inside enclaves and no
enclave transition occurs.

6.2 Security Enhancement

The implemenation of tiks and mld is straightforward. Here we
only discuss other security enhancement in Engraft.

6.2.1 File Encryption. The three persistent variables, currentTerm,
votedFor and log, are stored in two files. The currentTerm, votedFor
and the hash value of log are securely stored in tiks. The mass log
file is stored in an encrypted form outside enclaves. The encryption
key is the SGX seal key and the encryption algorithm is 128-bit
AES-GCM, which offers both confidentiality and integrity. Each log
entry is encrypted separately. When appending a new log entry,
Engraft firstly encrypts it, then appends the ciphertext to the log
data file, and finally updates the log hash summary. The freshness
of log entries are protected by the log meta file stored in tiks.

6.2.2 Remote Attestation. Nodes in Engraft communicate with
each other over Transport Layer Security (TLS) channels (v1.3).
Especially, Engraft integrates remote attestation evidence in a
self-signed certificate and then exchanges this certificate during
handshake [34]. In this way, every node conducts remote attes-
tation when establishing TLS channels with others, to ensure (1)
the remote party is running inside a genuine SGX enclave with
expected security properties and (2) the remote party’s enclave
measurement is expected. In Engraft, all nodes share the same
enclave binary, so their measurements are the same. After finishing
handshake and passing remote attestation, Engraft successfully
establishes a secure attested TLS channel.

6.3 Performance Optimizations

Engraft is an I/O intensive system, with heavy network and
storage operations. The overhead primarily comes from enclave
transitions—the entering and exits of enclaves [64]. We perform the
following notable optimization to reduce performance overhead.

Switchless OCALLs have been proposed by Weisse et al. [66], in
which the caller threads inside the enclave place tasks in a shared
memory buffer and worker threads outside pull the tasks from
the buffer and execute them. Switchless operations have become
increasingly prevalent for SGX programs demanding high perfor-
mance. Several SGX SDKs, such as Intel SGX SDK and the Open

Enclave SDK [9], have provided an option to utilize switchless op-
erations for performance boost. These SDKs, however, merely offer
general switchless interfaces. Engraft further optimizes the most
frequently used switchless operations for I/O operations and clock
reads, which we detail below.

I/O queues. Fig. 4 shows an overview of the switchless framework
in the design of Engraft. There are two types of threads facilitating
the switchless framework, namely worker threads in the host and
receiver threads in the enclave. The number of the two types of
threads can be adjusted as needed. Engraft maintains two I/O
queues shared between the enclave and the host: the request queue
and the response queue. These two queues are allocated in advance
to reduce the overhead of frequent buffer allocation. When caller
threads issue I/O operations, they enqueue I/O jobs in the request
queue and wait until it finishes. Host worker threads continuously
poll jobs from the request queue, perform the actual system calls,
and write the results back to the response queue. Once the enclave
receiver threads successfully dequeue the results from the response
queue, they immediately notify the corresponding caller threads in
the enclave to process the return values.

Request Queue

Response Queue

Dequeue

Enqueue Dequeue

Enqueue

Notify

Worker threads

Receiver threads

Caller threads

Host side Enclave side

Figure 4: The workflow of Engraft’s switchless I/O.

Clock reads. Engraft needs to frequently read the clock from
the OS since its core logic relies on various timeout mechanisms.
When the number of client connections increases, as Engraft
sets up a timer for each connection, the number of clock reads
also increases. Actually, the number of OCALLs for reading clocks
is the highest among all enclave transitions in Engraft. This is
because the Raft protocol makes heavy use of timeouts (e.g., RPC
timeout and election timeout). To optimize clock reads, Engraft
creates a shared variable in the host to represent the clock readings
and lets the worker threads in the host to update these variables
after their finishing a batch of jobs (e.g., when the request queue
is empty). Once a caller thread needs to read clocks, it can directly
read the shared variables instead of making OCALLs. Doing this
does not impair the time precision much since the worker threads
update the time value at a very high frequency. A read of this
switchless clock takes only 2.2ns, which is 363× faster than Open
Enclave’s switchless clock reads (0.8𝜇s) and is nearly 1800× faster
than making an OCALL to read the clock (4𝜇s).

7 EVALUATION

In evaluating the performance overhead of Engraft, we mainly
hope to answer the following questions:

CCS ’22, November 7–11, 2022, Los Angeles, CA, USA Weili Wang, Sen Deng, Jianyu Niu, Michael K. Reiter, and Yinqian Zhang

• Q1: Compared to BRaft, how much performance overhead is
introduced by SGX-related operations and various security coun-
termeasures of Engraft.
• Q2: Compared to similar BFT systems, how does Engraft per-
form?

7.1 Experimental Setup

Test case.We deployed Engraft to maintain a distributed counter,
which can be read and increased by clients. Counter servers in the
cluster execute on Intel CPUs with SGX features to run Engraft,
while clients are independent of Engraft and hence they can
be placed in any platforms. In this test case, clients interact with
Engraft via the FetchAdd RPC, and the request payloads are 128B
in size. The leader that receives a FetchAdd request will commit a
log in the cluster, apply the log (increase the counter) and finally
reply to the client with the increased counter value. Following
related studies, we only conduct performance evaluation of the
stable phase in this test case, since unstable phase does not happen
frequently and thus is less relevant to its overall performance.

Hardware and software specifications.We evaluate Engraft in
both LAN and WAN settings. In the LAN setting, we run Engraft
on cloud VM instances from the same data center. In the WAN
setting, we use cloud VM instances from three data centers operated
by the same cloud service provider. In both settings, each server in
the cluster runs on one cloud instance. The client also runs on one of
the cloud VMs. We configure multiple threads in the client instance
to simulate the varying number of clients. All the aforementioned
cloud VM instances are equipped with 8 vCPU (Intel Xeon Platinum
8369B) and run Ubuntu 20.04 with Linux kernel 5.4.0.

Batch processing. To increase throughput, we use batch process-
ing technique with a batch size of 256. Note that batch processing
does not introduce new rollback attack vectors since Engraft can
update the log meta file in a batch manner. If there is a crash during
processing a batch of requests, the whole batch of requests is lost
since the log meta file does not cover this batch of log entries.

Test protocols. We evaluate Engraft with all security counter-
measures (e.g., tiks and encrypted log storage) enabled, and we
deploy the same counter cluster in the original BRaft implemen-
tation to examine the performance degradation and answer Q1.
To compare with Engraft, we also evaluate the performance of
Chained-Damysus [25] in the same settings. Chained-Damysus is
a HotStuff-based protocol that leverages SGX to improve crash re-
silience and reduce communication rounds. We note that Chained-
Damysus does not provide confidentiality protection of its state ma-
chine as Engraft does. We run a prototype of Chained-Damysus
using its open-source code [2] without any modification of the
server code.

7.2 Evaluation in LAN Settings

We first report the performance of Engraft within 3-, 9-, 15-, 23-,
and 31-node clusters. All nodes in these LAN clusters are virtu-
ally networked with a 5Gbps switch and the round-trip time (RTT)
between any two VM instances is 0.05-0.07ms. Throughout the eval-
uation, we consider the FetchAdd RPC. Once receiving FetchAdd

requests, the leader responds to the client after the cluster has
successfully handled the requests. We treat finished FetchAdd re-
quests as transactions and adopt transactions per second (TPS) as
the throughput unit. We increase the request load by tuning the
number of clients in the client VM and the rate of requests, and the
latency and throughput are measured on the client side.

Fig. 5 shows the evaluation results. In the smallest 3-node cluster,
BRaft’s maximum throughput is 6.6× higher than that of Engraft:
Engraft achieves 33 kTPS (with 9.54ms latency) while BRaft can
reach 218 kTPS (with 6.72ms latency). This difference becomes
bigger when the cluster scales up. In the 31-node cluster, BRaft
achieves 91 kTPS, which is 17× higher than Engraft (5.3 kTPS).

Fig. 5c shows that both Engraft and BRaft exhibit obvious per-
formance degradation when the cluster scales up in the LAN. For
Braft, the maximum throughput achieved in the 31-node cluster
is 42% of that in the 3-node cluster. As for Engraft, this ratio is
16%. The worse scalability of Engraft is expected since it runs
inside enclaves and depends on tiks for rollback prevention, which
has a quadratic message complexity with respect to the number of
participant nodes.

By comparing Fig. 5a and Fig. 5b, we can see that the latency of
Engraft increase faster than that of BRaft when the request load
increases. This is due to enclaves’ inefficiency in handling frequent
network messages and tiks’s super-linear complexity.

7.3 Evaluation in WAN Settings

7.3.1 Test WAN Topology. To evaluate the performance of En-
graft in the WAN setting, we construct five network topologies,
consisting of 5, 7, 21, 41 and 61 nodes, respectively. Nodes are evenly
distributed among the three different data centers. The RTT be-
tween the first and the second data center is 11.3ms, while the one
between the first and the third data center is 28.6ms. And the RTT
between the second and the third data center is 27.2ms.

Moreover, to further understand the performance of the sys-
tems, we evaluate them in two network settings, restricted network
and unrestricted network, with different bandwidth restrictions on
the outgoing and incoming traffic of each VM. In the restricted
network, which is the default setting, each VM is equipped with
a 200Mbps network link; the bandwidth is throttled by the cloud
provider. Observing that the peak bandwidth of the followers in
the three systems (BRaft, Engraft, and Chained-Damysus) is be-
low 100Mbps while the peak bandwidth of the BRaft leader, the
Chained-Damysus leader and the Chained-Damysus client can be
much higher than 200Mbps, we then set up an unrestricted network
to remove the bandwidth throttle imposed by the cloud provider to
evaluate BRaft and Chained-Damysus. In the unrestricted network,
follower VMs still use 200Mbps network links but the leader VM and
the client VM are equipped with 2Gbps network links, respectively.
Fig. 6 and Fig. 7a display the results in the unrestricted network,
while Fig. 7b shows the maximum throughput of the systems in the
restricted network.

7.3.2 Comparing with BRaft. As shown in Fig. 6a and Fig. 6b, when
the cluster scales up, the latency of BRaft fluctuates slightly, but
that of Engraft increases, especially when the cluster grows to
41 or 61 nodes. In all these five WAN topologies, Engraft handles
requests at least 2× slower than BRaft. This is because tiks requires

Engraft: Enclave-guarded Raft on Byzantine Faulty Nodes CCS ’22, November 7–11, 2022, Los Angeles, CA, USA

0 10 20 30 40
Throughput (kTPS)

0

5

10

15

20

25

30

L
at

en
cy

(m
s)

3-Node
9-Node
15-Node
23-Node
31-Node

(a) Engraft

0 50 100 150 200 250
Throughput (kTPS)

0

5

10

15

20

25

30

L
at

en
cy

(m
s)

3-Node
9-Node
15-Node
23-Node
31-Node

(b) BRaft

100

150

200 ENGRAFT

BRaft

0 3 9 15 23 31
Nodes

0

10

20

30

T
hr

ou
gh

pu
t(

kT
PS

)

(c) Maximum throughput vs. nodes

Figure 5: Latency vs. throughput in LAN.

0 5 10 15 20
Throughput (kTPS)

0

50

100

150

200

L
at

en
cy

(m
s)

5-Node
7-Node
21-Node
41-Node
61-Node

(a) Engraft

0 20 40 60 80
Throughput (kTPS)

0

50

100

150

200

L
at

en
cy

(m
s)

5-Node
7-Node
21-Node
41-Node
61-Node

(b) BRaft

500

1000

1500
5-Node
7-Node
21-Node
41-Node
61-Node

2 4 6 8 10
Throughput (kTPS)

0

100

200

L
at

en
cy

(m
s)

(c) Chained-Damysus

Figure 6: Latency vs. throughput in WAN (unrestricted network).

two rounds of communication to ensure security, which introduces
extra latency of two round-trip time compared with BRaft.

Fig. 7a illustrates that BRaft can achieve much larger throughput
(i.e., 4.5-25× larger) than Engraft does when the network band-
width is not a bottleneck. Meanwhile, Fig. 7b suggests that at a
moderate bandwidth, the performance of Engraft is comparable
to that of BRaft in relatively larger clusters, namely those containing
21 nodes, 41 nodes and 61 nodes, respectively.

60

70

80
ENGRAFT

BRaft
Chained-Damysus

0 5 7 21 41 61
Nodes

0

5

10

15

20

T
hr

ou
gh

pu
t(

kT
PS

)

(a) Unrestricted network

0 5 7 21 41 61
Nodes

0

10

20

30

40

50

60

70

80

T
hr

ou
gh

pu
t(

kT
PS

)

ENGRAFT

BRaft
Chained-Damysus

(b) Restricted network

Figure 7: Maximum throughput of the three systems.

7.3.3 Comparing with Chained-Damysus. We address Q2 by com-
paring Engraftwith Chained-Damysus.When evaluating Chained-
Damysus, we also set the payload size to 128B and batch size to 256.
By comparing Fig. 6a and Fig. 6c, we observe that both Engraft
and Chained-Damysus exhibit similar latency, but Engraft has
higher throughput with fewer nodes (e.g., 1.8× higher in the 5-node
cluster). However, Fig. 7b shows that the throughput of Engraft

drops below that of Chained-Damysus when the cluster contains
more than 21 nodes. Moreover, Chained-Damysus has better scala-
bility and its maximum throughput surpasses that of Engraft in
clusters with 41 or 61 nodes. The poor scalability of Engraft in the
WAN setting can be attributed to two reasons: First, Engraft pro-
tects the states of replicas inside enclaves while Chained-Damysus
only leverages SGX to generate and verify signatures, that is, En-
graft offers confidentiality to the state machine replicas while
Chained-Damysus does not. Second, as will be seen shortly, the
complexity of tiks does not grow linearly.

It is worth pointing out that in the restricted network (see Fig. 7a)
Engraft always performs noworse than Chained-Damysus, demon-
strating Engraft is the better choice at moderate bandwidth.

7.4 Overhead Profiling

To better understand the causes of the overhead in Engraft (per
Q1), we implemented three different variants of Engraft:
• Var-I. This variant replaces tiks with simulated zero-overhead
in-memory counters, eliminating the overhead due to tiks.
• Var-II. This variant further removes log encryption described in
Sec. 6.2.1 from Var-I, eliminating overhead due to file encryption.
• Var-III. This variant operates Var-II outside enclaves, eliminating
overhead due to SGX.
In the 5-node WAN cluster under the unrestricted network, the

maximum throughputs and corresponding latencies of Engraft,

CCS ’22, November 7–11, 2022, Los Angeles, CA, USA Weili Wang, Sen Deng, Jianyu Niu, Michael K. Reiter, and Yinqian Zhang

BRaft and the above three variants are listed in Table 4. We still
consider FetchAdd RPC and use 128B payloads here.

Table 4: Overhead profiling for Engraft.

Variant Throughput (TPS) Latency (ms)

Engraft 17369 106.34
Var-I 30179 41.73
Var-II 31509 41.79
Var-III 76817 30.095
BRaft 76417 30.154

tiks overhead. The gap between Engraft and Var-I suggests that
tiks has high overhead in the WAN setting. Engraft only reaches
58% of the throughput of Var-I.

Encryption overhead. The small difference between Var-I and
Var-II suggests that using an encrypted log storage does not in-
troduce much overhead. This is because, as measured in our tests,
encrypting and decrypting 1KB data only takes 2.50𝜇s and 10.54𝜇s,
respectively, which is small enough to be negligible in WAN.

SGX overhead. Var-III reaches nearly the samemaximum through-
put as BRaft does, while Var-II only achieves 41% of the through-
put of BRaft. This big gap suggests that the overhead of running
BRaft in enclaves is dominant, even with the optimized switchless
framework for Engraft. There might be two remaining costs from
SGX. First, as reported in [66], the overhead of accessing encrypted
enclave memory could be expensive. Specifically, writing the en-
clave memory may bring 6.5-19.5% performance loss, while reading
operations can result in 30-102% loss. Considering that Engraft
frequently accesses encrypted memory (e.g., copying I/O buffers),
the overhead cannot be neglected. Second, when enabling switch-
less OCALLs, Engraft requires host worker threads to take extra
CPU cores. In this test, Engraft sets up two host worker threads
to process OCALLS and thus its available cores were 25% less than
BRaft on an 8 vCPU VM.

7.5 Impact of Payload Size

To further examine the performance of Engraft, we evaluate En-
graftwith larger payloads (when increased from 128B to 1024B) in
three WAN topologies, i.e., 5-, 21- and 41-node clusters. As shown
in Fig. 8, Engraft has a mild performance degradation when pro-
cessing bigger requests. For instance, in the 5-node cluster, the
maximum throughput with 1024B reaches 71% of that with 128B,
while the payload is 4× larger.

8 DISCUSSION

Further optimization opportunities.Besides switchless OCALLs,
recent studies utilize user space I/O library (e.g., DPDK [3] and
SPDK [12]) to optimize the performance of I/O intensive SGX sys-
tems [15, 16, 60]. This type of optimization still leverages the shared
memory, but it maps DMA regions in the host memory. When en-
clave threads perform I/O operations, they directly interact with
DMA regions mapped in the shared memory instead of putting
jobs in the request queue. Compared with the existing switchless
OCALL implementations, the userspace I/O optimization does not

0 128 256 512 1024
Payload Size (Bytes)

0

5

10

15

20

M
ax

im
um

T
hr

ou
gh

pu
t(

kT
PS

)

5-Node
21-Node
41-Node

Figure 8: Maximum throughput vs. payload size

require extra host worker threads to poll jobs and thus saving CPU
cores. We leave such optimization for Engraft to future work.

Application scenarios. Engraft can be used as a highly per-
formant BFT protocol that supports federated blockchains or dis-
tributed clusters spanning multiple secure domains. Particularly,
the WAN evaluation results in Sec. 7.3 suggest that Engraft has
good performance when deployed across multiple data centers.
Moreover, Engraft is also a BFT protocol that protects the confi-
dentiality of the state replicated inside SGX enclaves. It allows all
nodes to maintain a consistent encrypted log, such that no other
parties can breach the secrecy of the log. One natural application of
Engraft is a confidential decentralized ledger, which accepts client
requests in an encrypted form, and then decrypts the requests and
performs updates or queries to the encrypted ledger via software
in the enclaves.

Lessons learned. Our study suggests that porting CFT protocols
(e.g., Raft) inside TEEs (e.g., SGX enclaves) does not directly offer
BFT properties. This contradicts the presumptions made, either
explicitly or implicitly, in some prior works [11, 15, 29, 54]. With
model checking, we have identified a variety of vulnerabilities
that could breach the safety and liveness of Raft running inside
SGX. When not using Engraft, for instance, financial loss (e.g.,
transactions revoked) may happen when a blockchain is built atop
CCF [54].

Moreover, our study also serves as a wake-up call for the confi-
dential computing community that build secure systems with TEEs:
SGX, as well as other TEEs, are not bulletproof. Porting complex
software into TEEs increases the TCB of the system. Software built
with TEEs must also consider threats of memory safety [17, 42],
side channels [22, 57, 61], state continuity [31], and concurrency
bugs [65]. The large code base inside the TEEs would increase the
likelihood of containing vulnerabilities that could violate the se-
curity assumption of TEEs. Therefore, to build secure confidential
computing platforms using TEEs, one must find ways to balance
the size of TCB and the richness of the functionalities.

Reconfiguration. Similar to related studies [20, 25, 32, 44, 62, 69],
Engraft does not yet consider dynamic reconfiguration of the
network. However, the original Raft protocol introduces a joint
consensus protocol to enable dynamic adjustment of network mem-
bership. As Engraft is tightly intertwined with tiks, however,
doing so in Engraft requires additional efforts to avoid security

Engraft: Enclave-guarded Raft on Byzantine Faulty Nodes CCS ’22, November 7–11, 2022, Los Angeles, CA, USA

flaws. For instance, if the reconfiguration of Engraft is not syn-
chronized with that of tiks, an outdated Engraft node in the new
configuration may send Store and ConfirmStore to tiks nodes in
the old configuration. We leave a comprehensive security analysis
under a such scenario to future works.

9 RELATEDWORK

Hardware-assistedByzantine fault tolerance.AttestedAppend-
only Memory (A2M) [24] is the first work to utilize a trusted log
abstraction to defend against Byzantine behaviors; it can tolerate
up to 𝑓 arbitrary malicious nodes among 2𝑓 + 1 nodes. Trusted
incrementer (TrInc) [43] simplifies the trusted log abstraction to a
trusted monotonic counter and achieves the same security guar-
antee. Based on the trusted counter, Veronese et al. [62] further
introduce a signing function to significantly reduce overhead in tra-
ditional BFT protocols, i.e., PBFT [20] and Zyzzyva [35]. CheapBFT
[32] integrates three protocols for three typical scenarios, namely,
the normal phase without attack, the switching phase after detect-
ing malicious behaviors, and finally, the terminate phase running a
BFT protocol [62]. FastBFT is a scalable variant of BFT protocol that
leverages Intel SGX and secret sharing schemes [44] to achieve𝑂 (𝑛)
communication complexity in the normal phase. Damysus [25] is
a BFT protocol based on HotStuff [69]. It utilizes SGX as a trusted
checker to increase Byzantine resilience and a trusted accumulator
to reduce communication rounds.

In the above studies that leverage TEEs as the underlying trusted
hardware [25, 32, 43, 44, 62], TEEs are primarily used to build small
trusted components like trusted counters. The state machines are
not protected by TEEs and hence their confidentiality is not guaran-
teed. In contrast, Engraft protects the confidentiality of the state
machines using SGX, enabling application scenarios that cannot be
supported by these prior studies.

Confidential computing. TEEs provide confidentiality for run-
ning code and data and thus enable a new computing paradigm
called confidential computing. Numerous studies have built confi-
dential computing platforms for confidential map-reduce [56], se-
cure distributed coordination of cloud applications [19], encrypted
databases [52], anonymous communication networks [33] and con-
fidential network middleware [26, 51].

Close to our work are those integrating blockchain frameworks
with confidential computing. Specifically, Ekiden [23] is a privacy-
preserving off-chain system that separates the whole blockchain
architecture into compute nodes and consensus nodes. The com-
pute nodes are a cluster of SGX-enabled machines used to process
confidential data with smart contracts, while the consensus nodes
are used to maintain a distributed ledger. CCF [54] is a framework
for providing confidential services in permissioned blockchains by
maintaining a distributed key-value store inside enclaves. CCF can
be configured to run atop CFT or BFT consensus protocols, but it
does not modify the underlying consensus algorithms much.

Rollback prevention for trusted hardware. Prior works have
used non-volatile memory (NVRAM) to prevent rollback attacks [50,
58, 59]. Memoir [50] stores the chained hash of a sequence of states
in the NVRAM of a TPM to prevent state rollback and leverages Un-
interruptible Power Supply (UPS) to reduce the number of NVRAM

writes. A similar idea has been taken by ICE [58] that reduces TPM
writes using a dedicated capacitor hardware. Ariadne [59] encodes
counters in a balanced Gray code form to maximize the durability
of the TPM NVRAM. It also provides a protocol to achieve recover-
ability with rollback prevention.

Close to our design of tiks is Rote [45], which modifies an echo
broadcast protocol to construct a distributed counter service inside
SGX enclaves, achieving better performance without accessing
NVRAM. Though the communication protocol of tiks resembles
the one in Rote, these two schemes differ in the following aspects:
First, Rote assumes SGX may be compromised and so requires
additional mechanisms, while the threat model of tiks is identical
with the one of Engraft (as described in Sec. 3.2). Second, Rote
provides an abstraction of monotonic counters, while tiks is a KV
store for storing Engraft meta files. Finally, compared to Rote,
tiks additionally offers recoverability from crashes.

Formal analysis of Raft. Ongaro et al. [10] developed a formal
specification of Raft using the TLA+ specification language [40]
and an informal proof of safety for Raft. However, the formal speci-
fication only modeled the CFT environment, for example, servers
crash and later restart from the persistent storage on disk, or the
network may reorder, drop, and duplicate messages. In Engraft,
we specify the Byzantine fault model that is not contained in [10],
such as the untrusted file system and the network. Wilcox et al. [67]
proposed Verdi, which is a Coq-based framework for implementing
and formally verifying state machine replication algorithms. An
end-to-end proof of its safety is completed also under the Verdi
framework (with 45000 additional lines of Coq code) [68]. However,
the network semantics and fault models supported by Verdi do not
include the Byzantine fault model we consider in Engraft.

10 CONCLUSION

This paper presents Engraft, a secure enclave-guarded Raft im-
plementation that combines the best properties of a performant
CFT protocol and a secure SGX enclave. Engraft goes beyond
simply porting Raft into SGX enclaves, by performing a system-
atic analysis of this strawman solution and fixing both safety and
liveness issues via improved protocol design and system imple-
mentation. The contributions of Engraft are twofold: On the one
hand, Engraft achieves consensus on a cluster of 2𝑓 + 1 machines
tolerating up to 𝑓 nodes exhibiting Byzantine-fault behavior. On
the other hand, Engraft allows the reuse of a production-quality
Raft implementation in the development of a highly performant
BFT protocol.

ACKNOWLEDGMENTS

We thank the anonymous reviewers for their constructive feedback.
Michael Reiter is supported in part by the NIFA Award 2021-67021-
34252.

REFERENCES

[1] [n.d.]. BRaft. https://github.com/baidu/braft. (Accessed: 2022-05-03).
[2] [n.d.]. Damysus Source Code. https://github.com/vrahli/damysus. (Accessed:

2022-05-03).
[3] [n.d.]. Data Plane Development Kit (DPDK). https://www.dpdk.org. (Accessed:

2022-05-03).
[4] [n.d.]. ENGRAFT Source Code. https://github.com/wwl020/ENGRAFT. (Accessed:

2022-09-08).

https://github.com/baidu/braft
https://github.com/vrahli/damysus
https://www.dpdk.org
https://github.com/wwl020/ENGRAFT

CCS ’22, November 7–11, 2022, Los Angeles, CA, USA Weili Wang, Sen Deng, Jianyu Niu, Michael K. Reiter, and Yinqian Zhang

[5] [n.d.]. The Intel Converged Security and Management Engine IOMMU
Hardware Issue - CVE-2019-0090 and CVE-2020-0566. https://www.intel.com/
content/dam/www/public/us/en/security-advisory/documents/cve-2019-0090-
whitepaper.pdf. (Accessed: 2022-05-03).

[6] [n.d.]. Intel Product Specifications. https://ark.intel.com/content/www/us/en/
ark/search/featurefilter.html. (Accessed: 2022-05-03).

[7] [n.d.]. INTEL-SA-00307: Intel CSME Advisory. https://www.intel.com/content/
www/us/en/support/articles/000056085/software/chipset-software.html. (Ac-
cessed: 2022-05-03).

[8] [n.d.]. Intel Software Security Guidance. https://www.intel.com/content/www/
us/en/developer/topic-technology/software-security-guidance/overview.html.
(Accessed: 2022-05-03).

[9] [n.d.]. Open Enclave SDK. https://openenclave.io. (Accessed: 2022-05-03).
[10] [n.d.]. Safety proof and formal specification for Raft. http://raftuserstudy.s3-

website-us-west1.amazonaws.com/proof.pdf. (Accessed: 2022-05-03).
[11] [n.d.]. Signal Secure Value Recovery. https://signal.org/blog/secure-value-

recovery. (Accessed: 2022-05-03).
[12] [n.d.]. Storage Performance Development Kit (SPDK). https://spdk.io. (Accessed:

2022-05-03).
[13] [n.d.]. The support of trustworthy monotonic counters on SGX plat-

forms. https://www.intel.com/content/www/us/en/support/articles/000057968/
software/intel-security-products.html. (Accessed: 2022-05-03).

[14] [n.d.]. TiKV. https://tikv.org. (Accessed: 2022-05-03).
[15] Maurice Bailleu, Dimitra Giantsidi, Vasilis Gavrielatos, Do Le Quoc, Vijay Na-

garajan, and Pramod Bhatotia. 2021. Avocado: A Secure In-Memory Distributed
Storage System. In 2021 USENIX Annual Technical Conference (USENIX ATC
21). 65–79.

[16] Maurice Bailleu, Jörg Thalheim, Pramod Bhatotia, Christof Fetzer, Michio Honda,
and Kapil Vaswani. 2019. SPEICHER: Securing lsm-based key-value stores using
shielded execution. In 17th USENIXConference on File and Storage Technologies
(FAST 19). 173–190.

[17] Andrea Biondo, Mauro Conti, Lucas Davi, Tommaso Frassetto, and Ahmad-Reza
Sadeghi. 2018. The Guard’s Dilemma: Efficient Code-Reuse Attacks Against
Intel SGX. In 27th USENIX Security Symposium (USENIX Security 18). USENIX
Association, Baltimore, MD, 1213–1227. https://www.usenix.org/conference/
usenixsecurity18/presentation/biondo

[18] Sean Braithwaite, Ethan Buchman, Igor Konnov, Zarko Milosevic, Ilina
Stoilkovska, Josef Widder, and Anca Zamfir. 2020. Formal specification and
model checking of the Tendermint blockchain synchronization protocol. In 2nd
Workshop on Formal Methods for Blockchains.

[19] Stefan Brenner, Colin Wulf, David Goltzsche, Nico Weichbrodt, Matthias
Lorenz, Christof Fetzer, Peter Pietzuch, and Rüdiger Kapitza. 2016. Secure-
Keeper: Confidential ZooKeeper Using Intel SGX. In Proceedings of the 17th
International Middleware Conference. ACM, Trento Italy, 1–13. https://doi.org/
10.1145/2988336.2988350

[20] Miguel Castro and Barbara Liskov. 1999. Practical Byzantine Fault Tolerance.
In 3rd Symposium on Operating Systems Design and Implementation (OSDI 99).
USENIXAssociation, NewOrleans, LA. https://www.usenix.org/conference/osdi-
99/practical-byzantine-fault-tolerance

[21] Shanwei Cen and Bo Zhang. 2017. Trusted time andmonotonic counters with intel
software guard extensions platform services. Online at: https://software. intel.
com/sites/default/files/managed/1b/a2/Intel-SGX-Platform-Services. pdf (2017).

[22] Guoxing Chen, Sanchuan Chen, Yuan Xiao, Yinqian Zhang, Zhiqiang Lin, and
Ten H. Lai. 2019. SgxPectre: Stealing Intel Secrets from SGX Enclaves Via Spec-
ulative Execution. In 2019 IEEE European Symposium on Security and Privacy
(EuroS P). 142–157. https://doi.org/10.1109/EuroSP.2019.00020

[23] Raymond Cheng, Fan Zhang, Jernej Kos, Warren He, Nicholas Hynes, Noah
Johnson, Ari Juels, Andrew Miller, and Dawn Song. 2019. Ekiden: A platform for
confidentiality-preserving, trustworthy, and performant smart contracts. In 2019
IEEE European Symposium on Security and Privacy (EuroS&P). IEEE, 185–200.

[24] Byung-Gon Chun, PetrosManiatis, Scott Shenker, and John Kubiatowicz. 2007. At-
tested Append-Only Memory: Making Adversaries Stick to Their Word. SIGOPS
Oper. Syst. Rev. 41, 6 (Oct. 2007), 189–204. https://doi.org/10.1145/1323293.
1294280

[25] Jérémie Decouchant, David Kozhaya, Vincent Rahli, and Jiangshan Yu. 2022.
DAMYSUS: Streamlined BFT Consensus Leveraging Trusted Components. In
Proceedings of the Seventeenth European Conference on Computer Systems
(Rennes, France) (EuroSys ’22). Association for Computing Machinery, New York,
NY, USA, 1–16. https://doi.org/10.1145/3492321.3519568

[26] Huayi Duan, Cong Wang, Xingliang Yuan, Yajin Zhou, Qian Wang, and Kui
Ren. 2019. LightBox: Full-Stack Protected Stateful Middlebox at Lightning
Speed. In Proceedings of the 2019 ACM SIGSAC Conference on Computer and
Communications Security (London, United Kingdom) (CCS ’19). Association for
Computing Machinery, New York, NY, USA, 2351–2367. https://doi.org/10.1145/
3319535.3339814

[27] Stefan Edelkamp, Stefan Leue, andAlberto Lluch-Lafuente. 2004. Directed explicit-
state model checking in the validation of communication protocols. International
journal on software tools for technology transfer 5, 2 (2004), 247–267.

[28] Mark Ermolov and Maxim Goryachy. 2017. How to hack a turned-off computer,
or running unsigned code in intel management engine. Black Hat Europe (2017).

[29] Mingyuan Gao, Hung Dang, and Ee-Chien Chang. 2021. TEEKAP: Self-Expiring
Data Capsule Using Trusted Execution Environment. In Annual Computer
Security Applications Conference (Virtual Event, USA) (ACSAC ’21). Associa-
tion for Computing Machinery, New York, NY, USA, 235–247. https://doi.org/
10.1145/3485832.3485919

[30] Matthew Hoekstra, Reshma Lal, Pradeep Pappachan, Vinay Phegade, and Juan
Del Cuvillo. 2013. Using Innovative Instructions to Create Trustworthy Software
Solutions. In Proceedings of the 2nd International Workshop on Hardware and
Architectural Support for Security and Privacy (Tel-Aviv, Israel) (HASP ’13). New
York, NY, USA, Article 11, 1 pages.

[31] Mohit Kumar Jangid, Guoxing Chen, Yinqian Zhang, and Zhiqiang Lin. 2021.
Towards Formal Verification of State Continuity for Enclave Programs. In 30th
USENIX Security Symposium. USENIX Association, 573–590. https://www.
usenix.org/conference/usenixsecurity21/presentation/jangid

[32] Rüdiger Kapitza, Johannes Behl, Christian Cachin, Tobias Distler, Simon Kuhnle,
Seyed Vahid Mohammadi, Wolfgang Schröder-Preikschat, and Klaus Stengel.
2012. CheapBFT: Resource-Efficient Byzantine Fault Tolerance. In Proceedings
of the 7th ACM European Conference on Computer Systems (Bern, Switzerland)
(EuroSys ’12). New York, NY, USA, 295–308. https://doi.org/10.1145/2168836.
2168866

[33] Seongmin Kim, Juhyeng Han, Jaehyeong Ha, Taesoo Kim, and Dongsu
Han. 2017. Enhancing Security and Privacy of Tor’s Ecosystem by Using
Trusted Execution Environments. In 14th USENIX Symposium on Networked
Systems Design and Implementation (NSDI 17). USENIX Association, Boston,
MA, 145–161. https://www.usenix.org/conference/nsdi17/technical-sessions/
presentation/kim-seongmin

[34] Thomas Knauth, Michael Steiner, Somnath Chakrabarti, Li Lei, Cedric Xing, and
Mona Vij. 2018. Integrating remote attestation with transport layer security.
arXiv preprint arXiv:1801.05863 (2018).

[35] Ramakrishna Kotla, Lorenzo Alvisi, Mike Dahlin, Allen Clement, and Edmund
Wong. 2007. Zyzzyva: speculative Byzantine fault tolerance. In Proceedings of
twenty-first ACM SIGOPS symposium on Operating systems principles. 45–58.

[36] Vladimir Kukharenko, Kirill Ziborov, Rafael Sadykov, and Ruslan Rezin. 2021.
Verification of hotstuff bft consensus protocol with TLA+/TLC in an industrial
setting. In Computer Science On-line Conference. Springer, 77–95.

[37] L. Lamport. 1994. The temporal logic of actions. ACM Transactions on
Programming Languages and Systems (TOPLAS) 16, 3 (1994), 872–923.

[38] Leslie Lamport. 1998. The Part-Time Parliament. ACMTransactions onComputer
Systems (TOCS) 16, 2 (may 1998), 133–169. https://doi.org/10.1145/279227.
279229

[39] Leslie Lamport. 2001. Paxos Made Simple. ACM SIGACT News (Distributed
Computing Column) (December 2001), 51–58.

[40] Leslie Lamport. 2002. Specifying systems. Vol. 388. Addison-Wesley Boston.
[41] Leslie Lamport, Robert Shostak, and Marshall Pease. 1982. The Byzantine Gener-

als Problem. ACM Transactions on Programming Languages and Systems (July
1982), 382–401.

[42] Jaehyuk Lee, Jinsoo Jang, Yeongjin Jang, Nohyun Kwak, Yeseul Choi, Changho
Choi, Taesoo Kim, Marcus Peinado, and Brent ByungHoon Kang. 2017. Hacking
in Darkness: Return-oriented Programming against Secure Enclaves. In 26th
USENIX Security Symposium (USENIX Security 17). USENIX Association, Van-
couver, BC, 523–539. https://www.usenix.org/conference/usenixsecurity17/
technical-sessions/presentation/lee-jaehyuk

[43] Dave Levin, John (JD) Douceur, Jay Lorch, and Thomas Moscibroda. 2009. TrInc:
Small Trusted Hardware for Large Distributed Systems. In Proceedings of the 6th
USENIX Symposium on Networked Systems Design and Implementation (NSDI)
(proceedings of the 6th usenix symposium on networked systems design and
implementation (nsdi) ed.). 1–14.

[44] Jian Liu,Wenting Li, Ghassan O. Karame, and N. Asokan. 2019. Scalable Byzantine
Consensus via Hardware-Assisted Secret Sharing. IEEE Trans. Comput. 68, 1
(2019), 139–151. https://doi.org/10.1109/TC.2018.2860009

[45] Sinisa Matetic, Mansoor Ahmed, Kari Kostiainen, Aritra Dhar, David Sommer,
Arthur Gervais, Ari Juels, and Srdjan Capkun. 2017. ROTE: Rollback protection
for trusted execution. In 26th USENIX Security Symposium (USENIX Security
17). 1289–1306.

[46] Stephan Merz. 2000. Model Checking: A Tutorial Overview. In Summer School
on Modeling and Verification of Parallel Processes. Springer, 3–38.

[47] Diego Ongaro. 2014. Consensus: Bridging theory and practice. Stanford Univer-
sity.

[48] Diego Ongaro and John Ousterhout. 2014. In Search of an Understandable
Consensus Algorithm. In 2014 USENIX Annual Technical Conference (USENIX
ATC 14). 305–319.

[49] Bryan Parno. 2008. Bootstrapping Trust in a "Trusted" Platform. In Proceedings
of the 3rd Conference on Hot Topics in Security (San Jose, CA) (HOTSEC’08).
USENIX Association, USA, Article 9, 6 pages.

[50] Bryan Parno, Jacob R. Lorch, John R. Douceur, James Mickens, and Jonathan M.
McCune. 2011. Memoir: Practical State Continuity for Protected Modules. In

https://www.intel.com/content/dam/www/public/us/en/security-advisory/documents/cve-2019-0090-whitepaper.pdf
https://www.intel.com/content/dam/www/public/us/en/security-advisory/documents/cve-2019-0090-whitepaper.pdf
https://www.intel.com/content/dam/www/public/us/en/security-advisory/documents/cve-2019-0090-whitepaper.pdf
https://ark.intel.com/content/www/us/en/ark/search/featurefilter.html
https://ark.intel.com/content/www/us/en/ark/search/featurefilter.html
https://www.intel.com/content/www/us/en/support/articles/000056085/software/chipset-software.html
https://www.intel.com/content/www/us/en/support/articles/000056085/software/chipset-software.html
https://www.intel.com/content/www/us/en/developer/topic-technology/software-security-guidance/overview.html
https://www.intel.com/content/www/us/en/developer/topic-technology/software-security-guidance/overview.html
https://openenclave.io
http://raftuserstudy.s3-website-us-west1.amazonaws.com/proof.pdf
http://raftuserstudy.s3-website-us-west1.amazonaws.com/proof.pdf
https://signal.org/blog/secure-value-recovery
https://signal.org/blog/secure-value-recovery
https://spdk.io
https://www.intel.com/content/www/us/en/support/articles/000057968/software/intel-security-products.html
https://www.intel.com/content/www/us/en/support/articles/000057968/software/intel-security-products.html
https://tikv.org
https://www.usenix.org/conference/usenixsecurity18/presentation/biondo
https://www.usenix.org/conference/usenixsecurity18/presentation/biondo
https://doi.org/10.1145/2988336.2988350
https://doi.org/10.1145/2988336.2988350
https://www.usenix.org/conference/osdi-99/practical-byzantine-fault-tolerance
https://www.usenix.org/conference/osdi-99/practical-byzantine-fault-tolerance
https://doi.org/10.1109/EuroSP.2019.00020
https://doi.org/10.1145/1323293.1294280
https://doi.org/10.1145/1323293.1294280
https://doi.org/10.1145/3492321.3519568
https://doi.org/10.1145/3319535.3339814
https://doi.org/10.1145/3319535.3339814
https://doi.org/10.1145/3485832.3485919
https://doi.org/10.1145/3485832.3485919
https://www.usenix.org/conference/usenixsecurity21/presentation/jangid
https://www.usenix.org/conference/usenixsecurity21/presentation/jangid
https://doi.org/10.1145/2168836.2168866
https://doi.org/10.1145/2168836.2168866
https://www.usenix.org/conference/nsdi17/technical-sessions/presentation/kim-seongmin
https://www.usenix.org/conference/nsdi17/technical-sessions/presentation/kim-seongmin
https://doi.org/10.1145/279227.279229
https://doi.org/10.1145/279227.279229
https://www.usenix.org/conference/usenixsecurity17/technical-sessions/presentation/lee-jaehyuk
https://www.usenix.org/conference/usenixsecurity17/technical-sessions/presentation/lee-jaehyuk
https://doi.org/10.1109/TC.2018.2860009

Engraft: Enclave-guarded Raft on Byzantine Faulty Nodes CCS ’22, November 7–11, 2022, Los Angeles, CA, USA

2011 IEEE Symposium on Security and Privacy. 379–394.
[51] Rishabh Poddar, Chang Lan, Raluca Ada Popa, and Sylvia Ratnasamy. 2018.

SafeBricks: Shielding Network Functions in the Cloud. In 15th USENIX
Symposium on Networked Systems Design and Implementation (NSDI 18).
USENIX Association, Renton, WA, 201–216. https://www.usenix.org/conference/
nsdi18/presentation/poddar

[52] Christian Priebe, Kapil Vaswani, and Manuel Costa. 2018. Enclavedb: A secure
database using SGX. In 2018 IEEE Symposium on Security and Privacy (SP). IEEE,
264–278.

[53] Michael K. Reiter. 1994. Secure Agreement Protocols: Reliable and Atomic Group
Multicast in Rampart. In Proceedings of the 2nd ACM Conference on Computer
and Communications Security (Fairfax, Virginia, USA) (CCS ’94). Association
for Computing Machinery, New York, NY, USA, 68–80. https://doi.org/10.1145/
191177.191194

[54] Mark Russinovich, Edward Ashton, Christine Avanessians, Miguel Castro,
Amaury Chamayou, Sylvan Clebsch, Manuel Costa, Cedric Fournet, Matthew
Kerner, Sid Krishna, Julien Maffre, Thomas Moscibroda, Kartik Nayak, Olga
Ohrimenko, Felix Schuster, Roy Schuster, Alex Shamis, Olga Vrousgou, and
Christoph M Wintersteiger. [n.d.]. CCF: A Framework for Building Confidential
Verifiable Replicated Services. ([n. d.]), 17.

[55] Fred B. Schneider. 1990. Implementing Fault-Tolerant Services Using the State
Machine Approach: A Tutorial. ACM Computing Surveys (CSUR) 22, 4 (Dec.
1990), 299–319. https://doi.org/10.1145/98163.98167

[56] Felix Schuster, Manuel Costa, Cédric Fournet, Christos Gkantsidis, Marcus
Peinado, Gloria Mainar-Ruiz, and Mark Russinovich. 2015. VC3: Trustworthy
data analytics in the cloud using SGX. In 2015 IEEE Symposium on Security and
Privacy. IEEE, 38–54.

[57] Michael Schwarz, Moritz Lipp, Daniel Moghimi, Jo Van Bulck, Julian Steck-
lina, Thomas Prescher, and Daniel Gruss. 2019. ZombieLoad: Cross-
Privilege-Boundary Data Sampling. In Proceedings of the 2019 ACM SIGSAC
Conference on Computer and Communications Security (London, United King-
dom) (CCS ’19). Association for Computing Machinery, New York, NY, USA,
753–768. https://doi.org/10.1145/3319535.3354252

[58] Raoul Strackx, Bart Jacobs, and Frank Piessens. 2014. ICE: A Passive, High-Speed,
State-Continuity Scheme. In Proceedings of the 30th Annual Computer Security
Applications Conference (New Orleans, Louisiana, USA) (ACSAC ’14). New York,
NY, USA, 106–115.

[59] Raoul Strackx and Frank Piessens. 2016. Ariadne: A Minimal Approach to
State Continuity. In 25th USENIX Security Symposium (USENIX Security 16).
USENIX Association, Austin, TX, 875–892. https://www.usenix.org/conference/
usenixsecurity16/technical-sessions/presentation/strackx

[60] Jörg Thalheim, Harshavardhan Unnibhavi, Christian Priebe, Pramod Bhatotia,
and Peter Pietzuch. 2021. Rkt-Io: A Direct I/O Stack for Shielded Execution. In
Proceedings of the Sixteenth European Conference onComputer Systems. ACM,
Online Event United Kingdom, 490–506. https://doi.org/10.1145/3447786.3456255

[61] Stephan Van Schaik, Alyssa Milburn, Sebastian Österlund, Pietro Frigo, Giorgi
Maisuradze, Kaveh Razavi, Herbert Bos, and Cristiano Giuffrida. 2019. RIDL:
Rogue in-flight data load. In 2019 IEEE Symposium on Security and Privacy (SP).
IEEE, 88–105.

[62] Giuliana Santos Veronese, Miguel Correia, Alysson Neves Bessani, Lau Cheuk
Lung, and Paulo Verissimo. 2013. Efficient Byzantine Fault-Tolerance. IEEE Trans.
Comput. 62, 1 (2013), 16–30. https://doi.org/10.1109/TC.2011.221

[63] Weili Wang, Sen Deng, Jianyu Niu, Michael K. Reiter, and Yinqian Zhang. [n.d.].
ENGRAFT: Enclave-guarded Raft on Byzantine Faulty Nodes. https://github.com/
teecertlab/papers/tree/main/engraft. (Accessed: 2022-09-08).

[64] Nico Weichbrodt, Pierre-Louis Aublin, and Rüdiger Kapitza. 2018. Sgx-Perf: A
Performance Analysis Tool for Intel SGX Enclaves. In Proceedings of the 19th
International Middleware Conference. ACM, Rennes France, 201–213. https:
//doi.org/10.1145/3274808.3274824

[65] NicoWeichbrodt, Anil Kurmus, Peter Pietzuch, and Rüdiger Kapitza. 2016. Async-
Shock: Exploiting Synchronisation Bugs in Intel SGX Enclaves. In Computer
Security – ESORICS 2016, Ioannis Askoxylakis, Sotiris Ioannidis, Sokratis Kat-
sikas, and Catherine Meadows (Eds.). Springer International Publishing, Cham,
440–457.

[66] Ofir Weisse, Valeria Bertacco, and Todd Austin. 2017. Regaining Lost Cycles with
HotCalls: A Fast Interface for SGX Secure Enclaves. In Proceedings of the 44th
Annual International Symposium onComputer Architecture. ACM, Toronto ON
Canada, 81–93. https://doi.org/10.1145/3079856.3080208

[67] James R. Wilcox, Doug Woos, Pavel Panchekha, Zachary Tatlock, Xi Wang,
Michael D. Ernst, and Thomas Anderson. 2015. Verdi: A Framework for Im-
plementing and Formally Verifying Distributed Systems. In Proceedings of
the 36th ACM SIGPLAN Conference on Programming Language Design and
Implementation (Portland, OR, USA) (PLDI ’15). New York, NY, USA, 357–368.
https://doi.org/10.1145/2737924.2737958

[68] Doug Woos, James R. Wilcox, Steve Anton, Zachary Tatlock, Michael D. Ernst,
and Thomas Anderson. 2016. Planning for Change in a Formal Verification of
the Raft Consensus Protocol (CPP 2016). New York, NY, USA, 154–165. https:
//doi.org/10.1145/2854065.2854081

[69] Maofan Yin, Dahlia Malkhi, Michael K. Reiter, Guy Golan Gueta, and Ittai
Abraham. 2019. HotStuff: BFT Consensus with Linearity and Responsiveness
(PODC ’19). Association for Computing Machinery, New York, NY, USA, 347–356.
https://doi.org/10.1145/3293611.3331591

[70] Yuan Yu, Panagiotis Manolios, and Leslie Lamport. 1999. Model checking TLA+
specifications. In Advanced ResearchWorking Conference on Correct Hardware
Design and Verification Methods. Springer, 54–66.

https://www.usenix.org/conference/nsdi18/presentation/poddar
https://www.usenix.org/conference/nsdi18/presentation/poddar
https://doi.org/10.1145/191177.191194
https://doi.org/10.1145/191177.191194
https://doi.org/10.1145/98163.98167
https://doi.org/10.1145/3319535.3354252
https://www.usenix.org/conference/usenixsecurity16/technical-sessions/presentation/strackx
https://www.usenix.org/conference/usenixsecurity16/technical-sessions/presentation/strackx
https://doi.org/10.1145/3447786.3456255
https://doi.org/10.1109/TC.2011.221
https://github.com/teecertlab/papers/tree/main/engraft
https://github.com/teecertlab/papers/tree/main/engraft
https://doi.org/10.1145/3274808.3274824
https://doi.org/10.1145/3274808.3274824
https://doi.org/10.1145/3079856.3080208
https://doi.org/10.1145/2737924.2737958
https://doi.org/10.1145/2854065.2854081
https://doi.org/10.1145/2854065.2854081
https://doi.org/10.1145/3293611.3331591

	Abstract
	1 Introduction
	2 Background
	2.1 Consensus Algorithms
	2.2 Software Guard Extension
	2.3 Model Checking

	3 Overview
	3.1 Problem Statement
	3.2 Threat Model

	4 Security Analysis
	4.1 Threat Modeling
	4.2 Model Checking Safety Properties
	4.3 Model Checking Liveness Properties

	5 System Design
	5.1 tiks: Rollback Prevention
	5.2 mld: Malicious Leader Detector

	6 Implementation
	6.1 BRaft Porting
	6.2 Security Enhancement
	6.3 Performance Optimizations

	7 Evaluation
	7.1 Experimental Setup
	7.2 Evaluation in LAN Settings
	7.3 Evaluation in WAN Settings
	7.4 Overhead Profiling
	7.5 Impact of Payload Size

	8 Discussion
	9 Related Work
	10 Conclusion
	Acknowledgments
	References

