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ABSTRACT

Intra-process memory isolation is a well-known technique to en-
force least privilege within a process. In this paper, we propose
a generic and efficient intra-process memory isolation technique
named PANIC, by leveraging Privileged Access Never (PAN) and
load/store unprivileged (LSU) instructions on AArch64. PANIC ex-
ecutes process code in kernel mode and compartments code into
trusted and untrusted components. The untrusted code is restricted
from accessing the isolated memory region, which is located on
user pages, and the trusted code is allowed to access the isolated
memory region by using LSU instructions. To mitigate threats in-
duced by running user code in kernel mode, PANIC provides two
novel security mechanisms: shim-based memory isolation and sen-
sitive instruction emulation. PANIC provides a generic and efficient
isolation primitive that can be applied in three different isolation
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scenarios: protecting sensitive data in CFI, creating isolated ex-
ecution environments, and hardening JIT code cache. We have
implemented a prototype of PANIC and experimental evaluation
shows that PANIC incurs very low performance overhead, and
performs better than existing methods.
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1 INTRODUCTION

Intra-process memory isolation is a well-known security mecha-
nism for exercising the least privilege principle within one appli-
cation process [24, 29, 31, 48, 51, 53, 56, 57]. It enables a process to
partition its memory address space into multiple compartments,
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restricting code in some compartments from accessing data of oth-
ers, thereby isolating faults or attacks within these compartments.
Example use cases of intra-process memory isolation techniques
include those isolating code pointers to prevent control-flow hi-
jacking [8, 26, 33]; isolating cryptographic keys in OpenSSL servers
to thwart the Heartbleed attack [29, 51]; isolating JITed code in
Just-in-Time (JIT) compilers to prevent code injection [48, 49, 57].

While new features in ARM processors, such as Pointer Authen-
tication [2] and Memory Tagging Extension [2] have been designed
to enforce memory safety, no generic and efficient intra-process
memory isolation technique has been proposed for 64-bit ARM (i.e.,
AArch64). Existing intra-process memory isolation techniques are
roughly classified into address-based isolation and domain-based
isolation. Address-based isolation restricts each memory access
from the untrusted code to ensure that the isolated memory region
cannot be accessed. Software Fault Isolation (SFI) [52] is one promi-
nent address-based isolation technique. It needs to instrument all
memory access instructions of the untrusted code to ensure that
untrusted code can only access predetermined memory regions.
The extensive code instrumentation usually leads to severe code
bloats and poor performance for memory-intensive applications.

Domain-based isolation enables the access permission of the iso-
lated memory region before the trust code accesses it, and revokes
the permission when the access finishes. On ARM platforms, for
example, Shreds [11] and ARMLock [60] leveraged a feature called
memory domains [1], which is obsolete onAArch64, to provide intra-
process memory isolation by isolating the isolated memory region
within one memory domain. Hardware watchpoint has also been
used to achieve intra-process memory isolation by enabling watch-
point read/write monitoring for the isolated memory region [27].
However, as configuring access rights requires privileged instruc-
tions, switching domain still needs to be trapped into the kernel,
which induces high performance overhead.

To date, there is no efficient and generic intra-process memory
isolation technique available on ARM. In this paper, we propose
a new such technique, called PANIC1. PANIC relies on AArch64’s
Privileged Access Never (PAN) feature and load/store unprivileged
(LSU) instructions. PAN is a means to prevent kernel code from
accessing user data [2]. It is typically used as a security measure
against return-to-user attacks [30]. If the kernel code does need
access of the user data, either PAN has to be disabled, or LSU
instructions can be used. The LSU instructions are memory access
instructions that are not subject to PAN’s restrictions.

To provide intra-process memory isolation, PANIC runs the pro-
tected user process in kernel mode, and configures memory regions
to which it wishes to restrict the process’s memory accesses as
user pages. The protected process can thus be partitioned into
trusted and untrusted code, according to whether the code needs
to access the isolated memory regions or not. As the trusted code
needs to access the isolated memory regions, it is revised to use
LSU instructions instead of normal load/store instructions to do so.
LSU instructions and the instructions to enable/disable PAN are
disallowed in the untrusted code to ensure isolation.

1PANIC is an acronym of PAN-assisted Intra-process memory Compartmentalization.

However, the need of running user code in kernel mode brings
forth new security threats. When the user code runs at higher privi-
lege levels, it becomes capable of accessing all kernel memory pages
and executing sensitive instructions that should not be permitted
in the user code. Therefore, to secure PANIC, we propose two novel
techniques: shim-based memory isolation that offer memory isola-
tion between the kernel and the protected process, and sensitive
instruction emulation that emulates these instructions on the fly.
• Shim-based memory isolation. When running the protected
process in kernel mode, the traditional user-kernel isolation
is no longer effective: without any restriction, the user code
could access the kernel memory and the kernel code could also
access the process memory. To address this, we propose a shim-
based memory isolation between the kernel and the protected
process. The shim is split into a user shim and a kernel shim, and
interposes all control transfers between the user and the kernel.
Specifically, EPD0/EPD1 are managed by the shim to enable and
disable page table walk of the user/kernel, and ASID is leveraged
to isolate the TLB entries used in the user and the kernel. To
protect the user shim from the untrusted user process, it is
designed to be as small as possible (e.g., with only one code page)
and ensures the following two security properties: atomicity, the
execution sequence of the instructions cannot be manipulated,
and determinacy, the execution result is deterministic regardless
of the environment. These two properties ensure that the shim-
based isolation mechanism cannot be compromised.

• Sensitive instruction emulation. An instruction is sensitive
if its behavior is inconsistent in user mode and kernel mode. A
privileged instruction is also a sensitive instruction in that it
causes undefined behaviors when executed in user mode. When
running user code in kernel mode, sensitive instructions in the
protected program may be executed, which can be abused to
compromise the whole system. To address this, we compre-
hensively analyzed all ARMv8-A instructions and identified
874 sensitive instructions. We further classified them into un-
conditionally and conditionally sensitive instructions based on
whether the behavioral difference depends on the system config-
uration. To prevent the illegal execution of sensitive instructions,
PANIC handles sensitive instructions as follows: it first performs
a binary inspection to identify all sensitive instructions in the
user code page right before the page becomes executable; it
then transforms it to an instruction that raises exceptions when
executed—unconditionally and conditionally sensitive instruc-
tions are transformed to trigger different types of exceptions;
when the exceptions are raised, PANIC is invoked to emulate
the behavior of the original instruction as if it runs in user mode.
PANIC provides a primitive of intra-process memory isolation

that can be applied broadly. We especially demonstrate the use
of PANIC in three application scenarios: 1) protecting sensitive
data for memory corruption defenses, such as CFI; 2) creating an
isolated execution environment (IEE); 3) protecting JITed code in
JIT compilers. In the first scenario, the sensitive data is stored in
the isolated memory region, which is only accessible by the CFI-
instrumented code with LSU instructions. In the second case, with
an IEE created by PANIC, the data inside the IEE cannot be accessed
by the code outside due to PAN’s restriction, but is accessible by
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the code inside by using LSU instructions. In the third setting, to
protect JITed code, the original code cache is used to execute the
code with the executable permission, and a shared memory region
is set to be user pages with the writable permission which is used
to emit the code in JIT compilers by using LSU instructions.

A prototype of PANIC is implemented on the Linux/AArch64
platform. We demonstrated the application of PANIC on the pro-
tection of CFI shadow stack, session keys of the OpenSSL library,
and, the JITed code of JavaScriptCore. To evaluate the performance
overhead, we use the SPEC CPU 2017 benchmarks, the Nginx web
server, and the widely used JavaScript engine JavaScriptCore as
our protection targets. The experimental results show that PANIC
incurs very low performance overhead, and performs better than
existing protections.

In general, the contributions of this paper are as follows:
• A generic and efficient intra-process memory isolation

mechanism on AArch64. We propose a new intra-process
memory isolation mechanism, PANIC, by using the PAN hard-
ware feature and the LSU instructions on ARM processors and
demonstrate how PANIC can be leveraged to build generic mem-
ory isolation with three case studies. Specifically, PANIC is the
first to apply UAO for address space isolation. By leveraging
UAO, PANIC enables/disables the LSU instructions to achieve
bidirectional isolation, which prevents attackers from exploiting
gadgets containing LSU to compromise the isolation.

• New techniques for securely running the user code of

AArch64 in kernel mode. We propose a novel shim-based
memory isolation method to prevent user code running in ker-
nel mode from accessing kernel memory and a new sensitive
instruction emulation technique that prevents attackers from
abusing sensitive instructions.

• New insights from implementation and evaluation. We
implement and evaluate PANIC on Apple M1 processor. The
empirical results show that PANIC incurs very low performance
overhead and outperforms the existing isolation approaches.

2 BACKGROUND

2.1 Exception Levels and Their Movement

The name for privilege in AArch64 is Exception level, often
abbreviated to EL. AArch64 supports multiple levels of privilege,
ranging from EL0 to EL3. The higher the level of privilege, the
higher the number. The lowest level, EL0, is also called the unprivi-
leged level which is used to run applications, while the other levels
are privileged levels that are used to run more privileged software,
such as OS runs at EL1. Exceptions are divided into two major
categories: synchronous exceptions and asynchronous exceptions.
Asynchronous exceptions consist of IRQ, FIQ, and SError.

When an exception occurs, CPU saves both the running status
into Saved Program Status Register (SPSR_EL1) and the exception
address into Exception Link Register (ELR_EL1). SPSR_EL1 stores
the EL and the stack pointer register at the time of the exception.
Each EL has two optional stack pointers, SP_EL1 and SP_EL0. The
stack pointer in use is indicated by SPSel register. Note that the
user code runs in EL0 is forced to use SP_EL0, and SP_EL1 is forced
to be used when taking an exception.

Execution can move between ELs only on taking an exception,
or on returning from an exception. On taking (or returning from)
an exception, the EL either increases (or decreases) or remains
the same. When an exception occurs, the processor must execute
handler code that corresponds to the exception whose location
in memory is called the exception vector. The exception vector is a
vector table composed of sixteen 0x80-length bytes, and its base
address is stored in the Vector Base Address Register (VBAR_EL1). The
selection of the exception entry is related to the type of exception,
the stack register in use, and the state of the register file at the time
of the exception. ERET, ERETAA or ERETAB instructions can produce
an exception return, which restores both the running status from
SPSR_EL1 and the PC from ELR_EL1.

2.2 Unprivileged Load/Store on AArch64

The access right of a memory access instruction is determined by
the current EL and the access permission set in the target memory
attribute, except for the load/store unprivileged (LSU) instruction, i.e.,
LDTR and STTR. The LSU instructions performmemory operations at
EL0 in the sameway as normal load and store instructions. However,
when they are executed at EL1, they are treated as if they are
executed at EL0 rather than EL1.

Access Permission. The access permission of each memory page
is determined by the 2-bit AP[2:1] field of the translation table entry.
The AP field has four possible values, each representing the read
and write permissions of the page at EL0 and at higher Exception
Levels. Linux kernel treats AP[2] as an R/RW indicator and AP[1] as
a privilege indicator. When AP[1] is set to be 1, the corresponding
memory page is the unprivileged page (abbreviated as U-Page);
otherwise, it is the privileged page (abbreviated as P-Page). The
user space is usually set to be U-Pages and the kernel space is set
to be P-Pages. The EL-based memory isolation is enforced by the
hardware that the code runs at EL0 cannot access P-Page, i.e., the
user code cannot access the kernel space.

Privileged Access Never (PAN). PAN is a hardware feature that
is used to prevent privileged code from accessing unprivileged
pages. That is, the normal load and store instructions in the kernel
cannot access the user space when PAN is enabled. The kernel
uses the PAN-based memory isolation to prevent the return-to-user
attacks [30]. However, LSU instructions are not constrained by PAN
due to the CPU always treats them as executed at EL0. The kernel
usually uses them to access the user data legally.

Unprivileged Access Override control (UAO). UAO is a hard-
ware feature that allows LSU instructions to behave as standard
load/store instructions. When UAO is enabled, LSU instructions use
the current EL rather than the forced EL0.

2.3 Address Translation Management

To perform virtual-to-physical address translation, AArch64 pro-
vides two Translation Table Base Registers, TTBR0_EL1 and TTBR1_EL1,
to hold the base addresses of user and kernel page tables. TTBR0_EL1
is used to translate the bottom half of the virtual address space cor-
responding to the user space, and TTBR1_EL1 is used to translate
the top half of the virtual address space corresponding to the kernel
space. Translation Control Register (TCR_EL1) is a control register
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Fig. 1: The memory layout of the process under PANIC.

that determines various features related to address translation, such
as translation granule size.

Translation Lookaside Buffer (TLB) is a hardware component
to reduce the overhead of address translation by caching recently
used virtual-to-physical address mappings. But TLB still needs to
be flushed for every switch of virtual address space. To address
this, the Address Space Identifier (ASID) is introduced that tags each
TLB entry with an identifier. On AArch64, each of TTBR0_EL1 and
TTBR1_EL1 contains an ASID field, and the A1 field in TCR_EL1
selects which ASID to become the current ASID. AArch64 also
presents the non-Global (nG) flag in translation table entries. By
clearing the flag, the corresponding pages come to be seen from
every task regardless of their ASID values. TCR_EL1 also has two
fields, EPD0 and EPD1, to enable and disable translation table walk
when using TTBR0_EL1 and TTBR1_EL1, respectively.

3 OVERVIEW

3.1 Core Idea

The high-level idea of PANIC is shown in Fig. 1. The protected
process runs at EL1 (i.e., the kernel mode) instead of EL0 (i.e., the
user mode). The regular memory regions, such as stack and heap,
are set to be P-Pages; the isolated memory region is set to be U-
Pages. The normal load/store instructions used in the untrusted
code can still access the regular memory region, but they are not
allowed to access the isolated memory region due to PAN’s pro-
tection. The trusted code is allowed to access the isolated memory
region by using the LSU instructions.

Compared with existing address-based and domain-based isola-
tion mechanisms, PANIC has two significant advantages:
• Accesses to isolated memory regions by untrusted code

are restricted by default. The address-based method needs
to instrument all load/store instructions in untrusted code to
restrict their access targets, which could cause serious code
bloat and poor performance. In PANIC, untrusted code needs
not to be modified at all, because its accesses to isolated memory
regions are restricted by default.

• Different instructions are used to access regular and iso-

lated memory regions. The domain-based method needs to
enable access to the isolated memory region before accessing
it, and disable access when it is finished. The frequent permis-
sion switching usually incurs high performance overhead. But,
such switching is not needed in PANIC due to it uses different
instructions to access the regular and isolated memory regions.

3.2 Threat Model

PANIC is designed to be a generic mechanism for intra-process
isolation. The protected programs can be either server programs

(e.g., Nginx web server) or client programs (e.g., browsers). We
assume the system software, e.g., the operating system and the hy-
pervisor, and the hardware are secure and trustworthy. We assume
the kernel enforces standard DEP—an executable page must not be
simultaneously mapped with write permissions.

We specifically consider three scenarios where PANIC can be
useful. Each has different assumptions of the adversary’s capa-
bilities. However, in all three scenarios, we assume the protected
programs may contain memory corruption vulnerabilities and the
adversary can exploit the vulnerabilities to obtain arbitrary memory
read/write primitives.

Scenario-1: Hardening CFI. We assume that memory corruption
defenses, such as CFI [7, 44–46, 58], are deployed to prevent the
adversary from hijacking the control flow after exploiting the mem-
ory corruption vulnerabilities. PANIC can be used to isolate the
shadow stack of CFI from the adversary. In this scenario, we assume
that the adversary cannot bypass CFI to alter the control flow. In
other words, CFI and PANIC protect each other. In a similar man-
ner, PANIC can also be used to harden other memory corruption
defenses such as protecting the random tags used in PACTight [26]
which is an implementation of CPI [33].

Scenario-2: Creating IEE. IEE is used to protect the complete ex-
ecution of the isolated component that stores all sensitive data and
code, thereby preventing the effect of the vulnerabilities in outside
components on the isolated component’s data. In this scenario, we
assume the adversary is capable of accessing arbitrary memory,
but also hijacking the control flow of the outside components by
exploiting the vulnerabilities. The goal of the attack is to leak or
corrupt the IEE data from the outside. However, we assume the
code inside the IEE created by PANIC is secure.

Scenario-3: Hardening JIT. The protected program has integrated
a just-in-time (JIT) compiler. The attack target of adversaries is to
break the integrity of the code cache and inject shellcode therein, i.e.,
attackers use the arbitrary write primitive to modify the code cache
directly. PANIC can be used to protect the code cache against such
attacks. In such a scenario, PANIC shares the same assumptions
with other isolation works, such as libmpk [48] and ERIM [51].

3.3 Key Challenges

We outline the following design challenges of PANIC.

C-1: Preventing accesses to the kernel. Once the protected
process runs in kernel mode, the EL-based isolation mechanism
can no longer prevent the protected process from accessing the
kernel. The PAN-based isolation mechanism cannot be used to
protect the kernel either, as it is already used in PANIC. That is, the
regular memory region can be accessed by the kernel code without
any restriction due to its P-Page settings. Existing methods that
switching page tables [5] or adjusting the virtual address range [15]
either rely on virtualization [15] or can not disable access of the
whole user/kernel space [10]. Therefore, a new method needs to
be introduced to both protect the kernel memory and protect the
kernel code from accessing the untrusted user memory.

C-2: Preventing abuses of sensitive instructions. When the
process runs in kernel mode, privileged instructions, which can not
be executed in user mode, become available. Attackers may abuse
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Fig. 2: The architecture overview of PANIC.

privileged instructions to launch more powerful attacks. However,
simply forbidding all privileged instructions is not enough. We
found that although some instructions are not privileged instruc-
tions, their execution has a security impact on the system. They
can be executed both in user mode and kernel mode. For example,
WFI instruction is equivalent to NOP when executed in user mode
but will cause the CPU to enter a low power state when executed
in kernel mode. That is, privileged instructions are only a subset of
sensitive instructions. Therefore, how to define, identify and handle
all sensitive instructions is challenging.

C-3: Providing more generic isolation capabilities. A straight-
forward use of PANIC is to store sensitive data in isolated mem-
ory regions and permit access to them with only LSU instruc-
tions. Therefore, it is straightforward to use PANIC to harden CFI
(scenario-1 in §3.2). But applying PANIC in scenario-2 and scenario-
3 is more challenging. For scenario-2, PAN can prevent outside code
(run in kernel mode) from directly accessing data in IEE (stored
in U-Pages), but if the outside code can perform arbitrary code
execution, it may leverage the code gadget inside the IEE to cor-
rupt the IEE data. For Scenario-3, an intuitive way to use PANIC
is to configure the code cache to be U-Pages with the writable and
executable permissions, and permit the JIT compiler to emit code
into it with LSU instructions. But at privileged levels, the hardware
enforces the DEP protection on U-Page, resulting in any U-Page
cannot have writable and executable permissions at the same time.

We will next introduce the overview of PANIC in §3.4 and detail
how we address each of these three challenges in §4, §5, and §6,
respectively.

3.4 Architecture Overview

An overview of PANIC’s architecture is shown in Fig. 2. The core
of PANIC is a kernel module that supports running user processes
securely in kernel mode. It identifies the target process that uses
PANIC at process startup and places it into kernel mode to run.
It includes three key components: memory management, runtime
shim and instruction scanner.

The runtime shim component is used to perform bidirectional
memory isolation between the kernel-mode process and the kernel
— preventing the untrusted user from accessing the kernel memory
and protecting the kernel from accessing the untrusted user mem-
ory. It is implemented as a transparent trampoline that interposes
all control transfers between the user and the kernel. It consists
of two parts: the user shim and the kernel shim. The user shim is
mapped into the address space of protected processes at load time

TCR_EL1

0

EPD0

1

EPD1

0

A1

TTBR0_EL1

ASIDu enable

Context 
Switch

User Shim

Kernel Shim

User 
Space

Kernel 
Space

User 
Space

Kernel 
Space

PC

PC

TCR_EL1

1

EPD0

0

EPD1

1

A1

TTBR1_EL1

ASIDk enable

User Shim

Kernel Shim

Unaccessible when the TLB entry missesUnaccessible

Fig. 3: Memory views in different context.

to mediate all communication with the kernel and to enable/dis-
able access to the kernel memory when needed. The kernel shim
cooperates with the user shim to transfer the control flow and
enables/disables access to user memory space as needed.

The instruction scanner component scans each code page of the
protected program at runtime, before they are mapped to be ex-
ecutable, and looks for sensitive instructions that may affect the
entire kernel. Once a sensitive instruction is identified, it will be
transformed in place to an instruction that can raise exceptions,
which can be captured by PANIC and emulated to produce the same
effect as executed in user mode.

The memory management component is used to configure the
regular and isolated memory regions, track the lifetime of the code
pages, and lock the isolated memory region and the user shim.
The regular memory region is configured to be P-Pages, and the
isolated memory region is configured to be U-Pages. When a code
page is about to appear in user space, it will notify the instruction
scanner component to scan sensitive instructions. Since the isolated
memory region and the user shim are only accessed (i.e., read, write
and execute) through instructions, any operations to them through
system calls are not allowed.

4 SHIM-BASED MEMORY ISOLATION

In this section, we introduce how PANIC achieve bidirectional
isolation between the protected process and the kernel.

4.1 Shim Design

As mentioned before, existing memory isolation works in ker-
nel [5, 15] cannot be used to achieve bidirectional isolation, as
they either rely on virtualization or cannot disable access of the
whole user/kernel space. To address this, we take advantage of the
separated user page tables and kernel page tables on ARM, and
enable and disable the user/kernel page table walk to switch access
permission of kernel/user space by using EPD0 and EPD1.

Therefore, shown in Fig. 3, we design a shim which is a sequence
of instructions that consists of two parts: the user shim and the ker-
nel shim. The user shim is mapped into the user space at load time
to interpose all communication with the kernel. This is achieved by
setting VBAR_EL1 register to point to the user shim in user. Excep-
tions are redirected to the user shim, it first exposes the kernel space
by setting the EPD1 field of TCR_EL1 register, and then jumps to
the kernel shim. The kernel shim conceals the user space by setting
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the EPD0 field of TCR_EL1 register. During exception returns, the
operations are opposite.

But the above method cannot prevent address translation if the
virtual-to-physical mapping is already cached in TLB, that is EPD0
and EPD1 are only effective when TLB is missed. Therefore, we
use ASID to isolate TLB entries that are used by the protected
process and the kernel. As shown in Fig. 3, PANIC assigns a unique
ASID (i.e., the ASIDu and the ASIDk) to the protected process
and the kernel, respectively, and stores them into TTBR0_EL1 and
TTBR1_EL1 registers. When jumping to the kernel, the user shim
also needs to switch the current ASID to the ASIDk by setting the
A1 field of TCR_EL1 register; when jumping back, the user shim
switches back to the ASIDu.

Note that all kernel memory pages are set to be non-Global pages
to ensure the isolation in TLB entries and other processes use only
one ASID as usual. The user shim can be accessed by both the
kernel and the user due to its virtual-to-physical mappings being
both cached in user and kernel TLB entries. But it is secure because
the user shim is trusted and protected by the PANIC module to
ensure that it cannot be corrupted.

4.2 Self Protection of User Shim

Except for sensitive instructions used in the user shim, such as
those configuring TCR_EL1 register, all sensitive instructions in user
code pages are disallowed (see §5). Following the principle of least
privileges, the user shim has been designed as small as possible.
Moreover, as the user shim is not isolated from the user code, it
must ensure two properties to guarantee its security:
• Atomicity: The execution of the user shim can only start from
the entrance through exceptions. For example, jumping to the
middle of this sequence is not allowed;

• Determinacy: The execution sequence is deterministic in the
sense that it has the same behavior regardless of the current
environment, including all registers and the user memory.

4.2.1 Enforcing Atomicity and Determinacy. To ensure the first
property, PANIC performs exception context checking to ensure that
the user shim can only be executed from the entry point through
exceptions, jumping to the entrance or middle of the instruction
sequence cannot pass the check. To avoid unrecoverable destructive
effects [28] caused by hijacked execution of sensitive instructions
before the checking function, PANIC use debug registers to set break-
points at sensitive instructions, preventing their execution entirely.
Hence, abusing sensitive instructions will trigger breakpoint excep-
tions; To ensure the second property, the sequence of instructions
in the user shim is carefully designed so that they do not access the
user space memory, and registers must be defined before being used.

Listing 1 gives the complete instruction sequence used in the
user shim. This instruction sequence is stored only on one code
page. It consists of two parts: user_shim_vectors (lines 37-42) and
user_shim_exit (lines 44-45). The user_shim_vectors are configured
as the exception entries by setting VBAR_EL1 register. Although
there are 16 entries (vectors) for the user_shim_vectors, only the
first four are valid due to running in kernel mode. Each entry code is
expanded by the macro function entry_routine. The user_shim_exit

1 .macro entry_routine, n:req, t:req ## n: num of debug register
2 ## t: type of exception
3 .align 7 ## align to 0x80 bytes
4 msr tpidrro_el0, x30 ## 1) spill x30 as the temp register
5 msr dbgbvr\n\()_el1, xzr ## 2) clear breakpoint at label 1
6 isb ## ; instruction barrier
7 mrs x30, tcr_el1 ## 3) get current tcr_el1
8 movk x30, 0x7550, lsl 16 ## ; toggle fields: EPD1 = 0, A1 = 1
9 1: msr tcr_el1, x30 ## ; set tcr_el1 (label 1)
10 adr x30, 1b ## 4) get the address of label 1
11 msr dbgbvr\n\()_el1, x30 ## ; set breakpoint at label 1
12 isb ## ; instruction barrier
13 mrs x30, spsel ## 5) get current SPSel
14 cbnz x30, 2f ## ; check if SPSel == 0
15 brk 0 ## ; break when SPSel == 0
16 2: ldr x30, kern\()_shim\()_\t ## 6) load kernel_shim's location
17 ret ## ; jump to kernel shim
18 .endm
19
20 .macro exit_routine, n:req ## n: num of debug register
21 msr dbgbvr\n\()_el1, xzr ## 1) clear breakpoint at label 3
22 isb ## ; instruction barrier
23 mrs x30, tcr_el1 ## 2) get current tcr_el1
24 movk x30, 0x7590, lsl 16 ## ; toggle fields: EPD1 = 1, A1 = 0
25 3: msr tcr_el1, x30 ## ; set tcr_el1 (label 3)
26 adr x30, 3b ## 3) get the address of label 3
27 msr dbgbvr\n\()_el1, x30 ## ; set breakpoint at label 3
28 isb ## ; instruction barrier
29 mrs x30, spsel ## 4) get current SPSel
30 cbnz x30, 4f ## ; check if SPSel == 0
31 brk 0 ## ; break when SPSel == 0
32 4: mrs x30, tpidrro_el0 ## 5) restore x30
33 msr tpidrro_el0, xzr ## ; clear tpidrro_el0
34 eret ## 6) return to user context
35 .endm
36
37 user_shim_vectors:
38 entry_routine 0, sync ## set entry routine for Sync
39 entry_routine 1, irq ## set entry routine for IRQ
40 entry_routine 2, fiq ## set entry routine for FIQ
41 entry_routine 3, serror ## set entry routine for SError
42 .space 0x600 ## the rest of the vectors are invalid
43
44 user_shim_exit:
45 exit_routine 4 ## set exit routine for all exceptions
46
47 kern_shim_sync: .dword ... ## Kernel shim's address for Sync
48 kern_shim_irq: .dword ... ## Kernel shim's address for IRQ
49 kern_shim_fiq: .dword ... ## Kernel shim's address for FRQ
50 kern_shim_serror: .dword ... ## Kernel shim's address for SError

Listing 1: The entry and exit routines in the user shim.

is the entry when switching back from the kernel shim. The code
of user_shim_exit is expanded by the macro function exit_routine.

In Listing 1, the lines without a background color contain func-
tional instructions, while the lines with a gray background are
security-related instructions. Five debug registers are reserved
for the protection of instructions that set TCR_EL1 register. Since
TPIDRRO_EL0 register is used to be the temporary register in the
whole system of Linux, it is used to store the value of the scratched
register X30 in PANIC. The instruction sequences in entry_routine
and exit_routine are similar. They work as follows:
• Step-1: Clear the debug register to enable the execution of
TCR_EL1 register setting instruction (lines 5-6 and lines 21-22).

• Step-2: Set TCR_EL1 register to enable (lines 7-9) and disable
(lines 23-25) the access to the kernel space.
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• Step-3: Reset the debug register to disable the execution of
TCR_EL1 register setting instruction (lines 10-12 and lines 26-
28).

• Step-4: Check SPSel register to ensure that currently running
under the exception context (lines 13-15 and lines 29-31). SPSel
could reveal the exception context because the protected process
uses SP_EL0 as its stack pointer and SP_EL1 is forced to be used
when taking exceptions.

• Step-5: Leave the user shim and then enter the kernel shim
(lines 16-17) or return from the exception (line 34).
Note that although the user shim uses a total of 5 debug registers,

we could reduce the number of registers to 2 by sharing most of
the code in the first four entry_routines.

4.2.2 Security Analysis. The code integrity of the user shim can be
ensured by the memory management component. The only attack
surface is the control-flow hijacking that jumps to an arbitrary
location in the instruction sequence. The user shim is designed to
thwart such attacks. To illustrate the defense design clearly, we
enumerate all situations in Table 1. Since abusing sensitive instruc-
tions used in the instruction sequence is the attackers’ goal, we list
them line by line in the table, and other consecutive non-sensitive
instructions occupy a separate row. Note that the MRS instruction
that reads TPIDRRO_EL0 register (line 32) is not a sensitive instruc-
tion, it can be used in user mode. Jumping to the different locations
of the instruction sequence can achieve different attack intentions.
For example, when the jump target is line 5 in Listing 1, attackers
can clear the breakpoint at line 9, and their intention is to corrupt
TCR_EL1 after disabling the execution protection at line 9. In sum,
the intentions can be summarized into five types:
• For the attack intentions ①, ③ and ④ in Table 1, the user shim
will trigger the breakpoint instruction exception (line 15 and
line 31 in Listing 1) due to the exception context checking;

• For the attack intention ② in Table 1, the user shim will trigger
the breakpoint exception (line 9 and line 25 in Listing 1) due to
the protection of debug register;

• For the attack intention ⑤, the user shim will trigger the break-
point instruction exception when jumping to BRK instruction,
or trigger the translation fault (a synchronous exception) when
jumping to the instructions that enter the kernel shim (line 16
in Listing 1) due to the kernel space is unaccessible, or rebound
to execute the user instructions when jumping to use RET/ERET
instructions. Note that ELR_ELx and SPSR_EL1 used in ERET in-
struction are privileged registers that only record the context
of the most recent exception triggered in user space. Executing
ERET instruction will only return to the location of the last user
exception without any security issues;
Any exceptions triggered in the user shim will enter into the

entry_routine and jump to the kernel shim, its behavior is deter-
mined and cannot be manipulated. The kernel shim will check the
exception address, and if the exception occurs in the user shim,
the target process will be killed immediately. This is because the
legitimate execution of the user shim must come from exceptions,
and interrupts are disabled by the CPU when taking on exceptions.
Since attackers cannot disable interrupts when executing the code

Jump

Target

Lines in Listing 1
Attack Intention

Defensive Act.

Entry Exit Entry Exit
. . . . . . 1-3 -

① Enable access to
the kernel space A1write tpidrro 4 -

write dbgbvr 5 21
. . . . . . 6 22

② Bypass the debug
register’s protection to
corrupt TCR_EL1

A2read tcr 7 23
. . . . . . 8 24
write tcr 9 25
. . . . . . 10 26 ③ Corrupt debug register

to disable its protection A1write dbgbvr 11 27
. . . . . . 12 28 ④ Bypass the TCR_EL1

setting instruction A1read spsel 13 29
. . . . . . 14-17 30-32 ⑤ Bypass the context

checking to control
the jumping target

A1/A3 A1/A4
write tpidrro - 33 A4
eret - 34 A4
Table 1: Our defense against the control-flow hijacking attacks. A1:

Breakpoint Instruction Exception; A2: Breakpoint Exception; A3:

Translation Fault; A4: Rebounding to User.

gadget in the user shim, the interrupts can reach at any time. It
also belongs to the case where an exception is triggered during
execution in the user shim, and its handling is the same as before.

5 SENSITIVE INSTRUCTIONS EMULATION

In this section, we will detail how sensitive instructions are
identified and handled.

5.1 Definition of Sensitive Instructions

Sensitive instructions include both privileged and unprivileged
instructions, as there are many unprivileged instructions whose
behaviors are different when running in different modes. The ad-
versary may exploit this difference to attack the system. Therefore,
we give a unified definition of sensitive instructions from the per-
spective of instruction behavior here.

Definition 5.1. For an instruction 𝑖 , we define its Instruction
Behavior 𝑏𝑚

𝑖,𝑐
as the changes in machine state that will be trig-

gered after the instruction 𝑖 is executed in the mode𝑚 with system
configuration 𝑐 , where 𝑚 ∈ {𝑘𝑒𝑟𝑛𝑒𝑙,𝑢𝑠𝑒𝑟 } and 𝑐 ∈ C, where C
is the power set of all possible permutations of values that sys-
tem control registers can take. When an instruction’s behavior is
UNDEFINED, executing the instruction will raise an Undefined
Instruction Exception.

Definition 5.2. An instruction is treated as a Sensitive Instruc-
tion if and only if it satisfies (1), i.e., under certain system configu-
rations, its behaviors in different modes are inconsistent.

∃𝑐 ∈ C, 𝑏𝑢𝑠𝑒𝑟𝑖,𝑐 ≠ 𝑏𝑘𝑒𝑟𝑛𝑒𝑙𝑖,𝑐 (1)

Definition 5.3. An instruction is an Unconditionally Sensitive

Instruction when it satisfies (1) and (2), i.e., under certain system
configurations, its behaviors in different modes are inconsistent, and
the behavior in user mode is always UNDEFINED.

∀𝑐 ∈ C, 𝑏𝑢𝑠𝑒𝑟𝑖,𝑐 = UNDEFINED (2)

Definition 5.4. An instruction is a Conditionally Sensitive

Instruction when it satisfies (1) and (3), i.e., under certain system
configurations, its behaviors in different modes are inconsistent, and
neither is UNDEFINED.

∃𝑐 ∈ C, 𝑏𝑢𝑠𝑒𝑟𝑖,𝑐 ≠ UNDEFINED ∧ 𝑏𝑘𝑒𝑟𝑛𝑒𝑙𝑖,𝑐 ≠ UNDEFINED (3)
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DC CGDSW, <Xt>

UDF EXECTRAP

m = user m = kernel

Cond.1 Cond.2

MSR TPIDR_EL0, <Xt>

m = user m = kernel

Cond.3 Cond.4 Cond.5 Cond.6

(b) Conditionally 
sensitive instruction

(a) Unconditionally 
sensitive instruction

TRAP EXEC TRAP EXEC

Fig. 4: Examples of sensitive instructions. UDF, TRAP and EXEC are be-

haviors. UDFmeans UNDEFINED, TRAPmeans triggering an exception

except for undefined instruction exceptions, and EXEC means that

the instruction can be executed without triggering an exception.

Apart from Definition 5.3 and Definition 5.4, there is another sit-
uation of sensitive instructions which is satisfied ∀𝑐 ∈ C, 𝑏𝑘𝑒𝑟𝑛𝑒𝑙

𝑖,𝑐
=

UNDEFINED ∧ ∃𝑐 ∈ C, 𝑏𝑢𝑠𝑒𝑟
𝑖,𝑐

≠ UNDEFINED. However, this situa-
tion does not exist in ARMv8-A instructions.

We dedicated 8 person-months to meticulously reviewing the
1,529 instructions in the ARMv8-A Architecture Reference Man-
ual [2]. Through careful review and experimentation, we were able
to document the behavior of each instruction under different modes
(i.e., kernel mode and user mode). We identified 874 sensitive in-
structions, including 530 unconditionally sensitive instructions and
344 conditionally sensitive instructions. Fig. 4 gives two examples of
different types of sensitive instructions. Cache maintenance instruc-
tion is an unconditionally sensitive instruction (Fig. 4(a)), while the
system registers writing instructions MSR are conditionally sensitive
instructions (Fig. 4(b)).

5.2 Handling Sensitive Instructions

As shown in Fig. 5, PANIC performs an on-the-fly binary in-
spection to identify sensitive instructions. PANIC screens sensitive
instructions in each new code page (①) and transforms them to
instructions whose execution can raise exceptions (②), captures
their execution at runtime and then emulates their behavior in
user mode (③). In detail, PANIC filters each 4-byte instruction en-
coding in a soon-to-be-mapped code page to determine if it is an
unconditionally or conditionally sensitive instruction. For an uncon-
ditionally sensitive instruction, PANIC transforms it in-place to an
UDF instruction whose execution can raise an undefined instruction
exception; for a conditionally sensitive instruction, PANIC trans-
forms it to a BRK instruction whose execution can raise a breakpoint
instruction exception. As shown in Fig. 5 ③, when an uncondition-
ally sensitive instruction is identified, PANIC appends it to an array
map and transforms it to BRK instruction whose immediate operand
imm is the current index of the array map. As the value range of the
BRK operand is from 0 to 0xFFFF, the size of the array map is set to
0x10000. When the upper limit of the array map is exceeded, the
subsequent instruction will be transformed to BRK instruction with
the same operand 0xFFFF. The original instruction will be recorded
into a hash map which is indexed by using its address.

PANIC emulates both conditionally and unconditionally sensi-
tive instruction once these exceptions are captured. For uncondi-
tionally sensitive instructions, it injects an undefined instruction
exception. For conditionally sensitive instructions, PANIC locates
the original instruction by indexing the array map using ESR_EL1
register which encodes the value of BRK’s operand, and emulates
the behaviors of the original instruction accordingly.

Array Map

Encoding

Unco.

Cond.

Hash Map

Program counter

#imm

③ Emulation

Code Page

② Transformation

Hash table 1

① Filtering

Hash table 2

Inst-1

…

Ref. by PC

Inst-0x1001

…

Kernel space Kernel space

BRK 
#<imm>

UDF

Capture

Fig. 5: The workflow of the sensitive instruction handling.

APIs Descriptions

void * panic_alloc_region(int len, int prot, void ** cptr) Allocate an isolated mem. region
int panic_free_region(void *dptr, void *cptr, int len) Free an isolated region

int panic_read(void *dst, void * src, int len) Read data from the isolated region
int panic_write(void *dst, void * src, int len) Write data to the isolated region
int panic_emit_code(void *dptr, void *src, int len) Write code to the isolated region

panic_register_entry(func_name, ret_type, arg_type, ...) Register an entry function of IEE
panic_register_exit(func_name, ret_type, arg_type, ...) Register an exit function of IEE
#pragma panic_iee Identify the code file used in IEE
int panic_copy_from_untrust(void *to, void *from, int len) Copy data from outside memory
int panic_copy_to_untrust(void *to, void *from, int len) Copy data into outside memory

Table 2: PANIC APIs.

Note that the DEP protection of each code page is enforced to
prevent injecting sensitive instructions after screening, which is
usually called time-of-check to time-of-use (TOCTTOU) attacks.

5.3 Optimization

We further perform the following optimizations to reduce per-
formance penalties introduced by sensitive instruction handling.

5.3.1 Reducing Transformation. In fact, the number of condition-
ally sensitive instructions we need to capture is much less than the
344 mentioned above. This is because we observed that for most
default system configurations, many conditionally sensitive instruc-
tions behave the same in different modes. Hence, there is no need
to capture their execution under the specific system configuration.
For example, as shown in Fig. 4 (b), when system configuration 𝑐′ is
satisfied𝐶𝑜𝑛𝑑.4∧𝐶𝑜𝑛𝑑.6, its behaviors are the same in both kernel
and user modes. But we should note that if the system configura-
tion changes, these instructions’ behaviors may be not the same
at different modes and they should be captured again. To achieve
this, PANIC checks whether the system configuration has changed
when the control flow returns to the user. If it is, PANIC updates
the classification strategy, restores instructions in the array map
and the hash map, and re-scans all code pages.

5.3.2 Fast Encoding Filtering. We design a hash-based filtering
method to quickly determine if a given instruction encoding is an
unconditionally or conditionally sensitive instruction. We found
that the encodings of many system instructions, including those
accessing system registers/special-purpose registers, performing
cache/TLB maintenance and address translation, etc., are contin-
uous [9]. To avoid the handling of hash collisions, we use two
separate hash tables to store non-sensitive instructions which are
the system instructions and sensitive instructions that are not the
system instructions, respectively. PANIC first determines whether
an instruction is a system instruction based on the bits 19-31 of
the instruction’s encoding, and then searches in the corresponding
hash table according to the instruction type.
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6 PANIC-BASED MEMORY ISOLATION

PANIC can be used to construct different isolation scenarios. In
this section, we outline three scenarios, i.e., protecting CFI (see §6.2),
creating isolated execution environments (§6.3), and hardening
JITed code (§6.4). We will first outline PANIC APIs with which
applications can be built to make use of PANIC (see §6.1).

6.1 PANIC APIs

As shown in Table 2, a set of APIs is provided for users. The
APIs are divided into three categories. The first category con-
sists of APIs for managing isolated regions. Users could use the
panic_alloc_region() and the panic_free_region() to allo-
cate and de-allocate an isolated memory region. If the executable
and writable permissions are specified simultaneously in the ar-
gument prot, the return value of the panic_alloc_region() will
point to a writable isolated memory region, and the argument cptr
will point to the shared regular memory region with the executable
permission. The second category consists of APIs for accessing
isolated memory regions. Users could read and write isolated mem-
ory regions by using the panic_read() and the panic_write().
The panic_emit_code() is used to emit code to isolated memory
regions, it will inspect the sensitive instructions in a secure way
(see §6.4). The third category of APIs is designed to support IEE.
The panic_register_entry() and the panic_register_exit()
are used to register the valid entry and exit functions of IEE, and
they are only hints for our compilers. The #pragma panic_iee
is a hint, which can be placed at the beginning of source files,
to specify the file whose code and data need to be placed into the
IEE. Two API functions, the panic_copy_from_untrust() and the
panic_copy_to_untrust(), are used in IEE to exchange the data
between the IEE memory and the outside memory.

Users should adopt our compiler and link the PANIC library
to use these APIs. The compiler is implemented using the LLVM
framework. It has two main tasks: 1) separating data in the code
segment; 2) emitting the IEE code to only use LSU memory access
instructions. Separating data in the code segment is essential, be-
cause the mixed data may be misidentified as sensitive instructions
and the transformation may affect their normal execution. This op-
eration should be performed not only on the protected application,
but also on its dependent libraries. Besides handling programs by
using our compiler, we also provide a binary rewrite tool to handle
binary programs without source code (see Appendix A).

6.2 Hardening CFI Defenses

As shown in Fig. 6 (a), memory-corruption defenses like CFI
could protect their metadata, such as the shadow stack, by storing
it in the isolated memory region. The normal memory access in-
structions used in applications cannot access the isolated memory
region due to PAN’s protection, while the CFI defense code could
still access it by using LSU instructions. LSU instructions cannot
exist in application code; they must be transformed to normal load-
/store instructions. It is simple that they need only flip the 11th bit
of the LSU instruction’s encoding.

PANIC-vDSO (P, rx)

JIT Compiler

Cache (U, rw)

LSU

Code (P, rx)

Cache (P, rx)

share physical mem.

IEE

Untrust Code (P, rx)

Trusted Code(P, rx)

UAO Gate(P, rx)

Trusted Data (U, rw)

LSU

Control Flow Transfer Data Access Isolated Region

Runtime Defense

Metadata (U, rw)

Data (P, rw)

LSU

LS
Code (P, rx)

(a) (b) (c)

IEE-protected Region

Fig. 6: The common scenarios of PANIC-based isolation.

6.3 Creating Isolated Execution Environment

As shown in Fig. 6 (b), PANIC creates an isolated execution
environment (IEE) for holding trusted code and data. PANIC ensures
that only the code in IEE can access the data in IEE. All data used
in IEE is configured to use U-Pages, including the global data, the
stack, and the heap. During compilation, our compiler identifies
and emits all global data into a specific data section. Note that the
compiler optimization that promotes the data into the instruction’s
immediate operands is disabled when compiling the IEE code.When
loading the program, the PANIC module identifies this data section
and set it to be U-Pages. Meanwhile, the PANIC module allocates
an isolation memory region as the stack of IEE and notify the IEE
code by embedding the stack’s location into its data. For the heap,
the IEE code must allocate the dynamic memory region by calling
the allocation API in PANIC. All IEE code is emitted to only use
LSU instructions that ensure the code can access the IEE data.

UAO-based gate. To prevent the outside code from using LSU
instructions directly or abuse the LSU instructions in the IEE code
indirectly, we propose a UAO-based gate method for IEE isolation
(shown in Fig. 7). The entry gate is used to disable UAO, which
enables the access of the IEE code to the IEE data, and pivots the
stack to use the IEE stack. The exit gate performs the opposite
operations. Once the IEE exits, LSU instructions cannot be used to
access the IEE data because UAO is enabled again. Hence, only the
control flow entering from the entry can access the IEE data. To
ensure all control flows out of the IEE must go through the exit gate,
the coarse-grained control flow integrity mechanism is enforced
on the IEE code. In PANIC, the UAO setting instruction (i.e., MSR
UAO, #imm) is not allowed to be used in the outside code pages by
preventing its occurrence when screening code pages. Hence, the
outside code cannot set UAO unless invoking the IEE gates.

UAO-based scheme versus PAN-based scheme. It should be
noted that switching PANs can achieve a similar but not identical
effect. Switching PAN can control the access of LS instructions to
isolated regions (U-pages). However, unlike this PAN-based scheme,
the UAO-based scheme achieves bi-directional isolation based on
the property that LSU instructions can only access U-pages when
UAO is turned off, and LSU instructions can only access S-pages
when UAO is turned on, preventing possible attack surfaces brought
about by accessing memory across isolation boundaries by the
access instructions. In contrast, the LS instructions used by the
PAN-based scheme to access isolated memory do not distinguish
whether the accessed memory is U-pages or not.

Users could specify the entry functions of IEE, which are the
valid entry points of an IEE. They are only the entries that can be
called from the outside. Similarly, users could also specify the exit
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Code outside of IEE

Entry_A

Entry Gate

call Func_B

Exit Gate

Func_B

Exit Gate
call Exit_C

Exit_CMain

Code inside of IEE

Execution Flow

……

……

……

……
Entry Gate

msr uao, 0

# … stack_pivot … 

Entry Gate

# … stack_pivot … 

msr uao, 1

Exit Gate

Function

Fig. 7: The execution flow of applications protected by IEE.

functions in the outside, which will be called by the IEE. Fig. 7 gives
an example of IEE. Entry_A is an entry function, and Exit_C is an
exit function. The entry gate and exit gate are instrumented in the
entry and exit points of Entry_A, respectively. When the control
flow is transferred from Func_B to Exit_C, the exit gate and entry
gate need to be inserted before and after the call sites.

6.4 Protecting JITed Code

The hardware enforces the DEP protection on U-Pages in kernel
mode. Hence, when using PANIC to protect JITed code, as the
JIT compiler now runs in kernel mode, the code cache is DEP-
protected. Therefore, the generation and execution of the JITed code
need to change the permission of the code cache which will incur
high overhead. To address this, we propose a shared memory-based
execution and write separation method (shown in Fig. 6 (c)). Two
shared memory regions are allocated, one is the regular memory
region with readable and executable permissions for executing the
JITed code, and the other one is the isolated memory region with
readable and writable permissions for emitting the JITed code.

Ensuring the security of JITed code. As mentioned before, sensi-
tive instructions may be abused to corrupt the system. The PANIC
module does not trust the user code and performs the binary inspec-
tion for each code page at runtime. The JITed code also needs to
be screened, but using the PANIC module to perform such screen-
ing is not an efficient way as every screening request causes the
context switch. To address this, we propose to offload such screen-
ing into the user context which is inspired by the vDSO in Linux:
PANIC maps a PANIC-vDSO library into the user space along with
the writable code cache. Only this library can write the code to be
issued into the code cache, it will inspect every issued instruction,
just like the PANIC module. This library is trusted and protected
by the PANIC module. To prevent arbitrary execution of the library
code from writing sensitive instructions into the code cache, we
use the aforementioned IEE technique (Fig. 6) to hold the whole
execution of the PANIC-vDSO. During the execution, if there are
breakpoint instruction exceptions coming from the code cache, the
PANIC module emulates the execution of sensitive instructions
by using the record table in this library. When the system config-
uration changes, the record table in the library will be updated
accordingly. Note that the PANIC module enforces that the UAO
setting instructions can only be used in the PANIC-vDSO.

7 IMPLEMENTATION

PANIC is designed and implemented on the Linux/AArch64 plat-
form. The PANIC kernel module is implemented with 2,362 lines of
C code and 422 lines of assembly code. The PANIC library, which

offers APIs, contains 130 lines of C code. And the PANIC-vDSO
contains 133 lines of C code. Our compiler is implemented based
on LLVM by adding several back-end passes. One back-end pass,
used to separate code and data, contains 120 lines of C++ code, and
the other passes are related to IEE support which contains 787 lines
of C++ code. The binary rewrite tool that separates code and data
contains 743 lines of Python code.

In the following paragraphs, we will introduce the implementa-
tion details of specific protection scenarios.

Protecting the shadow stack. Existing defenses [36, 37] mainly
protect return addresses by using PA on AArch64, but they suffer
from the pointer reuse attacks [26]. Shadow stack is a powerful
method to protect the return addresses by storing them in a sepa-
rate memory region. Ensuring the integrity of the shadow stack on
AArch64 is hard due to the lack of an efficient memory isolation
mechanism. PANIC can be used to address this problem by placing
the shadow stack into an isolated memory region. Users could use
the panic_alloc_region() to allocate an isolated memory region
for holding the shadow stack. Users could call the panic_write()
to store the return address into the shadow stack after calling a func-
tion and then call the panic_read() to restore the return address
before the function returns.

Protecting the session keys in OpenSSL. OpenSSL is a toolkit
for general-purpose cryptography and secure communication that
is widely used in web servers. To protect the session keys in the
OpenSSL library, we use the method mentioned in CryptoMPK [29]
to identify all operations related to the AES session keys, including
all functions and relevant data, and move them to a dedicated
file which will be compiled into the IEE by using the #pragma
panic_iee in the file header. Then, the panic_register_entry()
and the panic_register_exit() are used to register the entry
functions and exit functions of the IEE. For the memory objects that
are accessed by both the IEE code and the outside code, we duplicate
them and use two APIs, the panic_copy_from_untrust() and the
panic_copy_to_untrust(), to perform the synchronization.

Protecting the JITed code in JavaScriptCore. JavaScriptCore
(JSC) is a JavaScript engine utilized in the widely-used browser,
Safari. On the Linux/AArch64, the code cache in it is configured
to have both the executable and the writable permissions by de-
fault that can be attacked by injecting the malicious code directly.
We deploy PANIC to protect the code cache of the JSC. The JSC
is modified to use the panic_alloc_region() with the execution
permission in the argument prot to allocate an isolated memory
region for the writable code cache and a regular memory region for
the executable code cache, and then use the panic_emit_code() to
emit the code. The panic_emit_code() in the PANIC-vDSO will in-
spect the instructions to be emitted and then write the transformed
instructions into the isolated code cache.

8 EVALUATION

In §4 and §5, we identified and resolved security threats of run-
ning user code in kernel mode. Therefore, by design, PANIC does
not introduce new security issues. So in this section, we focus on
the performance evaluation of PANIC. We implemented PANIC on
Linux kernel v5.19.4 that runs on a Mac mini with an 8-core M1
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Fig. 8: Performance overhead on the SPEC CPU2017 C/C++ benchmarks when using PACStack/SS-IH/SS-PANIC to protect return addresses. All

overheads are normalized to the unprotected benchmarks. SS-IH denotes the shadow stack mechanism protected by the information hiding

technique, SS-PANIC denotes the shadow stack mechanism protected by PANIC.

Inst.

Memory Access Operations Call Operations

LDR LDTR STR STTR BR MSR UAO SVC

Cycles 0.53 0.51 1.02 1.01 2.98 12.02 145.37
Table 3: Latency of basic operations and their comparing instructions

that are measured 10 million times on Apple M1 processors.

CPU with PA supported and 16 GB RAM. The Apple M1 proces-
sor is equipped with four performance cores and four efficiency
cores, and all experiments were conducted on performance cores.
All benchmarks used in our experiments were compiled using the
Clang v14.0.1 at the O2 optimization level.

8.1 Evaluating Basic Operations

As mentioned before, PANIC can be used to provide generic
intra-process memory isolation. The PANIC-based memory iso-
lation mainly uses two basic operations, i.e., LSU and UAO. The
performance of the LSU instruction is crucial to the performance of
all PANIC-based memory isolation mechanisms; the performance
of the UAO setting instruction is the key to the performance of en-
tering and exiting IEE. In light of this, we evaluated the performance
of such two operations in this experiment.

Measuring the LSU instruction. As memory access instructions,
the LSU instructions (i.e., LDTR and STTR) were compared with the
normal load and store instructions, LDR and STR. We assessed the
latency of these four instructions under controlled cache hits. The
target address of each memory access instruction was cache-line
aligned in this experiment. Table 3 gives the experimental results.
We can see the LSU instructions are as fast as normal load/store
instructions, which is encouraging and implies the high isolation
efficiency of the PANIC-based memory isolation.

Measuring the UAO setting instruction. The UAO setting in-
struction is the core of the IEE gates. We chose three traditional
implementations of IEE as compared targets: 1) page table manip-
ulation technique that enables and disables the access permission
of IEE when entering and exiting IEE; 2) privilege switching tech-
nique that isolates IEE at a higher privileged level and switches
privilege level when entering and exiting IEE; 3) remote procedure
call technique that isolates IEE to other processes. SVC instruction is
essential in them because the entry and the exit of IEE need to trap
into privileged levels. Therefore, we chose the core instruction SVC
used in these techniques as our compared target. In addition, we
selected the standard call instruction BR as the baseline instruction.
The experimental results are shown in Table 3. We can see that the

Config

null

call

null

I/O

stat

open/

close

slct

TCP

sig

inst

sig

hndl

fork

proc

Mmap

Latency

Page

Fault

Native 0.15 0.20 3.29 5.84 3.34 0.25 4.18 454.3 21.1K 0.47
PANIC 0.28 0.57 5.38 9.56 4.62 0.82 4.66 604.3 22.2K 0.63

Slowdown 86.7% 180.3% 63.5% 63.8% 38.2% 228% 11.3% 32.5% 5.4% 32.7%

Table 4: Performance slowdown on the lmbench.

UAO setting instruction is 11 times faster than the SVC instruction,
which implies the efficiency of the UAO-based gate in IEE.

8.2 Evaluating Kernel Operations

PANIC needs to interpose all control flow between the user and
kernel, which changes the way users interact with the kernel which
will affect the performance of kernel operations. We used lmbench
v3.0-a9 to measure the overhead imposed by PANIC on basic kernel
operations. The experimental results are shown in Table 4. The
geometric mean of PANIC’s overhead is 45.2%. In particular, it
incurs significant overhead in handling lightweight system calls
(bold font in the table). This is in fact expected — the lightweight
system call tests are mainly used to test the latency of trapping
into the kernel. For example, null call only invokes the getppid()
system call which involves very little kernel operation in a loop. In
contrast, PANIC needs additional isolation operations in shim. As
a result, system calls with simple kernel operations tend to have
higher performance overheads with PANIC.

8.3 Protecting Shadow Stack in CFI

We chose the shadow stack as our protected target. The shadow
stack was implemented based on the shadow call stack instrumen-
tation pass in LLVM [39]. Its integrity is ensured by using the
information hiding technique that places it at a random location.
This probability-based pseudo-isolation technique has been proven
vulnerable [18, 19, 22, 47, 54, 55]. PANIC is used to conduct strict
isolation protection for the shadow stack. For comparison, we also
used LLVM compiler’s default return address protection (LLVM-
PAC) [40] and the state-of-the-art mechanism PACStack [36] to
protect return addresses by using ARM PA [2]. Note that PACStack
still suffers from pointer reuse attacks [26], whereas the shadow
stack does not.

Fig. 8 illustrates the overhead on SPEC CPU2017 C/C++ bench-
marks when using the above four mechanisms to protect return
addresses. The results show that when using LLVMPAC, PACStack,
the shadow stack with the probabilistic protection and the shadow
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Fig. 9: Performance overhead on Nginx incurred by PANIC.

stack with PANIC’s protection to protect return addresses, the geo-
metric mean of the performance overhead is 0.92%, 2.81%, 0.95%,
and 1%, respectively. We can see that PANIC incurs negligible over-
head compared to the information hiding technique, but provides
stronger security guarantees. And the shadow stack mechanism
equipped with PANIC performs better than PACStack on aver-
age. We can also see that some cases incur higher performance
overheads, such as 500.perlbench_r, 502.gcc_r, 600.perlbench_s and
602.gcc_s. This is because the function calls and returns are very
frequent in these cases which cause frequent return address sign-
ing and authentication in PACStack and frequent accesses to the
shadow stack.

8.4 Protecting Session Keys in Nginx+OpenSSL

We used the PANIC-based IEE to protect SSL session keys (and
relevant operations) of OpenSSL-v1.1.1 in a high performance web
server, Nginx-v1.12.1. Nginx was configured to only use ECDHE-
RSA-AES128-GCM-SHA256 cipher and AES encryption for sessions.
It started 4 worker processes, and each was pinned to a different
CPU performance core. We used 4 concurrent ApacheBench (ab)
instances to simulate 200 concurrent clients constantly sending
100,000 requests to transfer a file remotely. Similar to the existing
work [51], we varied the size of the requested file, i.e., 1K, 2K, 4K,
8K, 16K, 32K, 64K, 128K.

As shown in Fig. 9, the performance overhead (geo_mean) of
Nginx under the protection of PANIC is 4.94%. When the file is
small, such as 1KB, the performance overhead is 10.92%, and when
the size reaches 128KB, the performance overhead is 0.98%. We can
see that as the requested file size increases, the overheads decline.

8.5 Protecting JITed Code of JavaScriptCore

To evaluate the practicality and performance of PANIC to pro-
tect JITed code, we applied PANIC to protect the code cache of
JavaScriptCore-v2.38.3 (JSC). For comparison, we also implemented
the mprotect() system call based protection that enables and dis-
ables the writable permission when emitting the code. We evalu-
ated their performance overheads with the Octane benchmark [20],
which is the JIT-heavy benchmark at runtime. Each JavaScript pro-
gram in the benchmarks was executed 50 times, and we calculated
the average score.

Fig. 10 shows the performance overhead on the Octane bench-
mark. The baseline is the unmodified JSC on the Octane which
does not apply any memory protection on the code cache (has both
the writable and the executable permissions). We can see that the
mprotect-based protection incurs a geometric average overhead of
2.72%, and PANIC incurs a geometric mean overhead of 0.83%. The
mprotect-based protection incurs higher overheads on some test
cases, such as DeltaBlue, SplayLatency and Typescript. This is due
to these cases triggering more frequent JIT operations that cause
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Fig. 10: Performance overhead on the Octane benchmark
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DC CGDSW, DC CSW…
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LDAR, LDARB…
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Fig. 11: Number of instructions of different types under the default

system configuration.

the frequent invoking of the mprotect(). PANIC incurs higher
overheads on MandreelLatency and Typescript than other cases. It
is because they trigger more code to be emitted that causes more
frequent instruction inspections in the PANIC-vDSO library.

8.6 Statistics of Sensitive Instructions

As mentioned in §5.1, sensitive instructions can be conditionally
or unconditionally. And conditionally sensitive instructions can
be further subdivided according to the system configuration. In
this experiment, we counted the classification results of sensitive
instructions and the number of sensitive instructions encountered
when running benchmarks.

Fig. 11 gives the classification results. Cond.(ignore) means con-
ditionally sensitive instructions that do not require handling since
their behavior is the same in different modes under the default
system configuration in our experiments; Cond.(emu) means condi-
tionally sensitive instructions that require capturing and emulating.
We can see that among 1,529 instructions, there are 530 uncon-
ditionally sensitive instructions and 344 conditionally sensitive
instructions. There are 274 conditionally sensitive instructions that
do not require handling, such as DC CIVAC, and only 70 condition-
ally sensitive instructions need to be handled, such as MRS <Xt>,
CTR_EL0.

Table 5 shows the number of sensitive instructions encountered
when running all benchmarks used in our experiments. We can
see that no unconditionally sensitive instructions appeared, all
Cond.(ignore) instructions do not need to be handled, and only a few
sensitive instructions list in row Cond.(emu) need to be transformed.
We also found that all Cond.(emu) instructions occurred in the
libraries. We only transform Uncond. and Cond.(emu) instructions
during the runtime screening, and the screening speed is 691.37
KB/ms.

9 RELATEDWORK

Running user code at privileged level. Existing works [6, 21, 32,
41, 53] that run code at privileged level are all implemented on X86.
Similar to PANIC, SEIMI [53] runs an untrusted process in ring 0
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Uncond. 0 0 0 0 0 0 0 0 0
Cond.(ignore) 315K 316K 318K 317K 318K 321K 315K 316K 320K
Cond.(emu) 0 0 0 0 0 0 0 0 0

Type Mand. Game. C.L. Box. zlib Type.

Uncond. 0 0 0 0 0 0
Cond.(ignore) 318K 322K 317K 319K 317K 373K
Cond.(emu) 0 0 0 0 0 0

Table 5: The number of sensitive instructions that appeared when

running benchmarks.

of the VMX non-root mode based on Intel VT-x [25], and leverages
Intel Supervisor Memory Access Prevention (SMAP) to provide
the intra-process memory isolation for sensitive data. SEIMI relies
on virtualization, which incurs additional performance overhead.
Compared with SEIMI, PANIC does not need to rely on virtualiza-
tion, and avoids frequent domain switching. Running user code at
privileged level can also be applied in other scenarios. For example,
Dune [6] supports a secure and trusted process running in ring 0
of the VMX non-root mode, allowing the process to manage the
exceptions and page table. DangZero [21] proposes an efficient
use-after-free detection method. Dune and DangZero ensure sys-
tem security based on virtualization. KML [41] runs a program at
privileged level, which is written in a typed assembly language
and passed the kernel’s security checking, thus achieving the faster
system call invocation. Similar to KML, Privbox [32] proposes a
faster system call invocation method, and it uses instrumented
(sandboxed) code to ensure system security.

Use of Load/Store Unprivileged Instructions. The LSU instruc-
tions have already been explored for security [3, 14, 34, 59]. How-
ever, these works differ from PANIC in both application and im-
plementation. To protect embedded systems on ARM Cortex-M
processors, Silhouette [59] proposes a shadow stack mechanism
based on the LSU instructions against the control flow hijacking
attacks, uSFI [3] proposes to use the LSU instruction to isolate
untrusted modules, and uXOM [34] transforms normal load instruc-
tions to the LSU instructions to implement execute-only memory.
To protect the OS kernel on AArch64, ILDI [14] isolates the sensi-
tive data, such as page tables, into a safe region by using PAN and
LSU. Different from previous work to protect privileged software,
PANIC is proposed to use privileged hardware for protection by
running unprivileged software at a privileged level. That raises a
new security challenge — how to run unprivileged code at priv-
ileged level securely. Besides, PANIC also provides more generic
protection abilities by using UAO, such as protecting JITed code
and creating an isolated execution environment.

Intra-address space isolation on ARM. Apart from the works [3,
14, 34, 59] that use LSU to isolate data, there are other works explor-
ing other hardware features on ARM to conduct the isolation. As for

intra-process isolation, Shred [11] uses ARM memory domain [1]
that implements a domain isolation mechanism, but memory do-
main has been removed in AArch64. Another work [27] proposes
a method to isolate memory within a process using hardware de-
bugging, specifically by using a watchpoint to monitor a particular
memory region containing secret data. However, both setting a
watchpoint register and switching amemory domain require system
register settings, which require trapping into the kernel. Sealer [13]
encodes the encryption key that needs protection into the instruc-
tion and puts these instructions in an execution-only memory of the
user mode provided by AArch64, where only trusted code can exe-
cute this part of the code to obtain the data. However, this method
is not suitable for generic data protection, such as data that can be
modified dynamically. The works based on ARM Memory Tagging
Extension (MTE) [35, 42] color memory objects and restrict code
access to these objects by sanitizing pointer-dereference operations,
which accelerates the bound acquiring [42] and the bound check-
ing [35]. However, they require instrumenting all memory access
operations, leading to code bloating and performance overhead.

For in-kernel memory isolation, HAKC [42] proposes a kernel
compartmentalization enforcement mechanism by using PAC and
MTE, which needs lots of instrumentation on the kernel. SKEE [5]
chooses to configure different page tables for different components
and switches page tables during the component switching, it re-
lies on the hypervisor to achieve the secure page table switching.
Hilps [15] uses the method of adjusting TxSZ to control the acces-
sible virtual memory area to achieve in-kernel memory isolation.
TZ-RKP [4] proposes to use TrustZone on ARM to achieve isolation.

Intra-process memory isolation on X86. Existing works can
be divided into three categories: 1) The address-based method by
using Intel Memory Protection Extensions (MPX) [25] to accelerate
the bound-checking [7, 31]; 2) The domain-based method by using
various hardware features to accelerate the switching of access
permissions, such as using Intel Memory Protection Keys (MPK) [8,
23, 24, 29, 31, 48, 49, 51], using VMFUNC [24, 31, 38, 50], and using
Intel Supervisor Memory Access Prevention (SMAP) [53]; 3) The
specialized move method, similar to PANIC, uses different memory
access instructions to access isolated memory regions. IMIX [17]
and MicroStache [43] add new memory access instructions for
sensitive memory pages by extending the X86 ISA. CETIS [57]
achieves this method on commercial processors based on Intel
Control-flow Enforcement Technology (CET) [25]. However, CETIS
only ensures the integrity of isolated memory regions.

10 CONCLUSION

Intra-process memory isolation is a classical technique to im-
prove security within a process. In this paper, we propose PANIC,
an efficient and generic memory isolation technology based on
PAN and LSU in AArch64. To leverage such two features, securely
running the user process in kernel mode is needed. To this end,
PANIC propose two new techniques: shim-based memory isolation
and sensitive instruction emulation. PANIC provides a generic and
efficient isolation primitive that can be applied in three different
isolation scenarios. Experiments show that PANIC is more efficient
than existing methods.
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A SEPARATING OF CODE AND DATA

Since PANIC treats all encodes in code pages as instructions, the
data mixed in the code segment may be misidentified to be a sensi-
tive instruction, the transformation on it will affect the program’s
normal execution. Therefore, the data need to be separated from
the code segment.

A.1 Data Mixed With Code

We analyzed the source code of compiler/linker and all binaries
stored in the /usr directory in our experimental environment to
figure out all types of data that could be mixed in the code segment:
• Embedded data. It includes two data types: padding and lit-
erals. Padding is used to make the code alignment which is
never referenced. Literals are read-only data (i.e., constant val-
ues and addresses) that are often placed near the instruction
to which they are referred, which can reduce the number of
emitted instructions.

• ELF sections. During linking, the static linker usually bun-
dles the sections with compatible access permissions to form
a segment. For example, the read-only data sections (such as
.rodata and .gnu.hash sections) with the code section (e.g.,
.text section) into the code segment.

A.2 Tools to Conduct the Separation

To separate code and data, we provide two tools to process the
program with and without source code, respectively.

Compiling and linking tool. The compiling tool is used to avoid
emitting the embedded data: 1) Padding need not to be handled due
to its encodes are only the NOP instruction or zero whose encod-
ings are not sensitive; 2) For constant literals, PANIC chooses to
embed literals into the immediate operations of instructions. This
is done by modifying the AsmParser pass to transform the literals
referencing instructions to a semantically equivalent MOV and MOVK
instruction sequences; 3) For address literals, PANIC redirects them
to a newly created data section, which has only read permission.
The linking tool is used to avoid bundling other ELF sections into
code segment. This is achieved by adding the -z separate-code
option to linker during linking.

Binary rewriting tool.Wemainly use existing techniques [12, 16]
to separate code and data. Here, we only briefly introduce our
method. For embedded data, we collect the reference sites within
the code which are treated as the storing locations of embedded
data by performing the static binary analysis. Then, embedded data
is copied to a new read-only section and all relevant references
will be updated; For ELF sections, we identify and move them to
a new read-only segment, all references are also updated. The old

embedded data and ELF sections in code segment will be cleared to
zero.
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