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Abstract
Optimistic rollup protocols are widely adopted as the most popular
blockchain scaling solutions. As a dominant implementation, Ar-
bitrum has boasted a total locked value exceeding 18 billion USD,
highlighting the significance of optimistic rollups in blockchain
ecosystem. Despite their popularity, little research has been done
on the security of optimistic rollup protocols, and potential vulner-
abilities on them remain unknown.

In this work, we unveil three novel double spending attacks on
Arbitrum, each enabling an attacker to steal funds from cross-chain
applications on Arbitrum. To facilitate these double spending at-
tacks, we introduce an attack to induce manipulable delays in the
transaction rollup process and propose a cost optimization solu-
tion to reduce further transaction fees associated with the attacks.
Our investigations broaden the exploitation of our double spending
attacks to another leading optimistic rollup protocol, Optimism,
highlighting the generability of our proposed attacks. Through ex-
tensive experiments on a local test network, we demonstrated that
our attacks lead to severe malicious effects, such as fund losses from
double spending. From late 2022 to early 2023, we reported these
vulnerabilities to the Arbitrum and Optimism teams. All the issues
were acknowledged and resolved, and our research safeguarded
billions of dollars at risk, earning us half a million dollars in bug
bounty rewards.
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1 Introduction
Layer-2 (L2) protocols are essential solutions that improve the scal-
ability and transaction throughput of layer-1 (L1) blockchains like
Ethereum by executing transactions off the main chain while still
benefiting from the underlying blockchain’s security. Optimistic
rollups have emerged as one of the most popular layer 2 scaling
solutions for Ethereum [46], seeing their significant growth and
adoption [29]. Their main idea is to execute transactions on the L2
blockchains (rollups) and post transaction data to the L1 blockchain
as L1 transactions’ payload data [21]. Since the L2 blockchain’s
execution is based on the submitted transactions to L1 blockchain,
anyone can use the transaction data saved on the L1 blockchain
to maintain the L2 blockchain and verify the correctness of its
state transitions. Leading projects implementing optimistic rollups
include Arbitrum[2] and Optimism[4], whose total value locked
(TVL) have reached 18B and 7B US dollars[6], respectively.

Since transactions occur off the main blockchain, the security of
funds relies heavily on that of rollup protocols. Any vulnerabilities
in the rollup protocols can lead to loss of user funds. Unfortunately,
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there is few work focusing on their security. In this paper, we con-
duct a thorough analysis of the source code and documentation of
Arbitrum and discover a series of vulnerabilities (§6 and §7), which
can be exploited by attackers to launch double-spending attacks by
strategically triggering state rollback. We also uncovered some sim-
ilar vulnerabilities in Optimism (§6.4). Although these two popular
rollup protocols underwent continuous security audits conducted
by well-known security firms [48], none of the vulnerabilities re-
ported in this paper were identified. All of the vulnerabilities we
found have been acknowledged and fixed, and our research suc-
cessfully forestalled potential damages that could have escalated
into the billions. In recognition of our pivotal contributions, we
were awarded bug bounties by the official security team.

The vulnerabilities we found stem from deficiencies in three
aspects, i.e., i) the design of the time bound mechanism used to limit
the frequency and extent towhich L2 nodes can adjust timestamps[3],
ii) the liveness-preservation mechanism used to provide censorship
resistance when the sequencer becomes completely unresponsive
or even malicious[5], and iii) the transaction (de)compression mech-
anism used to further reduce transaction costs[1]. More precisely,
a transaction sent to Arbitrum will go through first soft finality,
when it is included in a L2 block produced by Arbitrum after being
executed by Arbitrum Nitro VM, and then hard finality, when it has
finality on L1 blockchain (e.g., Ethereum). Since third-party applica-
tions (e.g., cross-chain bridges) typically act upon transactions once
soft finality has been achieved, if an attacker can force Arbitrum to
rollback the state changes caused by the transactions at soft finality,
the attacker can successfully launch double-spending attacks. Note
that the discovered vulnerabilities can facilitate an attacker accom-
plishing this malicious aim. For example, an attacker can send a
transaction for depositing tokens from Arbitrum to another non-L1
chain via a third-party cross-chain bridge. Once the transaction
reaches the soft finality, the bridge will lock the tokens on the Ar-
bitrum side, and mint equivalent tokens on the other chain side,
enabling the attacker to use the corresponding tokens within the
target chain. Simultaneously, the attacker triggers exploits lever-
aging the state rollback vulnerabilities, compelling Arbitrum to
invalidate the preceding transaction. This, in turn, forces the bridge
to release the previously locked tokens to the attacker. Since the
equivalent tokens have already been minted on the target chain,
the attacker accomplishes double spending.

It is non-trivial to exploit these vulnerabilities because Arbitrum
adopts various mechanisms to ensure trustless security. We uncover
a new attack vector permitting the injection of manipulable delay to
the transactions sent to Arbitrum, making it possible to exploit the
aforementioned vulnerabilities (§5). More precisely, our insight is
to craft large incompressible data packets and affix them to swathes
of L2 transactions in order to deliberately trigger the creation of
transaction backlogs. However, this attacking approach may result
in a high transaction fee, which is charged by Arbitrum to balance
its overhead. To address this challenge, we propose a cost optimiza-
tion solution to further reduce the attack cost to a reasonable level
(§7). Moreover, we find that our attack strategy can also be abused
to manipulate posting fees for other users, adversely affecting other
Arbitrum users via rising transaction expenses. We further confirm
the corresponding double spending vulnerabilities on the other

representative Optimistic rollup, i.e., Optimism, highlighting the
generality of our proposed attacks.

By conducting experiments in our testbed, we demonstrate the
feasibility of launching the double-spending attacks on both Arbi-
trum and Optimism. Moreover, we conduct extensive experiments
to examine the impacts and the expenses associated with each pro-
posed attack. It is worth noting that mitigating these vulnerabilities
is non-trivial. Besides disclosing the vulnerabilities to Arbitrum and
Optimism, we also suggest remediation solutions for addressing
them. Both Arbitrum and Optimism have integrated new compo-
nents and executed a hard fork of the L2 blockchain to fix them.

In summary, we make the following major contributions.
• We conduct the first in-depth study of state rollback mechanisms
on Optimistic rollups, identifying the approaches through which
these mechanisms facilitate double spending on these rollups.

• We reveal the delay attacks that can inject manipulable delays
into the L2 transactions sent to Arbitrum, making it possible to
strategically manipulate and trigger state rollback mechanisms.

• We reveal three types of double spending attacks in Arbitrum,
which can cause fund losses of third-party cross-chain contracts
onArbitrum. Specifically, such attacks enable the theft of all funds
secured within the cross-chain contracts. We further confirm
that our attacks can also threaten other representative Optimistic
rollups like Optimism. Per data from [22], a conservative estimate
places the value of assets at risk in the billions of dollars.

• We conduct extensive experiments to demonstrate the feasibility
of these double-spending attacks and examine their impacts and
costs. Our experimental results demonstrate that all attacks can
lead to extreme malicious effects, including but not limited to
fund losses due to double spending.

2 Background
2.1 Optimistic Rollup Protocol Overview
The optimistic rollup is a kind of L2 protocol designed to boost the
throughput of Ethereum transactions. The gist of the optimistic
rollup protocol is to publish transaction data on L1 and process
transactions on L2, so as to reduce computation on L1. Although
various projects have different implementations of the protocol, we
abstract the protocol in a unified way to facilitate the description.
As illustrated in Figure 1, the L2 ecosystem consists of a L2 node
including a sequencer, a batch submitter, and validators, all of which
frequently interact with smart contracts deployed on L1.

L2 Node. The L2 node serves as the execution engine for the L2
blockchain, which is built on the Go-Ethereum [23]. One of the key
components in the L2 node is the sequencer. A user can create a
transaction, sign it with a private key, and send it to the L2 Node’s
RPC interface. The job of the sequencer is to put the transaction T
received from the RPC interface into an ordered sequence. Once
transactions are sequenced, they run sequentially through state
transition functions one after another. During this process, the
state transition function takes the current state of the chain and a
transaction as input to perform the state transition and emits a new
L2 block if certain conditions are met. The state transition function
is deterministic, meaning the output state depends solely on the
current blockchain state and the input transaction.
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Figure 1: Overview of the optimistic rollup protocol.

The Batch Submitter. A batch B is formally defined as an ordered
sequence of transactions <T1,T2,T3 ...>. The batch submitter is re-
sponsible for periodically assembling the sequenced transactions
into batches and submitting them to L1. To achieve this, the batch
submitter polls the L2 node for the number of transactions that have
been sequenced and the sum of the data sizes of these transactions.
When the number of transactions or data size exceeds the threshold
set in the configuration file, the batch submitter compresses these
transactions into a batch and submits the batch to the L1 smart con-
tract named sequencer inbox. Since all transaction data is submitted
to L1 in the form of batches, this ensures the data availability of
L2. In this way, any user can obtain all transactions of L2 from a L1
archive node and restore the state of the L2 blockchain by applying
these transactions sequentially to the genesis state.

TheValidator. The validator is responsible for periodically sending
the state root of the L2 blockchain to the L1 smart contract named
state manager. The state root is defined as the root hash of the
current state of the blockchain. Note that the state manager is
unable to verify the state root’s validity, and a malicious validator
can submit an incorrect state root to the state manager. To prevent
this, all validators monitor the state roots submitted to the state
manager, and if they find an incorrect state root, they will initiate a
challenge using the interactive fraud-proof protocol (see appendix
A for more details). The fraud-proof protocol ensures that as long
as there exists a well-behaved validator, only the correct state root
can finally be confirmed by the rollup protocol.

L1 Node. L1 node is an Ethereum node that maintains the con-
tracts used by L2. It is worth mentioning that users can submit
transactions that will be executed on L2 to the L1 contract named
user inbox. When user inbox receives a transaction, it utilizes the
LOG opcode to generate an event in the L1 blockchain. The L2 node
subscribes to the events generated by the user inbox on L1 and
parses them into corresponding transactions to be executed on L2.

2.2 Finality of Transactions and Blocks
Formally, a blockchain L is defined as an ordered sequence of
batches <B1,B2,B3 ...>, |L| is defined as the number of batches that
makes up this blockchain. In the optimistic rollup, the sequencer
locally maintains a blockchain L2, the L1 smart contract maintains
a blockchain L1. The rollup protocol offers two different levels of
transaction finality [17]. When the L2 transaction is applied to the
state transition function and included in a L2 block, the transaction
is considered soft-finalized. When the transaction is soft-finalized,
the wallet where the user initiates the transaction will receive the

execution result of the transaction and display it to the user. The
soft finality of a transaction T is formally defined as follows:

∃B,T ∈ B ∧ B ∈ L2 ∧ B ∉ L1

Moreover, when L2 transactions are submitted to L1 in the form
of batches, and the batch submission transaction is finalized in L1,
these L2 transactions are considered hard-finalized. Similarly, if all
transactions in a L2 block are hard-finalized, then the L2 block is
considered hard-finalized. The hard finality of a transaction T is
formally defined as follows:

∃B,T ∈ B ∧ B ∈ L1

It is crucial to distinguish the two finality states of a transac-
tion: soft finality and hard finality. When a transaction reaches
the hard finality state, its execution result is considered to be fi-
nal and immutable. However, if a transaction is in the soft finality
state, the transaction may still be rolled back under some special
circumstances, such as L1 reorganization.
State rollback mechanism. The ideal functionality of state roll-
back is to ensure the security and correction ability of Optimistic
rollup regarding its errors while scaling transaction throughput [19].
When state rollback mechanisms are triggered, transactions that
have been soft-finalized on the L2 blockchain will be discarded, and
their state modifications will be reverted [19]. For example, when
the scenarios, such as L1 blockchain reorganizations [50], differ-
entiate transactions that are hard-finalized on the L1 blockchain
and those that are soft-finalized on the L2 blockchain, the L2 node
will initiate the rollback of L2 transactions to fix the discrepancies
between soft-finalized and hard-finalized transactions.

2.3 Transaction Lifecycle of Arbitrum
Figure 2 depicts the transaction life cycle for L2 transactions on
Arbitrum. In summary, the transaction life cycle encompasses two
stages. The blue line marks the process of transactions from be-
ing accepted to reaching the soft-finalized state, and the pink line
shows the process of transactions from the soft-finalized state to
reaching the hard-finalized state. Once L2 transactions reach hard-
finalized state on L1 blockchain, the L2 node periodically fetches
the hard-finalized transactions from the L1 sequencer inbox and
compares them with the soft-finalized transactions maintained by
the sequencer. If any discrepancies are found, the soft-finalized
transactions will be rolled back by the L2 node.
– Following the blue line, users submit transactions to RPC service
of both the L1 node and the L2 node. The transactions submitted to
the L2 node are passed to the sequencer directly. The transactions
submitted to the L1 node invoke the user inbox smart contract,
and the user inbox will emit an event containing the transaction
data. The inbox reader subscribes to the L1 node. Once an event is
emitted in the user inbox, the inbox reader will parse the event to
the corresponding L2 transaction and deliver it to the sequencer.
The sequencer sorts the received transactions and applies state
transition functions to these transactions in order. Finally, the state
transition function will produce L2 blocks in the soft-finalized state.
– Following the pink line, batch submitter collects sequenced L2
transactions and then compresses and packages them into a batch.
The batch is then submitted to the sequencer inbox contract on L1.
Once the batch is accepted by the sequencer inbox, the sequencer
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Figure 2: The life cycle of transactions on Arbitrum.

inbox will generate an event representing batch acceptance, and all
the transactions in the batch will be in the hard-finalized state. Next,
the inbox reader parses the event and downloads the corresponding
batch on L1. Afterward, the batch is decompressed into sequenced
transactions (in the hard-finalized state), and the L2 node will com-
pare them with those stored in the soft-finalized L2 blocks. Any
inconsistency will cause the soft-finalized blocks to be rolled back.
Transaction Rollup Process. The ideal functionality of the trans-
action rollup process is to facilitate the process for L2 transactions
to reach the hard-finalized state by submitting L2 transactions to
the L1 blockchain in batches. As shown in Figure 2, the transaction
rollup process commences with the compression of L2 transactions
into batches and concludes upon the reception of these batches by
the sequencer inbox on the L1 blockchain.

2.4 Speed Limit Mechanism
In the fraud-proof protocol (see appendix A for more details), when
the validator is verifying the state root, the L2 execution engine
will run in a virtual machine. One of the security assumptions of
the optimistic rollup is that when a validator posts a state root,
other validators will check it and respond with a challenge if it is
incorrect. This requires that the other validators have enough time
and resources to check each state root quickly in order to propose
a timely challenge. To prevent the L2 blockchain from processing
transactions faster than the validator can simulate them, the exe-
cution speed limit mechanism is introduced [15]. This mechanism
operates by increasing the L2 gas price when the gas usage ex-
ceeds the speed limit (see section 2.5 for more details). Currently,
the default L2 gas price stands at 0.1 Gwei for Arbitrum and 0.001
Gwei for Optimism. In addition, the speed limit has been set at 7
million gas per second on Arbitrum and 11 million gas per second
on Optimism.

2.5 L2 Transaction Fee Pricing Mechanism
The L2 transaction fee consists of two parts: networking fee and
posting fee [13, 35]. The networking fee is akin to the fee paid to
miners in L1 and serves as an incentive for blockchain operators,

while the posting fee is used to offset the cost for the sequencer to
submit transaction data to L1.

2.5.1 Networking Fee Pricing. The networking fee on L2 is cal-
culated based on the L2 gas price and gas usage, and the opcode
executed on the EVM of L2 consumes the same gas as that on L1.
Pricing Mechanism on Arbitrum. To prevent the L2 blockchain
from processing transactions faster than the validator can simu-
late them, Arbitrum has implemented an execution speed limit
(§2.4). This limit is enforced through the L2 gas pricing algorithm,
which tracks the backlog of L2 gas (denoted as 𝐵 in Formula 1)
and increases the L2 gas price exponentially as the backlog grows.
Additionally, Arbitrum’s gas price adjustment mechanism operates
at a one-second granularity, rather than on a per-block basis as in
Ethereum. The current speed limit for Arbitrum is 7 million gas per
second. According to the white paper of Arbitrum [19], the specific
formula is as follow:

𝐹 (𝐵) = 𝐹0𝑒𝑀𝐴𝑋 (0,𝛽 (𝐵−𝐵0 ) ) (1)

Where 𝐹0 is the minimum L2 gas price (0.1 Gwei) on Arbitrum,
and 𝐵0 is a tolerance parameter. When the backlog is less than 𝐵0
(10 ∗ 𝑆𝑝𝑒𝑒𝑑𝐿𝑖𝑚𝑖𝑡 by default), it will not cause an increase in the L2
gas price. The scaling factor 𝛽 is deliberately designed such that,
during a period of 12 seconds where gas usage is twice the speed
limit, it results in the gas price being multiplied by a factor of 9

8 . As
a result, 𝛽 can be calculated numerically as:

𝛽 ≈ 1
102 ∗ 𝑆𝑝𝑒𝑒𝑑𝐿𝑖𝑚𝑖𝑡

This matches the base fee growth rate of L1 Ethereum introduced
in EIP-1559 [20].
PricingMechanism onOptimism. Through analyzing the source
code of Optimism’s gas-oracle component [37], we know that
the L2 gas price is adjusted on each epoch (10 seconds) based on
the following formula.

𝐿2 𝑔𝑎𝑠 𝑝𝑟𝑖𝑐𝑒 = 𝑐𝑢𝑟𝑟𝑒𝑛𝑡 𝑔𝑎𝑠 𝑝𝑟𝑖𝑐𝑒 ∗ 𝑓 𝑎𝑐𝑡𝑜𝑟

𝑓 𝑎𝑐𝑡𝑜𝑟 =


𝑀𝐼𝑁 (1 + 𝑎𝑣𝑔 𝑠𝑝𝑒𝑒𝑑

𝑠𝑝𝑒𝑒𝑑 𝑙𝑖𝑚𝑖𝑡
, 1.1) (avg speed >speed limit)

𝑀𝐴𝑋 (1 − 𝑎𝑣𝑔 𝑠𝑝𝑒𝑒𝑑

𝑠𝑝𝑒𝑒𝑑 𝑙𝑖𝑚𝑖𝑡
, 0.9) (avg speed <speed limit)

The L2 gas price is 0.001 Gwei by default [41]. In each epoch, if
the average gas usage is greater than the speed limit (11 million
gas), the L2 gas price will increase, otherwise, it will decrease. The
L2 gas price is limited to a 10% increase or decrease per epoch.

2.5.2 Posting Fee Pricing. Each transaction is submitted to L1 af-
ter compression, and the L2 node charges a posting fee to each
transaction to offset this overhead. Since L1 gas prices fluctuate,
the cost of submitting a batch to L1 also varies dynamically. To ac-
commodate the ever-changing changing L1 gas prices, the posting
fee must adjust accordingly to maintain break even. The posting
fee is calculated using the following formula.

𝑝𝑜𝑠𝑡𝑖𝑛𝑔 𝑓 𝑒𝑒 = 𝑝𝑜𝑠𝑡𝑖𝑛𝑔 𝑢𝑛𝑖𝑡𝑠 ∗ 𝑝𝑜𝑠𝑡𝑖𝑛𝑔 𝑢𝑛𝑖𝑡 𝑝𝑟𝑖𝑐𝑒
≈ (𝑡𝑟𝑎𝑛𝑠𝑎𝑐𝑡𝑖𝑜𝑛 𝑠𝑖𝑧𝑒 ∗ 16) ∗ 𝑝𝑜𝑠𝑡𝑖𝑛𝑔 𝑢𝑛𝑖𝑡 𝑝𝑟𝑖𝑐𝑒

The L2 system dynamically adjusts the posting fee by changing
the posting unit price. The posting units are calculated using an
algorithm similar to EIP-2028 [7], where each non-zero byte in
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Figure 3: Arbitrum posting fee update process.

the transaction generates 16 units, and a zero byte generates 4
units. Since the transaction data used in the subsequent sections
are all random binary data, the number of zero bytes in it is about
1
256 , which is negligible. Therefore, the units corresponding to a
transaction can be approximated as 16 times the transaction size.

To adjust the posting fee, Arbitrum uses a special account main-
tained by the L2 node to record the income and expenditure of the
L2 system. Figure 3 shows the process of updating the posting fee
in Arbitrum. Specifically, each L2 transaction will be charged an
estimated posting fee, which is regarded as an income and automat-
ically transferred to the pool account in the L2 node. Next, the batch
submitter publishes a batch to the sequencer inbox and waits for the
L1 blockchain to confirm the batch submission transaction. Once
the transaction is confirmed, the sequencer inbox will generate
an event called batch spending report on the L1 blockchain. After
the L2 Node receives the batch spending report, it calculates the
cost of submitting the batch and records it as an expenditure in the
storage variable named FundsDue. Afterward, the UpdateGasPrice
function is triggered to update the posting fee accordingly. To be
specific, FundsDue is subtracted from the balance of the pool ac-
count as much as possible. Finally, if the deposit in the pool account
is reduced to 0, but FundsDue is still not settled completely, the
posting fee will increase. Otherwise, the posting fee will decrease.

3 Threat model
We assume that a financially rational attacker controls externally
owned accounts (EOAs) on both L1 and L2, and these EOAs have
sufficient funds. We also assume that all L2 components are not
interfered with by any other external factors (such as intrusion de-
tection and systemmonitoring) during the attack. Since mainstream
Optimistic rollups operate in a centralized manner, it is reasonable
to assume that the attacker can only interact with L2 by sending
transactions like other normal users.

The victims in our threat model are smart contracts on L2 with
cross-chain interactions with other chains, which engage in ac-
tivities outside the L2 blockchain network, such as cross-chain
transfers. It is reasonable to assume that these victims rely on the
soft-finalized states of L2 transactions to provide their services, as
this approach enhances their efficiency and response time. There-
fore, attackers can successfully launch double spending attacks
in cases where they first initiate transactions to interact with vic-
tims (e.g., deposit funds in cross-chain transfers’ contracts). Victims

then continue their services on other chains under the assump-
tion that the attackers’ transactions will eventually be submitted
to L1 for hard-finalization. However, attackers trigger state roll-
back mechanisms on L2 to revert their L2 transactions before they
are hard-finalized, thereby causing double spending by obtaining
corresponding funds on the other chains without any cost.

4 Mechanisms to trigger rollback
Asmentioned in §1, we focus on the double spending attacks caused
by state rollback in Arbitrum. To unveil the mechanisms and com-
ponents in Arbitrum that can trigger state rollback, we opt to inves-
tigate the documentation [9] and projects [8] of Arbitrum related
to the life cycle of transactions. This choice is made because state
rollback can occur at various stages of the process of handling
transactions until the transactions are hard finalized. Finally, we
have identified three specific mechanisms that can trigger state
rollback, which we will discuss in detail in the following.

4.1 Time Bound Mechanism.
During the transaction synchronization process, the L2 node can
adjust the timestamp of the transactions in soft finality to account
for those delays and prevent any potential reorganizations of the
chain [3]. The proposed time-bound mechanism in Arbitrum aims
to restrict the frequency and extent to which L2 nodes can adjust
timestamps [3]. This limitation is crucial to safeguard decentralized
applications and services that rely on time constraints, as manip-
ulation of transaction timestamps can render them vulnerable to
attacks [18]. Currently, Arbitrum sets the time boundary for adjust-
ing transaction timestamps to 24 hours. Specifically, on Arbitrum,
the timestamp of the received batch is checked in the L1 sequencer
inbox. To be specific, the timestamps of all L2 transactions cor-
responding to this batch B must satisfy the following constraint
where the maximum variation V is equal to the submitter-only
window.

∀T ∈ B,T𝐿2.𝑇 𝑖𝑚𝑒𝑠𝑡𝑎𝑚𝑝 >= T𝐿1.𝑇 𝑖𝑚𝑒𝑠𝑡𝑎𝑚𝑝 −V

If the transaction’s L2 timestamp is less than the L1 timestamp
minus the maximum variation, then the L2 timestamp will be cor-
rected to the boundary value (i.e. T𝐿1.𝑇 𝑖𝑚𝑒𝑠𝑡𝑎𝑚𝑝 − V ) by the L2
node in the transaction synchronization mechanism [16].
How to roll the state back: If the delay time of transactions in
submitted batches surpasses V , the L2 node will update its times-
tamps. In such cases, soft-finalized transactions maintained by L2
node will be rolled back due to inconsistency between the original
transactions in submitted batches and those whose timestamps
have been modified.

4.2 Liveness-Preservation Mechanism
The liveness-preservation mechanism in Arbitrum is used to pro-
vide censorship resistance when L2 components become completely
unresponsive or even malicious [5]. Specifically, in the liveness-
preservation mechanism, even if the L2 components, such as the
sequencer, stop working, users can still submit cross-chain transac-
tions from L1 directly and force them to be included to keep the
liveness of L2 blockchain.
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Figure 4: The liveness-preservation mechanism.

Figure 4 demonstrates the workflow of the keeping liveness
mechanism. In the first step, the user sends a cross-chain transac-
tion to the L1 user inbox, and the user inbox emits an event after
accepting the transaction. Next, the L2 node parses the L1 event and
mints the corresponding L2 transaction. The minted L2 transaction
will be executed and packed into a L2 block. In the second step,
the batch submitter packs L2 transactions (including the minted L2
transaction) into a batch and submits the batch to L1. The above
steps assume that all L2 components are working properly, and the
minted L2 transactions will be automatically packaged into a batch
and uploaded to L1 without any further user interaction. However,
if the L2 network is down, the user must call a special function
in the sequencer inbox to force the inclusion of the cross-chain
transaction. As shown in the third step, the user calls the function
defined in the sequencer inbox to package the L2 transaction into a
batch without involving any L2 component. Since the L2 transac-
tion is saved into a batch, it is considered hard-finalized. The force
inclusion of cross-chain transactions provides a guarantee of the
liveness of the L2 blockchain. Even if the centralized L2 compo-
nents, such as the sequencer, stop working, users can still submit
cross-chain transactions from L1 and force them to be included to
keep the L2 blockchain running.

Note that the force inclusion feature is only allowed to be used
after a certain delay (denoted by V𝐿) once the cross-chain transac-
tion has been accepted by the user inbox. During the delay time,
only the batch submitter is allowed to submit batches containing
L2 transactions to L1. The purpose of this delay is to avoid conflicts
between the force inclusion mechanism and the batch submitter.
Currently, Arbitrum sets the delay time V𝐿 to 24 hours.
How to roll the state back: If the delay time of a cross-chain
transaction originating from L1 surpasses V𝐿 , and the transaction
is force-included, soft-finalized transactions maintained by L2 node
will be rolled back due to inconsistency between the force-included
transaction and the transaction submitted by batch submitter.

4.3 Transaction (de)compression mechanism
During the transaction synchronization between L1 and L2, the
batches submitted from L2 are compressed to further reduce trans-
action costs on L1, as discussed in §2. Following inclusion in L1, the
compressed batches are retrieved by the L2 node, which then decom-
presses them into sequenced transactions within the hard-finalized
state. Subsequently, these decompressed transactions are used to
determine transactions within L2, achieved through comparison
with those stored in the soft-finalized L2 blocks. For example, the
L2 node will discard soft-finalized transactions that do not align
with the decompressed transactions of the hard-finalized state.

Note that, during the decompression process, to prevent an over-
load of data leading to a denial-of-service situation for the L2 node,
Arbitrum deems a compressed batch in L1 as invalid if its decom-
pressed data exceeds the upper limit size.
How to roll the state back: When an invalid batch occurs, the
soft-finalized transactions maintained by the L2 node will be rolled
back due to inconsistency with the transaction data in the batch.

5 Manipulable Delay attack
We further uncover a novel delay attack permitting the injection of
manipulable delay of arbitrary duration to the transactions sent to
Arbitrum, making it possible to exploit the aforementioned mecha-
nisms to trigger state rollback. Specifically, the successful launch of
double spending attacks crucially relies on the intentional initiation
of state rollback for our target L2 transactions (e.g., deposit transac-
tions), achieved by triggering the three corresponding mechanisms
delineated in §4. Note that, the activation of these mechanisms is
contingent upon the satisfaction of non-trivial and unusual condi-
tions. For example, the time-bound mechanism and the liveness-
preservation mechanism mandate the existence of a transaction
with delay time surpassing V and V𝐿 , respectively. Therefore, the
attacker can exploit our delay attack to manipulate the delay dura-
tion of the targeted transactions, ultimately successfully triggering
state rollback and launching double spending attacks.

Our strategy to launch the delay attack is to delay the transaction
finality time. If the time for the transaction to reach hard finality is
delayed, the transaction remains in the soft finality state, making
it susceptible to rollback during the state rollback process. To de-
lay the transaction finality time, our insight is to create the batch
backlog. Figure 5 demonstrates the workflow of a successful delay
attack leveraging the batch backlog. First, the attacker constructs
large-sized incompressible data (e.g., random binary data [45]), ap-
pends the data to a large number of L2 transactions, and then sends
these transactions to the L2 node. These L2 transactions are ac-
cepted by the L2 blockchain instantly because Arbitrum adopts a
one-transaction-per-block or similar strategy. Next, the batch sub-
mitter tries to compress these transactions into batches. However,
since these transactions contain incompressible data, the size of
these transactions remains basically unchanged before and after
the compression. In addition, since the size of these transactions is
very large (more than half of the batch size limit), each transaction
is packed into a separate batch. Finally, the batch submitter will
publish these batches to L1 one by one. Since the block interval
of L1 is about 12 seconds and the batch submitter is designed to
wait for L1 confirmation, it will take a lot of time to publish these
batches to L1 when the number is large. In a word, an adversary
can send a large number of incompressible L2 transactions to the
L2 node, and the batch submitter cannot submit the batches to L1 in
a short period of time, thus creating a batch backlog. The number
of backlogged batches can be formally defined as |L2 | − |L1 |.

Due to the batch backlog, any L2 transactions submitted by users
cannot be published to L1 in a timely manner, including our target
transactions to launch double spending. This also means that these
user transactions cannot reach the hard finality state for a long
time after they reach the soft finality state.
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Figure 5: The workflow of the delay attack leveraging the batch backlog.

6 Three Double Spending attacks
In this section, we introduce three double-spending attacks. Each of
them exploits the delay attack (§5) to trigger L2 rollbacks through
distinct mechanisms mentioned in §4. Specifically, the three double
spending attacks, i.e., overtime attack (§6.1), QueueCut attack (§6.2),
and zip-bomb attack (§6.3) target the three mechanisms for trig-
gering state rollback, i.e., time bound mechanism (§4.1), liveness
preservation mechanism (§4.2), and transaction (de)compression
mechanism (§4.3), respectively. The fundamental strategy of the
three attacks involves preparing a withdrawal transaction that
achieves initial soft finalization on L2 but is later reverted due to
state rollback. This reversal permits the transaction’s re-execution,
thereby enabling double spending. The subsequent subsections
elaborate on the procedures of these attacks.

6.1 Overtime Attack
The overtime attack employs the delay attack (§5) to induce a
delay in the transaction rollup process from L2 to L1 (§2.3). This
orchestrated delay ultimately activates a time-bound correction,
leading to rollbacks on L2. As mentioned in §4.1 about the time-
bound mechanism, transactions failing to be submitted within the
submission window, denoted as V , will be reverted. The overtime
attack, therefore, involves deliberately causing a delay of V + Δ,
where Δ represents the duration within which we initiate a cross-
chain deposit transaction destined for reversal. Consequently, the
batch submitter is unable to submit this transaction within the
timeframe ofV , thereby activating the time-bound mechanism to
roll back L2. As a result, transactions that were soft-finalized on L2
are reverted, enabling the attacker to execute a withdrawal on the
other end of cross-chain bridge without actually depositing assets.

Figure 6 presents the attack steps of the overtime attack. We
denote the cross-chain deposit transaction as 𝑇𝑥𝑑𝑒𝑝𝑜𝑠𝑖𝑡 , and the
delay-inducing transactions as 𝑇𝑥𝑑𝑒𝑙𝑎𝑦 . This attack unfolds over
four steps. 1○ Initially, the attacker dispatches a sufficient number
of 𝑇𝑥𝑑𝑒𝑙𝑎𝑦 to provoke a delay totaling V + Δ (noting that V is
the window for submission and Δ is the timeframe allocated for
submitting 𝑇𝑥𝑑𝑒𝑝𝑜𝑠𝑖𝑡 to L2). 2○ Subsequently, in the second step,
attacker submits𝑇𝑥𝑑𝑒𝑝𝑜𝑠𝑖𝑡 to L2 within the Δ period. 3○ During the
third step, the L2 sequencer accepts 𝑇𝑥𝑑𝑒𝑝𝑜𝑠𝑖𝑡 , yet the batch sub-
mitter’s attempt to relay the batch containing 𝑇𝑥𝑑𝑒𝑝𝑜𝑠𝑖𝑡 to the L1
sequencer inbox is thwarted, failing to meet the V deadline due to
the induced delay. Concurrently, the attacker initiates a withdrawal

on the target chain. 4○ The fourth step sees the time-bound mecha-
nism spring into action, recognizing that T𝐿1.𝑇 𝑖𝑚𝑒𝑠𝑡𝑎𝑚𝑝 surpasses
T𝐿2.𝑇 𝑖𝑚𝑒𝑠𝑡𝑎𝑚𝑝 +V . It adjusts T𝐿2.𝑇 𝑖𝑚𝑒𝑠𝑡𝑎𝑚𝑝 to T𝐿1.𝑇 𝑖𝑚𝑒𝑠𝑡𝑎𝑚𝑝 −V ,
triggering a rollback of L2’s state. Here,𝑇𝑥𝑑𝑒𝑝𝑜𝑠𝑖𝑡 is reverted. How-
ever, in step 3○, the assets have already been withdrawn from the
target chain. Consequently, the assets are minted on the target
chain at no cost, and the deposited assets are returned, thus leading
to a double spend.

6.2 QueueCut Attack
The QueueCut attack, akin to the overtime attack, initially induces
a delay in batch submission from L2 to L1, resulting in a L2 trans-
action queue where each transaction is softly finalized but awaits
hard finalization. We then exploit the liveness-preservation mecha-
nism to strategically insert a transaction at the front of the queue.
Consequently, the L2 queue must realign with L1, leading to the
rollback of these softly finalized transactions in L2 (§2.3). To capital-
ize on this process, we orchestrate a cross-chain deposit transaction
within this queue, similar to the overtime attack. This attack suc-
cessfully minted assets on the target chain, but the deposited assets
were returned on Arbitrum, achieving a double spend.

Figure 7 illustrates the attack workflow of the QueueCut attack.
1○ Initially, the attacker introduces a delay ofV+Δ in the L2-to-L1
submission process by dispatching a sufficient number of transac-
tions containing incompressible data (𝑇𝑥𝑑𝑒𝑙𝑎𝑦 ). 2○ Subsequently,
in the second phase, the attacker launches a cross-chain deposit
transaction𝑇𝑥𝑑𝑒𝑝𝑜𝑠𝑖𝑡 that achieves soft finalization on L2 instantly.
This allows the attacker to commence a withdrawal transaction
on the target chain. 3○ In the third phase, the attacker transmits
an L1-L2 transaction (𝑇𝑥𝐿1−𝐿2) to the L1 contract UserInbox. Note
that both 𝑇𝑥𝑑𝑒𝑝𝑜𝑠𝑖𝑡 and 𝑇𝑥𝐿1−𝐿2 will not reach hard finalization
within V due to the previously induced delay. Nevertheless, these
transactions create a queue of soft-finalized transactions awaiting
sequential hard finalization. 4○ Proceeding to the fourth step, after
theV period, the attacker can call the ForceInclusion function in
the L1 contract sequencer inbox to hard-finalize the L1-L2 trans-
action. The forced inclusion of the 𝑇𝑥𝐿1−𝐿2 lets it cut the queue of
transactions waiting to be hard-finalized. Consequently, the initial
soft finalized queue becomes misaligned with the hard finalized
version, leading to its rollback. The remaining transactions, includ-
ing 𝑇𝑥𝑑𝑒𝑝𝑜𝑠𝑖𝑡 , are reverted and deleted. The deposited assets are
returned to the attacker. However, the attacker has already with-
drawn them from the target chain. This results in double spending.
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6.3 Zip-Bomb Attack
The zip-bomb attack exploits a flaw in the transaction (de)compression
mechanism, causing state rollback and enabling double spend-
ing. As mentioned in §4.3, transactions on L2 are compressed and
grouped into batches before being submitted to L1. When an L2
node retrieves these batches from L1, it must decompress them.
This flaw arises because there is a size-bound check during decom-
pression but not during compression. Consequently, it is possible

to create a batch containing enough transactions to exceed the size
bound during decompression. This flaw can be exploited to revert
a cross-chain deposit transaction, achieving double spending.

The exploit steps of this zip-bomb attack are outlined in Figure 8.
1○ The attacker first induces a delay, Δ, by sending incompressible
transactions (𝑇𝑥𝑑𝑒𝑙𝑎𝑦 ). 2○ In the second stage, the attacker sends
a series of transactions (𝑇𝑥𝑏𝑜𝑚𝑏 ) with zero-padded data. 3○ In the
third stage, the attacker sends a cross-chain deposit transaction. 4○
In the fourth stage, the batch submitter compresses the transactions
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and packs them into batches before submitting them to L1. Notably,
𝑇𝑥𝑏𝑜𝑚𝑏 transactions have a very high compression rate due to
the zero-padded data, allowing a large number of 𝑇𝑥𝑏𝑜𝑚𝑏 to be
packed into a single batch (𝐵𝑎𝑡𝑐ℎ𝑏𝑜𝑚𝑏 ). Additionally, the induced
delay Δmeans the batch is not immediately submitted to L1. Before
the batch reaches L1, the cross-chain bridge processes the deposit
and mints tokens on the target chain. After Δ, 𝐵𝑎𝑡𝑐ℎ𝑏𝑜𝑚𝑏 reaches
L1. 5○ In the fifth stage, the L2 node retrieves 𝐵𝑎𝑡𝑐ℎ𝑏𝑜𝑚𝑏 from L1
and decompresses it. Since the size of the decompressed data ex-
ceeds the limit, the L2 node deems it to contain invalid transactions
(𝑇𝑥𝑖𝑛𝑣𝑎𝑙𝑖𝑑 ). This misalignment with the soft-finalized transactions
on L2 leads to their reversal, including 𝑇𝑥𝑑𝑒𝑝𝑜𝑠𝑖𝑡 . Therefore, the
assets deposited are returned to the attacker, while the tokens have
already been minted on the target chain, leading to double spending.

6.4 Double Spending on Optimism
After investigating the design, documentation, and implementation
of another representative Optimistic rollup, i.e., Optimism [30], we
find that partial of our proposed attacks (i.e., the manipulable delay
attack in §5 and the QueueCut attack in §6.2) can also be launched
on it. This is because Optimism employs the same mechanisms (i.e.,
transaction rollup mechanism and liveness-preservation mecha-
nism) as Arbitrum, which are the corresponding attack targets of
the delay attack and QueueCut attack. Please note that by leverag-
ing the above two attacks, an adversary can successfully conduct
the double spending on Optimism, highlighting the generability of
our proposed attacks.

7 Attack Cost Optimization
The cost for launching the double spending attacks mainly con-
sists of the transaction fees used for launching the delay attack
(§5), because i) the transactions we construct for attacks are mostly
involved in delay attack, and ii) the funds we deposit during the
attacks will withdraw at the end of double spending. However, due
to the transaction fee pricing mechanism (§2.5), the per-transaction
fee may continue to increase during the delay attack, rendering it
economically infeasible for a financially rational attacker. To ad-
dress this challenge, we propose a cost optimization solution to
further reduce the attack cost to a reasonable level (e.g., a constant
cost). The main idea of our cost optimization solution is to i) manip-
ulate the posting unit price to reduce the posting fee of our-initiated
transactions on L2, and ii) submit transactions at a speed lower
than the speed limit mechanism (§2.4) to avoid an increase in the
networking fee. In the following, we will first introduce the posting
unit pricing algorithm on Arbitrum (§7.1) and then explain how to
manipulate the posting unit price (§7.2) and control the transaction
submitting frequency (§7.3).

7.1 Arbitrum Posting Unit Pricing Algorithm
We first formulate the price update algorithm on Arbitrum for the
posting unit price. According to the white paper of Arbitrum [19],
the posting unit price is updated based on the below formulas.

𝑃 = 𝑀𝐴𝑋 (0, 𝑃𝑝𝑟𝑒𝑣 + Δ𝑃 ) (2)

Formula 2 is utilized to determine the current posting unit price.
The variables used in this equation are defined as follows: 𝑃 repre-
sents the current posting unit price; 𝑃𝑝𝑟𝑒𝑣 denotes the posting unit
price during the previous update; and Δ𝑃 indicates the change in
price, which could be either positive or negative.

Δ𝑃 = (𝐷 ′ − 𝐷 ) 𝑈

𝛼 +𝑈 (𝑈 > 0) (3)

Formula 3 is used to calculate the price change. The variables
utilized in this formula are defined as follows: 𝐷′ is the derivative
that must hold on average in order for the surplus to reach zero
after processing 𝐸 more data units. 𝐷 represents the derivative of
the surplus; 𝑈 denotes the posting units assigned to this update;
and 𝛼 is a smoothing parameter, which is defined as 1.6 × 107.

𝐷 =
Δ𝑆

𝑈
=
𝑆 − 𝑆𝑝𝑟𝑒𝑣

𝑈
(𝑈 > 0) (4)

𝐷 ′ = − 𝑆
𝐸

(5)

Formulas 4 and 5 are used to calculate the two derivatives. The
variables used in these formulas are defined as follows: 𝑆 represents
the current surplus, which could be either positive or negative;
𝑆𝑝𝑟𝑒𝑣 denotes the surplus in the previous update; and 𝐸 indicates
the equilibration constant, which is defined as 1.6 × 108.

𝑈 = 𝑈𝑡𝑜𝑡𝑎𝑙 ·
𝑇𝑢𝑝𝑑 − 𝑇𝑝𝑟𝑒𝑣

𝑇𝑐𝑢𝑟𝑟𝑒𝑛𝑡 − 𝑇𝑝𝑟𝑒𝑣
(6)

Formula 6 is used to compute data units assigned to the current
update. The variables used in this equation are defined as follows:
𝑈𝑡𝑜𝑡𝑎𝑙 is the number of data units that remain unassigned;𝑇𝑐𝑢𝑟𝑟𝑒𝑛𝑡
represents the current time; 𝑇𝑢𝑝𝑑 denotes the time at which the
current batch was submitted; and 𝑇𝑝𝑟𝑒𝑣 indicates the time at which
the previous batch was submitted. The intuition behind this formula
is that the L2 node knows the number of units collected between
𝑇𝑝𝑟𝑒𝑣 and 𝑇𝑐𝑢𝑟𝑟𝑒𝑛𝑡 , and it wants to estimate how many units were
collected between 𝑇𝑝𝑟𝑒𝑣 and 𝑇𝑢𝑝𝑑 .

Assuming that the batch submission interval and the L1 block
interval are fixed, then 𝑇𝑢𝑝𝑑−𝑇𝑝𝑟𝑒𝑣

𝑇𝑐𝑢𝑟𝑟𝑒𝑛𝑡−𝑇𝑝𝑟𝑒𝑣 can be regarded as 1
𝐾
. There-

fore, formula 6 can be rewritten as follows, where𝑈𝑛 represents𝑈
at n-th update and 𝑈𝑛−1

𝑡𝑜𝑡𝑎𝑙
represents𝑈𝑡𝑜𝑡𝑎𝑙 at (n-1)-th update.

𝑈 =
𝑈𝑡𝑜𝑡𝑎𝑙

𝐾
=⇒ 𝑈𝑛 =

𝑈𝑛−1
𝑡𝑜𝑡𝑎𝑙

+ Δ𝑈

𝐾

Assuming that the L2 blockchain reaches a stable state in the
long run, then Δ𝑈 remains constant across price updates, leading
to 𝑈𝑛

𝑡𝑜𝑡𝑎𝑙
and 𝑈𝑛 being approximately equal to 𝑈𝑛−1

𝑡𝑜𝑡𝑎𝑙
and Δ𝑈 , re-

spectively. To simplify calculations, we will approximate𝑈 as Δ𝑈 .
In other words, we will consider 𝑈 to be the units that correspond
to the transactions submitted within a price update cycle.

7.2 Manipulate The Posting Fee
Our insights to manipulate the posting fee are based on the follow-
ing two observations. First, the pool account is a standard externally
owned account (EOA), and the income of the L2 system is stored in
its balance. This gives an opportunity for an adversary to manip-
ulate the income of the L2 system by directly transferring funds
to the pool account. Second, an adversary can leverage the delay
attack to make the interaction between L2 and L1 change from syn-
chronous to asynchronous, thus disrupting the posting fee pricing

2585



CCS ’24, October 14–18, 2024, Salt Lake City, UT, USA Zhiyuan Sun et al.

process. Hence, our solution consists of two steps for optimizing
the posting fee during the delay attack.
– Step 1. The attacker directly transfers a substantial amount of funds
to the pool account, ensuring a high surplus in the pool account.
Once a new batch spending report is received in the L2 node, the
UpdateGasPrice function is triggered. Since the pool account has
a high surplus, the posting unit price can be updated to nearly zero
according to the price update algorithm (§7.1).
– Step 2. The attacker sends a large number of transactions con-
taining incompressible data to launch the delay attack. Since the
posting unit price has been down to nearly zero, the posting fee of
these transactions are significantly reduced.
Additional attack impacts. After the attacker stops submitting
transactions, the posting fee will increase from nearly zero to a
significant number, consequently raising the cost for other users to
send transactions on L2. Specifically, during the attack, the attacker
creates a large backlog of batches that cannot be submitted to L1
in a timely manner, causing a significant delay in the price update
process. In such cases, after the attacker stops sending transac-
tions containing incompressible data to the L2 node, the backlog
of batches will be gradually submitted to L1. A batch spending
report event is generated after each batch is accepted by the se-
quencer inbox in L1. After the L2 node receives this event, it will
obtain the batch submission cost and record it as an expenditure
of the L2 system in the FundsDue storage variable and then call
the UpdateGasPrice function to adjust the posting unit price. Dur-
ing this process, the value recorded in FundsDue will continue to
increase, which means that the L2 system owes more and more
money, so each call to UpdateGasPrice function will cause the
posting unit price to increase. As long as the backlog of batches is
large enough, the posting unit price can rise to any high point when
the backlog of batches is released. At this time, the cost for a user
to send a transaction on L2 will be very high or even far exceed the
transaction cost on L1. In §8.4, we will show experimentally that the
posting unit price can escalate to over 14,000 Gwei, representing a
700-fold increase from the gas price in L1.

7.3 Transaction Submitting Frequency
To avoid the increased cost due to the rapid growth of the net-
working fee (cf. speed limit mechanism in §2.4 and networking
fee pricing in §2.5.1), an attacker can only launch the attack at a
limited rate. The upper limit of the batch size in Arbitrum is 100,000
bytes [14]. Hence, an attacker can send malicious transactions con-
taining more than 50,000 bytes of incompressible data. Since the
size of any two adjacent transactions exceeds the upper limit of the
batch size, each transaction will be packaged separately as a batch.
According to EIP-2028 [7], every non-zero byte in a transaction
costs 16 gas. Since the transaction sent by the attacker contains
random binary data, the number of zero bytes in it is about 1

256 ,
which is negligible. Given that the speed limit on Arbitrum is set at
7 million gas per second, on the premise that the gas price does not
increase, the frequency limit for the attacker to submit batches is
8.75 per second, which is calculated as follows.

𝑏𝑎𝑡𝑐ℎ 𝑠𝑢𝑏𝑚𝑖𝑡 𝑓 𝑟𝑒𝑞𝑢𝑒𝑛𝑐𝑦 =
𝑠𝑝𝑒𝑒𝑑 𝑙𝑖𝑚𝑖𝑡

𝑏𝑎𝑡𝑐ℎ 𝑠𝑖𝑧𝑒 ∗ 𝑔𝑎𝑠 𝑐𝑜𝑠𝑡 𝑝𝑒𝑟 𝑏𝑦𝑡𝑒

=
7, 000, 000
50, 000 ∗ 16 = 8.75

(7)

As the speed limit on Optimism is 11 million gas per second,
by applying the equation 7, it can be seen that under the premise
of ensuring that the L2 gas price does not increase, the highest
frequency of submitting batches is 15.28 per second on Optimism.

8 Evaluation

Feasibility of the proposed attacks.
• For double spending attacks on Arbitrum, we reproduced the
three kinds of double-spending attacks by triggering correspond-
ing mechanisms for state rollback in our local test blockchain.

• For the manipulable delay attack on Arbitrum, we reproduced
the vulnerabilities on our local blockchain under the cost opti-
mization solution.

• For double spending attacks on Optimism, we reproduced the
QueueCut attack to conduct double spending by triggering the
liveness-preservation mechanism.

• For the manipulable delay attack on Optimism, we reproduced
the vulnerabilities on our local blockchain.
We further conduct experiments to answer the following four

research questions for evaluating the costs and impacts of our
proposed attacks. RQ1: What are the costs and impacts of the
delay attack on Arbitrum? RQ2: What are the costs and impacts
of the delay attack on Optimism? RQ3: How does the delay attack
threaten L2 in practice? RQ4: What are the costs and impacts
brought by the cost optimization solution?

Experimental Setup. To record runtime data such as batch confir-
mation time and transaction cost, we perform code instrumentation
on the L2 node and batch submitter. We also patched Arbitrum to
allow it to connect to a private L1 blockchain. Our experiments are
performed on two virtual machines running Ubuntu 22.04, each
with 4 vCPU and 10 GB RAM. To simulate the real-world scenario,
we leverage Hardhat [24] to run a local L1 blockchain that main-
tains a fixed block generation interval of 12 seconds and a fixed L1
gas price of 20 Gwei. For experiments about Arbitrum, an Arbitrum
node is installed on the virtual machine. For experiments about
Optimism, we use the officially provided docker file [40] to run a
local L2 blockchain.

8.1 Delay attack impacts and costs on Arbitrum
Delay attack impacts. As calculated in §7.3, the maximum batch
submitting frequency on Arbitrum is 8.75 per second, and the batch
submission interval on Arbitrum is about 25 seconds. Hence, launch-
ing the attack for every second can result in an average delay of
8.75 ∗ 25 − 1 = 217.75 seconds.
Cost on the Transfer Amount. As mentioned in §7.2, the cost of
delay attack consists of two parts, i.e., the funds transferred to the
pool account on Arbitrum, and the cost to create a batch backlog.
Assume that the current system is in a balanced state, that is, the
balance in the pool account and the value in FundsDue are both 0.
As a result, formula 3 can be rewritten as follows.

2586



DoubleUp Roll: Double-spending in Arbitrum by Rolling It Back CCS ’24, October 14–18, 2024, Salt Lake City, UT, USA

Δ𝑃 = (𝐷 ′ − 𝐷 ) 𝑈

𝛼 +𝑈 (s.t.𝑈 > 0)

= −( 𝑆
𝐸
+
𝑆 − 𝑆𝑝𝑟𝑒𝑣

𝑈
) 𝑈

𝛼 +𝑈

= −( 𝑆
𝐸
+ 𝑆

𝑈
) 𝑈

𝛼 +𝑈 (Assume 𝑆𝑝𝑟𝑒𝑣=0)

= − 𝑆 (𝐸 +𝑈 )
𝐸 (𝛼 +𝑈 )

(8)

Suppose an attacker wants to manipulate the posting unit price
to 0 in one price update. In this case, Δ𝑃 is a negative number. When
FundsDue is 0, the surplus equals the deposit in the pool account,
which corresponds to the amount transferred by the attacker. At this
time, 𝑆 can be expressed as 𝑆 = 𝑇 −Δ𝑃 ·𝑈 where 𝑃𝑐𝑢𝑟𝑟𝑒𝑛𝑡 +Δ𝑃 = 0.
This means that the current posting unit price will become 0 after
a price update. Under this condition, formula 8 can be rewritten as
follows.

Δ𝑃 = − 𝑆 (𝐸 +𝑈 )
𝐸 (𝛼 +𝑈 ) = − (𝑇 − Δ𝑃 ·𝑈 ) (𝐸 +𝑈 )

𝐸 (𝛼 +𝑈 ) (9)

From this formula, we can calculate how much surplus is needed
to manipulate the posting unit price to 0. Assuming that the L1 gas
price is 20 Gwei, the result is calculated in equations 10.

𝑆1 = −Δ𝑃 ·𝑈 = −Δ𝑃 ·
√
𝐸𝛼 ≈ 1.01 𝐸𝑇𝐻 (𝑇 = 0) (10)

Equation 10 can be derived from formula 9 by setting 𝑇 = 0.
To summarize, to manipulate the posting unit price to zero, the
attacker should send 0.32 ETH to the pool account.
Cost on Creating Batch Backlog. We proceed with an analysis
of the cost of continuously generating the batch backlog. At the
onset of the attack, a surplus was present in the L2 system since
the attacker had transferred some funds to the pool account to
manipulate the posting unit price. Due to the existence of surplus,
𝐷′ will be a negative number, 𝐷 is relatively small and can be
ignored, so Δ𝑃 is a negative number, and 𝑃 is always 0. This process
will persist until 𝑆 is close to 0. Afterward, the posting unit price
will rise slightly and then fluctuate at an equilibrium price. At the
equilibrium price, the posting fees for all transactions in a price
update cycle (about 25 seconds) are equal to the cost of submitting a
batch to L1. In other words, 𝑆 and Δ𝑆 are basically kept around 0 in
each price update when the current posting unit price is equal to the
equilibrium price. According to equation 12, the cost of submitting
a batch that contains 50,000 bytes on Arbitrum can be computed as
0.016 ETH, which aligns with the surplus reduction value during
each price update cycle. Assuming the attacker submits transactions
at a rate of two per second, the equilibrium price can be calculated
as follows.

𝑃𝑒𝑞𝑢𝑖𝑙𝑖𝑏𝑟𝑖𝑢𝑚 =
𝑏𝑎𝑡𝑐ℎ 𝑠𝑢𝑏𝑚𝑖𝑠𝑠𝑖𝑜𝑛 𝑐𝑜𝑠𝑡

𝑡𝑥𝑛 𝑠𝑖𝑧𝑒 ∗ 𝑡𝑥𝑛 𝑞𝑢𝑎𝑛𝑡𝑖𝑡𝑦 ∗ 𝑔𝑎𝑠 𝑐𝑜𝑠𝑡 𝑝𝑒𝑟 𝑏𝑦𝑡𝑒

=
0.016 𝐸𝑇𝐻

50, 000 ∗ (2 ∗ 25) ∗ 16
= 0.4𝐺𝑤𝑒𝑖

(11)

There are also networking fees for sending transactions on L2.
Hence, the cost of submitting a L2 transaction with incompressible
data can be calculated as follows.

𝑐𝑜𝑠𝑡 = 𝑡𝑥𝑛 𝑠𝑖𝑧𝑒 ∗ 𝑔𝑎𝑠 𝑐𝑜𝑠𝑡 𝑝𝑒𝑟 𝑏𝑦𝑡𝑒 ∗ 𝑔𝑎𝑠 𝑝𝑟𝑖𝑐𝑒
= 50, 000 ∗ 16 ∗ (0.4𝐺𝑤𝑒𝑖 + 0.1𝐺𝑤𝑒𝑖 )
= 0.0004 𝐸𝑇𝐻

8.2 Delay attack impacts and costs on Optimism
Delay attack impacts. As calculated in §7.3, the maximum batch
submitting frequency onOptimism is 15.28 second. Therefore, every
second of attack launched can cause a delay of 15.28∗12−1 = 182.36
seconds on average.
Delay attack costs. Optimism adopts a relatively simple mecha-
nism to calculate the posting fee [42], as opposed to Arbitrum’s
complex break-even maintenance system. Specifically, Optimism
dynamically adjusts the posting unit price by tracking the current
gas price on L1 Ethereum. Therefore, we can approximate the post-
ing unit price as the gas price on L1 Ethereum to facilitate the
calculation. Since the gas price of L2 is much lower than that of L1,
the networking fee is almost negligible compared to the posting fee.
As a result, the cost of submitting an incompressible transaction
can be approximated using the following formula.

𝑐𝑜𝑠𝑡 = 𝑏𝑎𝑡𝑐ℎ 𝑠𝑖𝑧𝑒 ∗ 𝑔𝑎𝑠 𝑐𝑜𝑠𝑡 𝑝𝑒𝑟 𝑏𝑦𝑡𝑒 ∗ 𝑝𝑜𝑠𝑡𝑖𝑛𝑔 𝑢𝑛𝑖𝑡 𝑝𝑟𝑖𝑐𝑒 ∗ 1.5

=
𝑚𝑎𝑥 𝑏𝑎𝑡𝑐ℎ 𝑠𝑖𝑧𝑒

2
∗ 𝑔𝑎𝑠 𝑐𝑜𝑠𝑡 𝑝𝑒𝑟 𝑏𝑦𝑡𝑒 ∗ 𝐿1 𝑔𝑎𝑠 𝑝𝑟𝑖𝑐𝑒 ∗ 1.5

= 45, 000 ∗ 16 ∗ 20𝐺𝑤𝑒𝑖 ∗ 1.5 = 0.0216 𝐸𝑇𝐻

(12)

It is known that the maximum batch size of Optimism is 90,000
bytes [36], so only transactions with a size exceeding 45,000 bytes
will be packaged into a single batch. In addition, the L1 gas price is
assumed to be 20 Gwei, and Optimism’s L2 node sets the posting
unit price to 1.5 times the actual L1 gas price. Therefore, the cost
of submitting a L2 transaction with incompressible data is 0.0216
ETH. Since each such transaction will be packaged into a separate
batch, Optimism needs to wait for a batch to be confirmed by L1
before submitting the next one (it takes about 12 seconds). The cost
to cause a one-second delay is 0.0216 ETH / 12 = 0.0018 ETH.

8.3 Effectiveness of delay attack
In this subsection, we demonstrate the effectiveness of delay attacks
on Arbitrum and Optimism in practice. Figure 9 illustrates the
effectiveness of the manipulable delay attack. It can be seen that the
average batch submission interval is approximately 25 seconds and
12 seconds on Arbitrum and Optimism, respectively. This implies
that for each backlogged batch, a delay of 25 seconds on Arbitrum
and 12 seconds on Optimism is incurred. Moreover, the output of
the instrumented code shows that the cost of the delay attack on
Optimism is constantly at 0.0217 ETH per batch (each batch will
cause a delay of 12 seconds), which is consistent with the theoretical
result calculated in formula 12.

8.4 Cost and impacts for cost optimization
Since the cost for our cost optimization solution has been explored
in §8.1, we will reuse the corresponding results. Besides, as men-
tioned in §7, the cost optimization will bring additional attack
impacts, which we will detail in the following.

Assuming that 𝑈 is the same in each price update cycle and
𝑈 > 0, the final posting unit price can be calculated by the re-
cursive formula 13. In that formula, 𝑛 represents the number of
price update cycles, and we assume that 𝑃0 = 0, 𝑆0 = 0, and
𝐶 = 𝑏𝑎𝑡𝑐ℎ 𝑠𝑢𝑏𝑚𝑖𝑠𝑠𝑖𝑜𝑛 𝑐𝑜𝑠𝑡 = 0.016 𝐸𝑇𝐻 . The theoretical results are
shown later in this subsection.
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Figure 9: The effectiveness of the delay
attack on Arbitrum and Optimism.

Figure 10: The cost caused by the cost
optimization solution on Arbitrum.

Figure 11: Additional attack effective-
ness.

𝑃𝑛 = 𝑃𝑛−1 + Δ𝑃𝑛−1

= 𝑃𝑛−1 − ( 𝑆𝑛−1
𝐸

+ Δ𝑆𝑛−1
𝑈

) 𝑈

𝛼 +𝑈

= 𝑃𝑛−1 −
𝑈

𝛼 +𝑈 ( 1
𝐸

𝑛−1∑︁
𝑖=1

Δ𝑆𝑖−1 +
Δ𝑆𝑛−1
𝑈

)

= 𝑃𝑛−1 −
𝑈

𝛼 +𝑈 [ 1
𝐸

𝑛−1∑︁
𝑖=1

(𝑃𝑖−1 ·𝑈 − 𝐶 ) + (𝑃𝑛−1 ·𝑈 − 𝐶 )
𝑈

]

(13)

Interestingly, we discovered an inconsistency between the im-
plementation of Arbitrum for updating posting unit prices and its
white paper. Due to the implementation error, when storing the sur-
plus in the database, Arbitrum performs an implicit type conversion
that takes the absolute value of the surplus. Consequently, when
the surplus becomes negative, the formula used for calculating the
price incorrectly changes to the following:

𝑃𝑛 = 𝑃𝑛−1 + Δ𝑃𝑛−1

= 𝑃𝑛−1 − ( 𝑆𝑛−1
𝐸

+ 𝑆𝑛 − |𝑆𝑛−1 |
𝑈

) 𝑈

𝛼 +𝑈
= 𝑃𝑛−1 −

𝑈

𝛼 +𝑈 ( 𝑆𝑛−1
𝐸

+ 𝑆𝑛 + 𝑆𝑛−1
𝑈

)

= 𝑃𝑛−1 −
𝑈

𝛼 +𝑈 ( 𝑆𝑛−1
𝐸

+ 2 ∗ 𝑆𝑛−1 + Δ𝑆𝑛−1
𝑈

)

= 𝑃𝑛−1 −
𝑈

𝛼 +𝑈 ( 2𝐸 +𝑈
𝐸𝑈

· 𝑆𝑛−1 +
Δ𝑆𝑛−1
𝑈

)

= 𝑃𝑛−1 −
𝑈

𝛼 +𝑈 [ 2𝐸 +𝑈
𝐸𝑈

𝑛−1∑︁
𝑖=1

(𝑃𝑖−1 ·𝑈 − 𝐶 ) + (𝑃𝑛−1 ·𝑈 − 𝐶 )
𝑈

]

(14)

It can be seen that formulas 13 and 14 have different coefficients
1
𝐸
and 2𝐸+𝑈

𝐸𝑈
for the 𝑆𝑛−1 term. Since 2𝐸+𝑈

𝐸𝑈
is much larger than

1
𝐸
, this implementation error will greatly amplify the effect of the

attack. To assess the relative magnitudes of the two coefficients in
detail, we can compute their ratio as follows:

coefficient1
coefficient2

=

2𝐸+𝑈
𝐸𝑈

1
𝐸

=
2𝐸 +𝑈
𝑈

=
2𝐸
𝑈

+ 1 (15)

Since 𝐸 is much larger that 𝑈 , it can be deducted that 2𝐸+𝑈
𝐸𝑈

is
much larger than 1

𝐸
. Next, we will calculate this ratio numerically.

As mentioned in §7.1, 𝐸 is the equilibration constant, which is
defined as 1.6 × 108, and 𝑈 denotes the number of posting units
assigned to this update. We take 𝑈 = 4480, which is the same as
that in §8.4. Thus, we can calculate the ratio numerically as follows.

coefficient1
coefficient2

=
2𝐸
𝑈

+ 1 =
3.2 × 108

4480
+ 1 ≈ 71, 430 (16)

As 2𝐸+𝑈
𝐸𝑈

is considerably greater than 1
𝐸
, it implies that the actual

price change (Δ𝑃𝑛−1 in formula 14) will be significantly larger than
the theoretically correct value (Δ𝑃𝑛−1 in formula 13). Thus, this
implementation error will lead to a more rapid price increase.

We will also show experimentally that the difference will lead
to a significant increase in the attack effects later. Specifically, the
posting unit price can escalate to over 14,000 Gwei, representing a
700-fold increase from L1’s gas price.

We further examine the cost of the optimization cost solution in
its second step in practice, and the results are depicted in Figure 10.
It can be seen that the average posting unit price in the second step
is approximately 0.44 Gwei, which is very close to the theoretical
value calculated in equation 11.

Given the exceedingly high posting unit price, it is hypothe-
sized that only one transaction will occur on average every 10
seconds during the third stage of the attack. Moreover, the units
of each transaction can be obtained through code instrumentation,
with each transaction amounting to 1792 units. As a result, U is
established as 𝑈 = 1792 ∗ 2.5 = 4480 for theoretical calculations.
Figure 11 illustrates the effectiveness (i.e., attack impacts) caused
by the cost optimization solution. The experimental results indicate
a high degree of similarity with the theoretical value. Notably, the
attack impacts’ efficacy is significantly magnified by the implemen-
tation error in the pricing algorithm. More specifically, the posting
unit price can escalate to over 14,000 Gwei, representing a 700-fold
increase from the gas price on L1.

9 Disclosure and Mitigations

Vulnerability disclosure and ethics consideration. We dis-
closed all the vulnerabilities we found to Arbitrum via the Immunefi
platform [28] and to Optimism via email. Arbitrum awarded cor-
responding bug bounties to us for all the vulnerabilities revealed
by us. Both Arbitrum and Optimsim security teams followed our
advice to fix all the vulnerabilities accordingly. Note that mitigating
these vulnerabilities is non-trivial; both Arbitrum and Optimism
have integrated new components and executed a hard fork of the
L2 blockchain to fix these issues.

Mitigations on Arbitrum. To mitigate vulnerabilities under the
manipulable delay attack, the overtime attack, and the QueueCut
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attack, Arbitrum developed a new component named data poster
to submit batches to L1 in a streaming way [11], so that there is
no need to wait for L1 confirmation, and the batch backlog issue
is resolved. Hence, it is impossible for an attacker to bypass the
limit of the submitter-only window to perform the corresponding
double spending attacks. In the subsequent ArbOS version 10 hard
fork, Arbitrum introduced further safeguards against the cost op-
timization solution of our delay attack. This mitigation involved
utilizing ArbOS’s storage variables to store the balance of the pool
account [12], preventing them from being manipulated by attackers.
To mitigate the vulnerabilities associated with Zip-Bomb attack,
Arbitrum’s batch submitter records the plaintext size of all transac-
tions in each batch, and the batch submission operation is triggered
when the plaintext size is close to the upper limit of the decompres-
sion size [10]. In this way, when each batch is decompressed in the
L2 node, the decompressed data will not exceed the size limit.

Mitigations on Optimism. Several new mechanisms are intro-
duced in Optimism’s Bedrock hard fork to mitigate these vulnera-
bilities. First, a transaction pool is introduced to avoid handing new
transactions in a first-come-first-serve manner, and users can pay
priority fees to prioritize their transactions to be included in the
next block [38]. In addition, the one-block-per-transaction strategy
is changed to a fixed 2-second block interval. Furthermore, multiple
batches are packaged into a channel, and a channel is split into sev-
eral channel frames [39]. The batch submitter can post the channel
frames to L1 in parallel. Therefore, after the Bedrock hard fork, the
batch backlog issue was resolved, and it is impossible to launch the
delay attack and the corresponding double spending attacks.

Mitigations on Cross-Chain Bridges. Upon reporting the vulner-
abilities to Arbitrum, Arbitrum urged its cross-chain bridge partners
to wait for L1 inclusion and not rely on sequencer confirmations
when funds are leaving the system. As a result, several leading
cross-chain bridge projects revised their codebase in accordance
with this recommendation.

10 Related Work

Attacks against Ethereum. In the academic literature, a number
of attacks against Ethereum at different system layers have been
proposed, including P2P network [25, 26], Ethereum virtual ma-
chine [43, 49], transaction pool [32], and the RPC service [31]. For
example, Heo [26] presented a practical partitioning attack named
Gethlighting that isolates an Ethereum full node from the rest of the
network for hours without having to eclipse all of the target’s peer
connections. Perez [43] presented the resource exhaustion attack
on Ethereum, which exploits the significant inconsistencies in the
pricing of the instructions. The authors also designed a genetic
algorithm that generates contracts with throughput on average 100
times slower than typical contracts. Yang [49] developed a multi-
transaction differential fuzzer named Fluffy and found 2 consensus
bugs in the Geth Ethereum client. Li [32] proposed a low-cost denial-
of-service attack against the Geth Ethereum client named DETER.
An adversary can leverage the DETER attack to disable a remote
Ethereum node’s txpool and deny the critical downstream services.
There are also several notable works focused on smart contract
security [33, 47, 51].

Attacks against layer-2. Currently, the research on layer-2 secu-
rity mainly focuses on the Bitcoin lighting network. Giulio [34]
proposed the wormhole attack against the payment-channel net-
works (PCNs) which allows dishonest users to steal the payment
fees from honest users along the path. This attack was acknowl-
edged by the developers of the Bitcoin lighting network. In addition,
the authors formally defined a new cryptographic primitive named
anonymous multi-hop locks that can be used to design secure and
privacy-preserving PCNs. Herrera-Joancomartí [27] proposed an
attack to disclose the balance of a payment channel in the Bitcoin
lighting network. The main idea of the attack is to perform multiple
payments, ensuring that none of them is finalized to minimize the
economic cost of the attack. Riard [44] proposed the time-dilation
attack which dilates the time for victims to become aware of new
blocks by isolating victims from the network and delaying block
delivery. An attacker can leverage the time-dilation attack to steal
funds from the victim’s payment channels.

11 Conclusion
In this paper, we conduct an in-depth analysis of the optimistic
rollup protocols and propose the manipulable delay attack to delay
the confirmation of the blockchain state, and three double spending
attacks. In addition, we also conducted extensive experiments to
evaluate the costs and impacts of these attacks. All of the vulnera-
bilities found in this work were confirmed by corresponding official
developers, and our research prevented billions of dollars in losses.
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A Fraud-Proof Protocol
The main idea of optimistic rollup is that anyone can submit a state
root to the state manager, and the state manager expects these state
roots to be correct but does not provide a guarantee. If someone
submits the wrong state root, it will be corrected through the fraud-
proof protocol. As mentioned in §2.1, validators may disagree on
the state root posted to L1. In other words, validators may disagree
on the final state of the L2 blockchain after executing some transac-
tions. The fraud-proof protocol is designed to resolve disputes. In
other words, the protocol is optimistic because it advances the state
of the L2 blockchain by letting any validator post state root to the
state manager that is claimed to be correct and then giving others
a chance to challenge that claim. If the challenge period passes and
nobody has challenged the published state root, the state root is
considered valid and correct.

There are basically two design choices for fraud-proof proto-
cols, the first is an interactive proof based on binary search, and
the other is the re-execution of transactions on L1. Arbitrum uses
interactive fraud-proof, and Optimism initially adopted the method
of re-executing disputed transactions on L1 and later switched to
interactive fraud-proof as well. The gist of interactive proving is
that the parties in dispute will engage in a back-and-forth protocol
refereed by a L1 smart contract named challenge manager. The
interactive protocol is based on the dissection of the dispute, and
the L2 execution engine will run in a virtual machine in order to
record the intermediate execution state. If one party claims that the
execution of the disputed transaction includes N steps (one instruc-
tion executed at each step), it posts two claims of size N/2, which
combine to yield the N-step claim, and the other party chooses
one of the N/2-step claims to challenge. This procedure is repeated,
dividing the dispute in half at each stage until they only disagree on
a single step of execution. Finally, this instruction will be executed
in L1, and the challenge manager will judge which party won the
challenge based on the execution result.
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