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Abstract—Trusted Execution Environments (TEEs) provide 
robust hardware-based isolation to mitigate data breaches and 
privacy risks. Confidential Virtual Machines (confidential VMs or 
CVMs) extend these capabilities by using VMs as their execution 
abstraction, offering superior compatibility over process-based 
TEEs like Intel SGX. The rising demand for Confidential VMs 
has spurred innovations from major chip manufacturers, such 
as AMD SEV, Intel TDX, and Arm CCA, and their integration 
into leading doud platforms, inducting AWS, Azure, and Google 
Cloud. On the RISC-V platform, however, existing TEE arehi- 
tectures rely on process-level abstractions or custom hardware, 
leading to limited compatibility and scalability.

This paper presents Zion, a confidential VM architecture 
for commodity RISC-V hardware that operates without cus­
tom extensions. Zion ensures security, flexibility, and efficiency 
through a short-path CVM mode and a secure vCPU mechanism  
for protecting and efficiently updating vCPU states, enhancing 
context-switching performance. It combines Physical Memory 
Protection (PMP) with paging for scalable memory isolation, 
employs a hierarchical memory structure for efficient manage­
ment, and introduces a split-page-table-based mechanism for 
secure memory sharing with virtió devices. Evaluations show 
Zion achieves under 5% overhead in real-world applications, 
demonstrating its practicality.

Index Terms—Confidential VM, RISC-V, Trusted Execution 
Environment

I . I n t r o d u c t i o n

Trusted Execution Environments (TEEs) provide robust 
hardware-based isolation, making them increasingly crucial in 
addressing the rising incidents of data breaches and privacy 
violations [1], [2], Among TEE technologies, Confidential 
Virtual Machines (confidential VMs or CVMs) stand out by 
using VMs as their execution abstraction. This approach offers 
greater compatibility and practicality compared to process­
based TEEs like Intel SGX [3].

Driven by these advantages, confidential VM technology 
has seen significant development and adoption. Leading chip 
manufacturers have introduced their own confidential VM 
architectures, such as AMD SEV [4], Intel TDX [5], and
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Arm CCA [6]. Similarly, major cloud providers, such as 
Amazon AWS [7], Microsoft Azure [8], and Google Cloud [9], 
have integrated confidential VMs to offer secure and privacy- 
focused services for tenants with confidential workloads.

Confidential VMs on RISC-V are also gaining increasing 
attention and adoption, driven by the expanding role of RISC- 
V across diverse computing domains. Initially, RISC-V es­
tablished its presence in low-performance Internet of Things 
(IoT) devices, leveraging its open-source architecture and 
flexibility to support a wide range of applications. However, 
RISC-V [10] is now transcending its traditional focus, making 
notable progress in high-performance cloud computing envi­
ronments that demand robust, secure, and efficient solutions. 
This evolution is fueling a growing need for confidential VM 
technology, as organizations prioritize data privacy and secure 
computation in these advanced settings.

However, practical confidential VM architectures are still 
lacking on the current RISC-V platform. Sanctum [11], Key­
stone [12], and Penglai [13], the prominent RISC-V TEE 
architectures, all use process-level abstractions, necessitating 
modifications to user applications to be compatible with their 
TEEs. In contrast, confidential VM architectures designed 
to run on the RISC-V platform face issues with hardware 
compatibility. For example, CURE [14] and ViiTEE [15] offer 
VM enclaves capable of running confidential VMs via hard­
ware extensions. However, their reliance on custom hardware 
introduces hardware compatibility issues—they cannot run on 
commodity RISC-V processors. Another initiative, the confi­
dential VM extension (CoVE) [16] proposed by RISC-V TEE 
TaskGroup (AP-TEE TG) [17], is still under development [18]. 
Considering the long delay from design to actual adoption of 
hardware security primitives, the availability of CoVE in the 
near future remains uncertain.

In addition to hardware compatibility, the current confi­
dential VM architecture of the RISC-V platform also has 
deficiencies in flexibility and scalability. In terms of flexibility, 
CURE [14] and VirTEE [15] implement region-based memory 
isolation, requiring the physical addresses of the memory 
isolation area to be continuous. This design struggles to 
meet the flexible memory isolation needs of confidential VM, 
making dynamic expansion difficult and causing significant 
memory fragmentation. In terms of scalability, due to the
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resource limitations of the security primitives of custom hard­
ware extensions, CURE and VirTEE can only support 13 
concurrent VM enclaves, which is difficult to meet the large- 
scale concurrency requirements of cloud platforms. These 
challenges have led us to pose the following research question: 
Can we design a secure, efficient, and flexible confidential VM 
architecture using the commodity RISC-Vprocessors?

In this paper, we present Zio n , a confidential VM architec­
ture built on the commodity hardware of the RISC-V platform. 
Zion  introduces several innovative designs to ensure security, 
flexibility, and efficiency. It introduces a short-path CVM mode 
and combines a secure vCPU with a shared vCPU interac­
tion mechanism, enabling secure and efficient protection and 
updates of vCPU states. This ensures both the security and 
performance of context switching between confidential VMs. 
For memory isolation, Zion  combines the Physical Memory 
Protection (PMP) hardware isolation primitive with paging to 
create a flexible and scalable memory isolation mechanism. 
Additionally, Zion  incorporates a hierarchical memory struc­
ture and allocation strategy, significantly improving memory 
management efficiency for confidential VMs. Furthermore, 
Zion  introduces a secure and efficient memory sharing mech­
anism based on split page tables, enabling support for virtió 
devices of confidential VMs. Evaluations show that Zion 
incurs less than 5% performance overhead in most real-world 
applications.

In sum, this paper makes the following contributions:
• We design a practical confidential VM architecture atop 

commodity RISC-V processors. This design does not 
require any hardware security extensions, ensuring com­
patibility with existing RISC-V hardware.

• We propose a series of optimizations for confidential 
VMs, including isolation mode, vCPU state protection 
and updates, memory isolation and management, and 
memory sharing, which ensure the flexibility, security, 
and efficiency of the Zion architecture.

• We implement a prototype of Zion and conduct com­
prehensive performance evaluation, which show that the 
overhead introduced by Zion  is under 5% for most real- 
world applications.

II. B a c k g r o u n d

RISC-V is an open, patent-unencumbered reduced instruc­
tion set computing (RISC) architecture [19]. RISC-V pro­
cessors can be customized, implemented, and utilized by 
any entity. In addition to its clean, modular design, RISC-V 
includes specific security features, such as:
•  Physical Memory Protection: PMP serves as a physical 
memory isolation mechanism, allowing software in machine 
mode (M mode) to control the memory access permissions 
of software in lower privilege modes. Each hardware thread 
has a set of PMP entries that define the address, size, and 
access permissions for multiple memory regions.

•  Trap Delegation: By default, all traps (including interrupts 
and exceptions) on the RISC-V platform are handled in M
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Fig. 1: The architecture of Zio n .

mode. To improve the efficiency of trap handling, RISC-V 
introduces a trap delegation mechanism, which allows traps 
to be directly handled in lower privilege modes.

•  Hypervisor Extension: To enable virtualization, RISC-V 
introduces the hypervisor extension, which extends super­
visor mode to hypervisor-extended supervisor mode (HS 
mode). This extension also adds virtual supervisor (VS) 
and virtual user (VU) modes to support VMs. Hypervisor 
extension introduces new control and status registers and 
instructions to facilitate the execution of VMs and assist the 
hypervisor in managing them. Additionally, RISC-V supports 
memory virtualization through two-stage address translation 
in its virtualization modes.

III. Overview

A. System Architecture
The system architecture of Zion , as shown in Figure 1, 

introduces two new modes: Normal mode and CVM mode. 
Mode switching between the two is managed by the Secure 
Monitor (SM). Normal mode is responsible for running the 
non-trusted components, including the hypervisor, upper-layer 
applications, and normal VMs. The hypervisor operates in HS 
mode, which encompasses the scheduler, device drivers, file 
system, and the KVM. Meanwhile, QEMU runs in U mode, 
providing simulated device support for confidential VMs.

Zion is dedicated to running confidential VMs and operates 
in virtualized environments. The kernel of the confidential VM 
runs in VS mode, while its applications run in VU mode. The 
implementation and security of Zion are ensured by the SM, 
which operates at the highest privilege level (the M mode) and 
serves as the Trusted Computing Base (TCB) for the system. 
The SM uses hardware security primitives (e.g., PMP, IOPMP, 
trap delegation) to construct Zio n , providing secure isolation 
and protection for the vCPUs and memory of confidential 
VMs. In addition, the SM handles memory management in 
Zio n , including allocation, reclamation, and secure memory 
sharing. To facilitate collaboration between Normal mode and 
CVM mode, SM offers different Environment Call (ECALL) 
interfaces. These interfaces allow the hypervisor in Normal 
mode to control the lifecycle of confidential VMs, including 
initialization, operation, and suspension. Additionally, confi­
dential VMs in Zion can use these ECALL interfaces to 
access functions such as retrieving measurement reports and 
platform random numbers.
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B. Threat Model

Zio n ’s threat model assumes the trustworthiness of un­
derlying hardware mechanisms, including virtualization, trap 
delegation, PMP, and IOPMP. The security model assumes 
the SM is reliable and correctly implements the security 
mechanisms described in this paper. However, Zion does 
not trust privileged software beyond the SM and assumes 
the hypervisor could be fully compromised, including critical 
functions like vCPU scheduling and memory management. It 
is also assumed that the confidential VM does not intentionally 
leak sensitive data or code.

Physical attacks, such as bus snooping [20], cold boot 
attacks [21], and fault injection [22], [23], are beyond the 
scope of our research, as they require additional hardware 
support (e.g., a memory encryption engine) for mitigation. 
Similarly, cache side-channel attacks [24] and transient exe­
cution attacks [25], [26] fall outside our threat model, though 
existing defense mechanisms [27], [28] can be integrated into 
Zio n ’s design. Like other TEE architectures, Zion does not 
address denial-of-service attacks.

IV. Zion  D esign

A. Short-path CVM Mode

Most current confidential VM architectures, such as ARM 
CCA [6], TwinVisor [29], and CoVE [16], follow a similar 
model. These designs rely on the monitor to handle CPU 
security state transitions and introduce a thin secure hypervisor 
through horizontal isolation technologies, such as the TEE 
Security Manager (TSM) in CoVE. The secure hypervisor, 
which is much smaller than the normal hypervisor, provides 
essential security functions for confidential VMs. However, 
this approach increases the context switching path, resulting 
in performance degradation.

In its isolation mode, Zion adopts a design based on a 
virtual security processor, which divides the CPU into Normal 
mode and protected CVM mode using time-sharing multi­
plexing techniques. Unlike other designs, Zion centralizes 
execution state switching and security management in the SM, 
allowing the switch between CVM mode and Normal mode to 
require only a single privilege level switch. This approach re­
duces the overhead caused by multiple privilege level switches, 
as seen in traditional confidential VM architectures.

While Zion avoids introducing a secure hypervisor, this 
raises the risk that traps from confidential VMs could be cap­
tured by the normal hypervisor, potentially leading to security 
issues like leakage of sensitive register states. To mitigate this 
risk, Zion implements a trap delegation control mechanism 
that transfers trap handling rights to the SM. The delegation 
criteria are as follows: 1) Traps that can be processed by the 
confidential VM are delegated to VS mode and handled by 
the confidential VM kernel; 2) Traps that cannot be processed 
directly are sent to the SM for handling. This design improves 
context switching efficiency while maintaining the security of 
the confidential VM.

B. vCPU State Protection and Update
Unlike normal VMs, where the vCPU state is entirely 

controlled by the hypervisor, the vCPU state of confidential 
VMs must be protected from tampering or theft by untrusted 
hypervisors for security reasons. However, certain confidential 
VM functionalities, such as MMIO, still require assistance 
from the hypervisor. The challenge lies in ensuring the security 
of the confidential VM’s vCPU state while facilitating efficient 
state transfer between the confidential VM and the hypervisor.

To address this, Zion introduces a secure and efficient 
vCPU state protection and update mechanism, combining 
secure and shared vCPUs. Zion  allocates memory within the 
SM to create a secure vCPU structure. This structure stores the 
general-purpose and control register states of each vCPU of 
the confidential VM, ensuring the security of the vCPU state. 
To accelerate state transfer, Zion establishes a shared vCPU 
structure in the hypervisor, which is used for fast exchange of 
vCPU states between the hypervisor and the SM.

During the transition between CVM mode and Normal mode, 
the SM stores the register states in either secure vCPU or 
shared vCPU based on the type of exception or interrupt that 
causes the confidential VM to exit. For example, if a load 
instruction triggers a confidential VM exit, the SM stores the 
trap-related register states, such as htinst, in the shared vCPU 
to allow the hypervisor to parse the exception and retrieve the 
target register of the load instruction. Other register states are 
stored in the secure vCPU to maintain isolation and protection.

After the hypervisor handles the exception, it writes the 
required values into the shared vCPU registers. When the 
confidential VM is resumed, the SM not only restores the reg­
ister states from the secure vCPU but also retrieves necessary 
values from the shared vCPU. To protect against TOCTOU 
(Time-of-Check to Time-of-Use) attacks [30], Zion  adopts 
a Check-after-Load mechanism from TwinVisor, performing 
security checks after reading the shared vCPU register values 
to prevent tampering by the malicious hypervisor [29].

C. Flexible and Scalable Memory Isolation
A straightforward approach to memory isolation is to allo­

cate contiguous physical memory directly to confidential VMs 
and utilize the PMP to isolate this memory region. While 
this method ensures memory isolation, it presents two key 
challenges: first, the limited number of PMP entries (typically 
16) restricts the number of concurrent confidential VMs; 
second, this memory pre-allocation strategy requires resources 
to be allocated in advance based on the expected memory size 
when creating the confidential VM. This approach not only 
weakens the cloud platform’s ability to overcommit memory, 
but also leads to memory fragmentation, while limiting the 
confidential VM’s ability to dynamically expand memory.

To enhance the flexibility and scalability of memory isola­
tion, Zion combines PMP with paging. This approach lever­
ages PMP to enforce memory isolation between CVM mode 
and Normal mode. Initially, the SM configures PMP to create 
a secure memory pool within normal memory, designated for 
confidential VMs. Before transitioning to CVM mode, the SM
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Fig. 2: Hierarchical memory allocation for confidential VMs.

updates the PMP configuration register (pmpcfg) to grant the 
confidential VM access to this secure memory. During hyper­
visor operation, the SM disables access to the secure memory 
pool, ensuring that untrusted hypervisors cannot modify or 
corrupt the protected memory.

For memory isolation between confidential VMs, Zion 
relies on Stage-2 page table isolation. During the creation and 
page fault handling of a confidential VM, the SM ensures that 
the memory allocated to the confidential VM is not shared 
with other confidential VMs. Only the SM has authority over 
the page table of the confidential VM, ensuring that the secure 
memory where the confidential VM’s page table is stored is not 
mapped into the address space of other confidential VMs. As 
a result, even if a confidential VM is compromised, it cannot 
access or modify the memory of other confidential VMs due 
to the restrictions enforced by the page table.

To safeguard against potential Direct Memory Access 
(DMA) attacks from malicious peripherals, the secure memory 
area is also protected by the IOPMP [31], which controls 
peripheral access in addition to the CPU-level protection 
provided by PMP. Furthermore, to prevent untrusted hyper­
visors from launching page table-based attacks, such as side- 
channel or controlled-channel attacks [32], the SM configures 
page tables for confidential VMs within the secure memory 
pool. This prevents the hypervisor from tampering with or 
interfering with the confidential VM’s page table.

D. Hierarchical Memory Management
To efficiently manage the secure memory pool of CVM 

mode, Zion introduces a hierarchical secure memory structure 
and employs targeted memory allocation strategies at various 
levels. When a privileged user registers contiguous physical 
memory with the SM, the SM divides the memory segment 
into smaller secure memory blocks (default size of 256KB) 
and links these blocks in a bidirectional circular linked list. 
Each secure memory block consists of several contiguous 
memory pages and contains pointers to the previous and next 
blocks. The blocks are ordered by address, with allocation 
prioritized from the head of the linked list.

Figure 2 illustrates the memory allocation process for CVM 
mode, which is divided into three stages. In the first stage, 
the SM attempts to allocate a memory page directly from the 
page cache associated with the vCPU of the confidential VM in 
which the page fault occurs. If free memory pages are available 
in the page cache, one is allocated directly; otherwise, it enters 
the second stage of allocation. In this stage, the SM allocates

a new secure memory block from the head of the linked 
list and associates it with the vCPU experiencing the page 
fault. This new block serves as the page cache for that vCPU, 
ensuring each vCPU has an independent cache. In the third 
stage, when the secure memory pool nears depletion, the SM 
requests the hypervisor to expand the secure memory pool. 
The expansion strategy includes applying for a new contiguous 
physical memory area to be registered as a secure memory 
pool or expanding an existing memory pool.

This hierarchical memory allocation model significantly en­
hances memory management efficiency for confidential VMs. 
In the first stage, the availability of page cache allows most 
allocation requests to be fulfilled quickly, with the vCPU- 
specific cache supporting efficient memory allocation while 
avoiding the performance loss from concurrent locking. In 
the second stage, secure memory blocks are efficiently man­
aged through the linked list, allowing allocation with a time 
complexity of 0 (1). Since the first two stages are entirely 
controlled by the SM, they avoid the performance overhead 
associated with switching to Normal mode. Although the third 
phase requires the assistance of the hypervisor and introduces 
operations including memory expansion, mode switching, and 
TLB flushing, its impact on overall performance is minimal 
since most allocation requests can be handled in the earlier 
stages.

E. Split Page Table-Based Memory Sharing
To prevent the hypervisor from tampering with the confi­

dential VM’s page table, we assign page table management to 
the SM by default. However, this approach incurs performance 
overhead when supporting shared memory.

In the unoptimized shared memory establishment process, 
the hypervisor first allocates memory and creates a mapping, 
then synchronizes this mapping with the SM. After the SM 
verifies the request, it maps the confidential VM’s address 
space to the physical memory, establishing the shared memory. 
However, this synchronization introduces performance over­
head and consistency issues, particularly during page swap 
operations in Normal mode. If synchronization is delayed, 
it could threaten system availability and security. On the 
other hand, implementing a synchronization mechanism would 
increase system complexity and degrade performance.

To address these issues, we propose a shared memory 
scheme based on a split page table design. The Guest Physical 
Address (GPA) space of the confidential VM is divided into 
two regions: a private address space, secured by the SM 
for storing confidential code and data, and a shared address 
space, managed by the hypervisor for memory sharing. The 
shared address space maps directly to normal memory. The 
confidential VM’s root page table includes entries for both 
secure and shared page tables, enabling access to memory 
from either. In contrast, the hypervisor’s root page table 
contains only shared page table entries, restricting its access 
to normal memory and preventing modifications to the private 
memory mappings of the confidential VM. This design ensures 
that the hypervisor cannot use the shared page table it controls
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to access the secure memory of the confidential VM, thereby 
maintaining memory security.

Since the hypervisor directly manages the shared page table, 
updates to shared memory can bypass the SM, eliminating the 
need for complex synchronization and reducing performance 
overhead. The update process affects only the shared address 
space, streamlining the operation and minimizing synchroniza­
tion burdens. As a result, the split page table-based approach 
enhances both the efficiency and security of shared memory 
management while resolving related performance challenges.

V. E v a l u a t i o n

A. Implementation & Experimental Setup
We integrated the SM with OpenSBI and made modifica­

tions to support our design. We also adapted the host’s KVM 
module for compatibility and added the ECALL interfaces for 
calling SM. Additionally, we made minor adjustments to the 
confidential VM kernel to support shared memory requests.

To evaluate the performance of Z i o n , we conducted ex­
periments on the Genesys2 FPGA development board, which 
simulated four 64-bit Rocket cores with hypervisor extensions, 
running at 100 MHz and equipped with 1 GB of memory. The 
host ran Linux (kernel version 5.19.16), and the virtualization 
stack used customized QEMU and KVM. The OS in the 
confidential VM matched that of the host. To support virtió 
devices, the confidential VM enabled SWIOTLB support and 
configured its buffer as shared memory.

B. CVM Mode Switching Performance
1 ) Optimization brought by shared vCPU mechanism: We 

evaluated the context switching time overhead of confidential 
VMs with and without shared vCPU state update support. The 
CVM entry and exit, triggered by MMIO exceptions, were 
tested 200 times. For CVM entry, the switching time without 
shared vCPU support was 5,293 cycles, while with shared 
vCPU support, it was reduced to 4,191 cycles, reflecting a 
performance improvement of 20.8%.

A similar improvement was observed in the CVM exit 
test. The switching time without shared vCPU support was 
3,267 cycles, compared to 2,524 cycles with shared vCPU 
support, resulting in a performance improvement of 22.74%. 
These results demonstrate that Z i o n ’s shared vCPU state 
update mechanism significantly enhances context switching 
performance in CVM mode.

2) Optimization brought by short-path CVM mode: To 
assess the performance impact of Z i o n  ’s short-path design on 
CVM mode switching, we developed a simple secure hypervi­
sor in the host system. This setup allowed us to compare the 
performance of long-path and short-path CVM mode context 
switching. The long-path CVM mode introduces an additional 
privilege layer conversion during context switching. At CVM 
entry, the execution flow jumps from the host to the SM, then 
to the secure hypervisor, and finally to the confidential VM. 
During CVM exit, the flow moves first from the CVM mode 
to the secure hypervisor, then from the hypervisor to the SM, 
and finally back to the host.

TABLE I: Execution cycles for RV8 Benchmarks in various 
environments. The baseline is indicated by *, and all values 
are in 109 cycles.

Benchmark Normal VM* Confidential VM (%)
aes 6.312 6.498 (+2.95)
bigint 8.965 9.210 (+2.73)
dhrystone 4.144 4.264 (+2.90)
miniz 25.412 25.900 (+1.92)
norx 3.905 4.014 (+2.79)
primes 19.002 19.347 (+1.81)
qsort 2.148 2.205 (+2.65)
sha512 3.947 4.063 (+2.93)
Average - - +2.59

We tested CVM entry and CVM exit triggered by a timer 
interrupt 200 times under both the long-path and Z i o n  ’s 
short-path context switching. Since the timer interrupt does 
not involve vCPU state updates, this test isolates the impact of 
context switching alone. The results show that Z i o n  ’s short- 
path design significantly improves context switch performance. 
For CVM entry, the long-path CVM mode switching time 
is 7,282 cycles, while Z i o n  ’s short-path mode takes only 
4,028 cycles, resulting in a 44.7% performance improvement. 
For CVM exit, the long-path switching time is 5,384 cycles, 
whereas Z i o n  ’s short-path mode takes just 2,406 cycles, 
yielding a 55.3% improvement.

It is important to note that in our test, the secure hypervisor 
was not fully isolated. As such, this test only partially reflects 
the performance penalty of the long-path mode. Once security 
measures such as microarchitecture state clearing are added 
to the secure hypervisor, these operations will likely have a 
more significant impact on the overall performance of the 
confidential VM.

C. Stage-2 Page Fault Handling Performance

In this section, we evaluated the page fault processing 
performance of the normal VM and the confidential VM. 
After both VMs were started, we ran a program that allocated 
continuous physical memory and performed write operations. 
For the normal VM, we directly recorded the stage-2 page 
fault processing time in KVM. For the confidential VM, we 
recorded the page fault processing time at different memory 
allocation stages in the SM.

The test results show that the average page fault processing 
time for the normal VM is 39,607 cycles. For the confidential 
VM, the processing time for page faults triggering only the 
first-stage memory allocation is 31,103 cycles. When the 
second-stage memory allocation is triggered, the processing 
time increases slightly to 34,729 cycles. However, when the 
third-stage memory allocation is triggered, the page fault 
processing time increases significantly to 57,152 cycles.

Since most page fault requests are handled during the first 
two stages, the average page fault processing time for the 
confidential VM is 31,449 cycles, which is only slightly higher 
than the first-stage allocation time. These results align with 
our design analysis and demonstrate the efficiency of Z i o n  ’s 

hierarchical memory management.
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Fig. 3: Comparison of throughput and latency for various 
operations between normal VMs and confidential VMs.

D. Macrobenchmarks

In this section, we evaluate confidential VM performance 
on real-world applications using CPU-intensive (RV8, Core­
mark), memory-intensive (Redis), and I/O-intensive (IOZone) 
workloads. Both normal and confidential VMs were configured 
with one vCPU, 256MB memory, and SWIOTLB enabled. 
RV8 Benchmarks. The RV8 benchmarks include CPU­
intensive programs such as encryption and decryption, math­
ematical operations, and sorting. We ran each program in the 
RV8 benchmark suite 20 times and calculated the average 
value for each. As shown in Table I, compared to normal VMs, 
the overheads of confidential VMs remained within 3%, with 
the average overhead measured at 2.59%.
CoreMark. CoreMark is another CPU-intensive benchmark. 
We ran it 20 times to obtain the average score. The test results 
indicate that the average score on the normal VM is 2,047.6, 
while the confidential VM scored 1,992.3, reflecting a 2.77% 
performance drop compared to the normal VM. This result 
aligns closely with the findings from our RV8 benchmark tests. 
Redis Benchmark. The Redis benchmark tests the perfor­
mance of the Redis in-memory database, which is itself a 
memory-intensive test. For this test, we conducted ten rounds 
of testing, executing 10,000 requests in each round. The test 
results are presented in Figure 3. The overhead of confidential 
VMs remains within a reasonable range when compared to 
normal VMs. In terms of throughput, confidential VMs show 
an average decrease of 5.3% compared to normal VMs. 
Regarding latency, confidential VMs experience an average 
increase of 4%.
IOZone. In this test, we compared continuous file read/write 
performance between a confidential VM and a normal VM 
across various file sizes (64KB-512MB) and record sizes 
(8KB, 128KB, 512KB). As shown in Figure 4, both write and 
read throughput are lower when the record size is small. For 
smaller files, the performance difference is minimal (under 
5%), but as file sizes grow, the confidential VM’s overhead 
increases, reaching up to 20% due to frequent I/O exits.

VI. Related W ork

Sanctum [11], Keystone [12], Penglai [13], TIMBER- 
V [33], and SPEAR-V [34] are notable TEE implementations 
on RISC-V, all of which adopt the process model as their isola­
tion abstraction. While effective, these process-based TEEs re­
quire significant porting efforts to support legacy applications,

Normal VM r8 Normal VM M28 Normal VM r512
Confidential VM r8 Confidential VM M 28 Confidential VM r512

Fig. 4: Throughput performance for read and write operations 
at varying file sizes in normal and confidential VMs.

as they cannot run them directly. In contrast, Zion , a VM- 
based TEE, enables the execution of unmodified applications, 
offering greater practicality and ease of deployment.

Several VM-based TEEs also exist on the RISC-V plat­
form, including CURE [14], ViiTEE [15], and CoVE [16]. 
CURE supports multiple TEE abstractions, including user­
space, kernel-space, sub-space, and VM enclaves, with the 
VM enclave enabling confidential VMs. Building on CURE, 
VirTEE introduces features such as live migration and secure 
I/O. However, both CoVE and VirTEE rely on hardware 
modifications, including enhancements to the CPU core and 
bus arbiter. These hardware dependencies limit their scala­
bility, flexibility, and the number of parallel enclaves they 
can support. Zio n , by comparison, operates without hardware 
modifications, offering greater scalability and flexibility, par­
ticularly in memory isolation and management. CoVE, devel­
oped by the AP-TEE TG [17], is a proposed confidential VM 
extension. It introduces a Memory Tracking Table (MMT) for 
controlling physical memory access and a lightweight secure 
hypervisor, the TSM, to isolate confidential VMs and provide 
essential security services. However, CoVE’s specifications are 
still under development, and compatible hardware platforms 
are not expected to be widely available in the near term. 
In comparison, Zion  leveraging RISC-V’s mature hardware 
ecosystem, provides a practical alternative. It supports confi­
dential VMs without requiring specialized hardware, making 
it a valuable solution even after CoVE’s specifications and 
hardware become available.

On the Arm platform, works like Twinvisor [29] and 
VirtCCA [35] aim to support confidential VMs before CCA 
is available. These works share similar design goals with 
Zio n . Compared to them, Zion expands on isolation mode de­
sign, memory isolation and management, and shared memory, 
achieving higher security, flexibility, and efficiency, in addition 
to differences in underlying architecture.

VII. Conclusion

Zion is a practical confidential VM architecture built 
on commodity RISC-V processors. In addition to ensuring 
hardware compatibility, Zion  relies on innovative designs 
in isolation mode, vCPU protection and update, memory 
isolation and management, and secure memory sharing to 
ensure flexibility, security, and efficiency. Evaluations show 
that Zio n ’s performance overhead is less than 5% in most 
real-world applications.
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