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Abstract—While Last-Level Cache (LLC) side-channel attacks
often target inclusive caches, directory-based attacks on non-
inclusive caches have been demonstrated on Intel and ARM
processors. However, the vulnerability of AMD’s non-inclusive
caches to such attacks has remained uncertain, primarily due to
challenges in reverse-engineering cache addressing, constructing
eviction sets, and evicting private cache lines.

This paper addresses these challenges and demonstrates the
feasibility of conducting LLC side-channel attacks on AMD’s
non-inclusive caches. We first reverse-engineer the cache ad-
dressing functions for the L2 set index, L3 slice, and L3 set
index. Leveraging this insight, we construct the first eviction
sets on AMD processors. We then introduce the first LLC side-
channel attack on AMD’s Zen series CPUs. The effectiveness of
our approach is validated by attacking OpenSSL’s AES T-table.

I. INTRODUCTION

Encryption is essential for data confidentiality, but side-
channel attacks exploit physical characteristics of crypto-
graphic implementations—such as execution time [1]-[3] and
power consumption [4]—to extract secret information like
cryptographic keys. These attacks leverage subtle hardware
implementation details without software vulnerabilities.

The LLC has become a key target for side-channel exploits,
with the Prime+Probe attack [1] being particularly notable.
This method is especially concerning because it does not
require the attacker to share a core or memory with the victim,
lowering prerequisites and increasing the likelihood of success.

Prime+Probe attacks have traditionally targeted Intel’s in-
clusive LLCs. Techniques for inclusive caches are not directly
applicable to non-inclusive caches. In non-inclusive caches,
evicting data from L3 does not necessarily evict corresponding
data from L1 and L2, reducing attack effectiveness. Specifi-
cally, an attacker on one core cannot evict data from another
core’s private cache (Figure 1).

It has been demonstrated that in non-inclusive cache archi-
tectures, Intel’s directory structure can be exploited to conduct
conflict-based cache attacks on the LLC [5]. This approach en-
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abled the first cross-core Prime+Probe attack on non-inclusive
caches by exploiting the shared directory (Figure 2).

In contrast, this method is ineffective on AMD’s non-
inclusive cache architecture due to fundamental differences in
directory structures. Intel uses a shared, capacity-constrained
directory across all cores, whereas AMD assigns a core-
partitioned shadow tag [6] in the L3 cache for each L2
cache entry. Consequently, AMD’s cache directories prevent
attackers from inferring a victim’s cache activities through a
shared directory.

To date, no LLC-based cache attacks without shared re-
sources have been successfully carried out against AMD’s non-
inclusive caches. This raises a critical research question:

Research Question: Is AMD’s non-inclusive cache ar-
chitecture inherently secure and immune to last-level
cache side-channel attacks?

Challenge: Addressing this question involves three key
challenges. First, AMD’s cache addressing structure is un-
documented, complicating the mapping of memory addresses
to specific cache sets and slices. Second, no methods exist
for constructing eviction sets on AMD’s non-inclusive caches,
which are essential for cache side-channel attacks. Third, cache
lines cannot be evicted from private caches on other cores,
limiting cross-core attacks.

Experiment Setup: All experiments were conducted on
an AMD Ryzen 9 5900X (Zen 3). Starting with the Zen
series, AMD has employed non-inclusive caches [7]. While ad-
dressing functions may vary between CPUs, the overall cache
structure remains consistent, allowing our reverse engineering
and attack methods to be adapted across the AMD Zen lineup.

Contribution: Our contributions are threefold. First, we
comprehensively reverse-engineer the cache addressing func-
tions for the L2 set index, L3 slice, and L3 set index on
AMD’s Zen series processors, revealing how physical ad-
dresses map to cache sets. Our methods are architecture-
independent and not limited to AMD CPUs. Second, building
on this reverse engineering, we propose the first effective
algorithm for constructing eviction sets on AMD processors.
Third, we introduce a method for cross-core eviction of
private cache lines, enabling LLC side-channel attacks on
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AMD’s non-inclusive caches. We successfully demonstrate
this approach by attacking OpenSSL’s AES T-table, revealing
potential vulnerabilities in these systems.

Disclosure: We have responsibly disclosed our findings to
the AMD PSIRT team. AMD has acknowledged our work.
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Eviction @ No eviction @

Private Caches

@?Insen from DRAM%@

Fig. 1: Eviction attempts in (non-)inclusive cache architec-
tures. In inclusive caches, inserting a new cache line into the
LLC (step @) evicts the corresponding line from the private
cache (step @). In non-inclusive caches, the victim cache line
remains in the private cache despite the attacker’s insertion.

Shared Caches
Evictim
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II. BACKGROUND AND RELATED WORK

LLC Side-Channel Attacks: Prime+Probe [1] introduced
the concept of performing cache attacks on the LLC without
shared memory. An attacker first fills specific cache sets
with their data (prime) and then measures access latencies
after the victim’s execution (probe) to reveal memory access
patterns. This method applies only to inclusive caches. Yan
et al. [5] conducted directory-based attacks on Intel non-
inclusive caches by targeting the Extended Directory (ED).
By constructing eviction sets mapped to the same cache slice
and the ED set, they force the victim’s cache line from the
private cache to the shared LLC, allowing detection of victim
accesses through increased latencies. A similar attack has
been performed on ARM processors [8]. Evict+Spec+Time
[9] targets speculative attacks on Intel and AMD processors
but replaces evict with the flush instruction in their imple-
mentation. This changes the threat model, as flush requires
shared memory between attacker and victim, unlike eviction.
On non-inclusive caches, flush and evict differ fundamentally,
as eviction involves constructing sets and removing private
cache lines—issues not fully explored in prior work.

Hardware Defenses Hardware approaches such as cache
randomization [10] and partitioning [11] have not yet been
widely adopted in commercial processors, leaving systems vul-
nerable to cache side-channel attacks. AMD has recommended
software-based mitigation strategies. However, achieving uni-
versal and efficient protection remains challenging. Applying
these techniques [12], [13] to arbitrary software is inherently
complex and imposes a substantial burden on developers to
safeguard sensitive data across diverse microarchitectures.

Reverse Engineering of Cache Addressing Functions:
Initial efforts to reverse-engineer Intel LLC slice functions
were presented in prior work [14], [15]. Specifically, two
methods were proposed [15]: one utilizing the Performance
Monitoring Unit (PMU) and another using latencies of the
flush instruction. Subsequent research reverse-engineered the

L2 set index of the Apple M1 processor using an eviction set
[16]. An automated method for reverse-engineering nonlinear
functions was also introduced in later studies [17]. However,
these approaches have limitations when applied to AMD’s
non-inclusive caches, as discussed in Section III.

Construction of Eviction Sets: In inclusive caches, ad-
dresses are iteratively removed from a set, and if removing
one stops evicting the target address, it is part of the eviction
set [1]. Several improvements [18]-[20] have accelerated this
pruning process. Various algorithms [5], [21] have also been
proposed for Intel’s non-inclusive caches; however, due to
a lack of understanding of AMD’s cache addressing, these
algorithms have not been implemented on AMD processors.
Specific details are discussed in Section IV.

III. REVERSE ENGINEERING

In this section, we address the first challenge: reverse engi-
neering the cache addressing structure of AMD processors.

A. Cache Slicing

Two methods for reverse-engineering cache slicing on Intel
CPUs were proposed: one based on Performance Monitoring
Units (PMUs) and another on timing measurements of the
flush instruction [15]. However, the PMU-based method is
not applicable on AMD platforms due to the lack of relevant
PMUs (e.g., LLC_LOOKUP events).

The principle of the timing-based method is that performing
a flush operation on the slice closest to the core typically takes
the least time. We found that this method cannot be directly
applied to AMD CPUs because the time differences for flush
operations across different slices are insufficient to provide
conclusive results, as demonstrated in previous research [17].
We conducted a detailed analysis to understand the underlying
reasons and subsequently enhanced the method.

Our analysis revealed that the execution time of the first
1,500 flush operations on each core is relatively short, but
time increases significantly afterward (Figure 3). If we follow
the original algorithm and frequently switch cores, the flush
operations remain within the shorter time range, leading to
insufficient differentiation between slices.

0.12 i 1 First 1500 flushes
[ Last 8500 flushes

0.00

450 500 550 600 650
Latency

Fig. 3: Latency distribution of the first 1,500 and last 8,500
flushes on AMD cores.

To address this issue, we modified the algorithm to in-
corporate a warm-up phase and complete all address tests
on each core before switching. This adjustment improves the
reliability of the results. Although Gerlach et al. [17] proposed
an eviction-based method to collect data on AMD CPU, it
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Fig. 2: Intel and AMD use distinct directory structures for non-inclusive caches. (a) Intel’s shared directory allows LLC eviction
through directory conflicts. (b) AMD’s per-L2-line shadow tags prevent LLC eviction through the directory.

requires 23 hours to gather sufficient data for analyzing the
slice-addressing hash function, whereas our method requires
only 30 minutes.

On the Ryzen 9 5900X processor, we faced a unique
challenge: the processor has six physical cores but eight cache
slices in one CCX (CPU Complex). During our timing mea-
surements, we observed that if a core flushes an address and
the time is the shortest, we increment a count corresponding
to that core-slice mapping. For certain addresses, we noticed
that the counts between two cores were approximately equal,
indicating that these addresses correspond to the extra two
slices, as they do not uniquely map to a single core.

With the mapping between addresses and slice indexes
established, we iterated through memory addresses, flipping
the ¢-th bit (starting from bit 6, as bits 0-5 correspond to
the cache line offset) in each address (addrl) to generate
a new address (addr2). By comparing their index bits, we
incremented the corresponding position in the count matrix
if a difference was detected. This process tracks how flipped
address bits affect index bits, revealing their relationship, as
shown in Table I.

The threshold is calculated as:

Threshold = {N ader
2B

where N,44.- i the total number of addresses, and B denotes

the number of address bits involved in hashing. This threshold
determines whether a specific address bit contributes to the
hash computation. The same formula is used to determine the
involvement of address bits in Section III-B and III-C.

TABLE I: Correspondence between physical address bits and
slice value bits.

Slice Bit b6 b7 b8 b9 bl0 bll bI2
0 23162 0 0 0 0 0 0

1 7216 11412 22290 6 8 13 10
2 11234 22448 97 7 14 19 16

Analyzing the count matrix, we derived the corresponding
hash function. Previous studies [8], [15], [17] indicate that
cache-addressing hash functions predominantly use XOR op-
erations, so we focused exclusively on XOR-based functions
in the analysis. Unlike previous work using an AMD Ryzen

9 5900HX [17], we found no bits involved in CCX selection
on the Ryzen 9 5900X.
The specific hash function is as follows:

{s2,51,80} = {bs N b7, bg Nb7 Nbg, bs}
B. L2 Index Addressing

It is commonly assumed that cache set index bits correspond
to the base-2 logarithm (log,) of the number of sets, as in Intel
processors [5]. However, we found that on AMD processors,
L2 and L3 cache indexing may involve the most significant
bits (MSBs) of the address, contrary to this assumption.

This prompted us to investigate which bits contribute to L2
cache addressing on AMD processors. Similar patterns exist
on other architectures; for instance, previous work showed that
the Apple M1 CPU also uses high-order address bits for cache
indexing [16]. Their method involved constructing eviction
sets—a technique unavailable for AMD processors before our
work. Moreover, our eviction set construction algorithm relies
on insights gained from reverse-engineering these addressing
functions. Similarly, the reverse engineering of snoop filter
addressing on ARM processors relied on specific PMU events
[8], which are not available on AMD processors. Our method
does not depend on architecture-specific knowledge, making
it broadly applicable to other architectures.

We conducted experiments to identify the bits involved in
L2 cache indexing. Sixteen nodes were added to a linked
list with physical addresses spaced at regular intervals. By
adjusting the interval between addresses, we ensured that the
physical addresses differed by only four bits (see Figure 4). If
these bits do not contribute to the L2 set index computation,
access latency increases due to multiple addresses mapping
to the same cache set, exceeding the 8-way associativity. As
shown in Figure 5, when the interval was set to 2'6 and 2'7,
access latency increased; when the interval was increased to
218 latency decreased, indicating that the addresses no longer
mapped to the same cache set. We deduced that bits 6-15 and
bits 21-27 of the physical address collectively determine the
L2 cache index on AMD processors.

To further investigate the impact of higher-order address
bits, we reverse-engineered the L2 cache addressing function
using Algorithm 1. We first established two addresses:
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(a)[32]31]30[20[28]27[26 2524232221 [20] 19 181716 15 14]

(b)[32]31]30][20[28]27[26[25[24 23] 2221 [20] 19 181716 15 14]

()[32[31]30]29[28]27[26 [25[24 232221 [2019[ 18] 7 18] 15]14] D Bits used only for L3 index addressing

D Bits used for both L2 and L3 index addressing

()[32]31]30[20[28]27[26 [25]24 23] 22[21 [20[ e[ 117 ] 6] 15]14] H Different Bits in the nodes' physical addresses

Fig. 4: Using a sliding window to control the bits of physical
address differences among nodes in a linked list.

Addrl: Defined by a base address, an offset (gap), and
varying cache sets.
Addr2: Defined by the base address and different cache sets.

Algorithm 1: Algorithm for determining the relation-
ship between the L2 set index and the physical address.

Input : Memory region mem, range from begin to end, step size
gap, number of nodes num
Output: Results of each test
1 base < starting address of mem;
2 for offset from begin to end step gap do

3 for j from 0 to number_of_L2_set do

4 Addrl < base + offset + (] < 6);

5 AppendNodes (Addrl, num/2);

6 for k from 0 to number_of_L2_set do

7 count < 0;

8 Addr2 < base + (k K 0);

9 AppendNodes (Addr2, num/2);

10 ShufflelList ();

11 for trial from 0 to 9 do

12 avg_time < TraverselList () ;
13 if avg_time exceeds threshold then
14 L count < count +1;
15 if count >5 then

16 L same_set « 1;

For each address, we constructed linked lists containing
eight nodes, each separated by a gap of 0x10000. This setup
ensured that the nodes within each list were identical in the
bits relevant to the L2 cache index.

We measured the access latency by traversing these linked
lists. If the combined latency exceeded a predefined threshold,
it indicated that both lists mapped to the same L2 cache set,
confirming how bits 21--27 affected bits 6—15.

This analytical approach mirrors the method used in our
cache-slicing analysis. After mapping addresses to L2 set
indexes, we flipped specific address bits to generate new ad-
dresses and recorded the relationship between differing index
bits and address bits, producing a count matrix (Table II).

Using the count matrix, we derived a hash function that
employs XOR operations. Given the address bits:

b; = (addr > i) &1 for i € [6,15] U[21,27]

Each bit of the L2 index is defined as follows:

bg if © =0,
index; bite ® index;_1 if 0 <i<3,
bi+6 S bi+18 %) indexi_l if 3 < ) < 10.

C. L3 Index Addressing

Reverse engineering the index addressing for the L3 cache
follows the same principles as for the L2 cache but involves
differences in identifying specific bits in the calculation. A
linked list of 64 nodes was constructed, with physical ad-
dresses spaced at regular intervals. By adjusting the intervals,
we ensured that the physical addresses differed by exactly six
bits, as shown in Figure 4. Cache lines were evicted from pri-
vate caches before each traversal, as detailed in Section V-A.
As depicted in Figure 5, the results showed that with a 226
interval, the 64 nodes spanned four L3 sets, each containing
16 cache lines. In contrast, with a 227 interval, the nodes
occupied only two L3 sets, exceeding the associativity limit
and increasing access latency. These observations indicate that
L3 set indexing is determined by bits 9-27.

—e— L2 cache accesses ? 350
—m— L3 cache accesses I

L2 Timing

16 18 20 22 24 26 28
Bit
Fig. 5: Relationship between the interval in physical addresses
of linked list nodes and memory access timing.

Similar to reversing the L2 set index, given the address bits:
b; = (addr > i) &1 for i € [9, 27]
Each bit of the L3 index is defined as follows:

by & by, if i = 0,
mdeasL = bi+9 &>, bi+21 &) indexi,l if0<i S 7,
bi+9 @ index; 1 if 7<¢<12.

IV. EVICTION SET CONSTRUCTION

An eviction set is a group of memory addresses that map
to the same cache set; in cache attacks, accessing these
addresses forces the eviction of specific cache lines through
the cache replacement policy. In this section, we analyze why
previous eviction set construction algorithms fail on AMD
Zen processors and introduce a new method based on reverse-
engineering cache addressing.

Firstly, algorithms designed for inclusive caches are not
effective on AMD’s non-inclusive cache architecture. An
eviction set construction algorithm for inclusive caches [1]
iteratively removes addresses from a candidate set U and ob-
serves whether the target address x still experiences eviction.
If removing an address z’ prevents eviction of x, then z’
is necessary for the eviction set. However, on non-inclusive
caches like those in AMD processors, some addresses in the
minimal eviction set U may reside only in private caches and
not in the LLC. They cannot conflict with = in the LLC, which
results in false negatives when constructing eviction sets [5].
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TABLE II: Correspondence between the physical address bits and L2 set index bits.

Index Bit b6 b7 b8 b9 bl10 bll bl2 bl13 bl4 bl5 bl6 bl7 bI8 bI9 b20 b2l b22 b23 b24 b25 b26 b27
0 130946 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
1 65410 130818 0O 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
2 32640 65280 130562 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
3 16256 32512 65024 130050 0 0 0 0 0 0 0 0 0 0 0 130050 0O 0 0 0 0 0
4 8064 16128 32256 64514 129026 0 0 0 0 0 0 0 0 0 0 64512 129026 0 0 0 0 0
5 3968 7936 15872 31746 63490 126978 0 0 0 0 0 0 0 0 0 31744 63490 126978 0 0 0 0
6 1920 3840 7680 15362 30722 61442 122882 0 0 0 0 0 0 0 0 15360 30722 61442 122882 0 0 0
7 896 1792 3584 7170 14338 28674 57346 114690 0 0 0 0 0 0 0 7168 14336 28672 57344 114690 0 0
8 384 768 1536 3073 6145 12289 24577 49153 98306 0O 0 0 0 0 0 3072 6144 12288 24576 49153 98305 0
9 128 256 512 1024 2048 4096 8192 16384 32769 65538 0 0 0 0 0 1024 2048 4096 8192 16384 32768 65536
Secondly, existing algorithms for non-inclusive caches also Construction on 1GB pages Construction on 4KB pages
. . . 1.0
face limitations on AMD processors. The L2 occupy set was
introduced to address false positives in non-inclusive caches Zos 2"
. . o o
[5]. It evicts addresses from private caches to ensure that all 3 %
. . . . . S 0.6 g
candidate addresses reside in the LLC and can conflict with z. a 2
p e
It is effective on Intel’s non-inclusive caches because flipping Zos Fos
the 16th bit of the physical address allows the L2 occupy s s
.. . . 0.2 0.2
set and the L3 eviction set to be mapped to different slices, e
preventlng false pos]tlves, HOWeVer7 Our reverse—engineer]ng 00 L3 eviction set construction N L3 eviction set construction
1 2 3 4 5 6 7 2 4 6 8 10

of AMD’s cache addressing revealed that all cache lines in
the same L2 cache set are mapped to the same LLC slice,
making this method inapplicable to AMD architecture.

Through reverse-engineering in Section III, we determined
that in Zen 3 processors, the L2 set index is derived from
bits 6—15 and 21—27 of the physical address, LLC slice
addressing is determined by bits 6—8, and L3 set indexing is
based on bits 9—27. Addresses within the same L2 set and
slice must also belong to the same L3 set. Therefore, we can
adapt the L2-driven Candidate Address Filtering method [21]
for AMD processors.

To construct the L3 eviction set, we first identify the L2
eviction set EV’. After obtaining the L2 eviction set EV’, we
filter the address set U to select those addresses that share the
same L2 set as the target address, using them as candidates for
the L3 eviction set. The L3 eviction set E'V is then constructed
by ensuring that all candidate addresses are evicted into the
L3 cache, avoiding false negatives. Finally, we construct the
L3 eviction set from these candidates. The whole process is
shown in Algorithm 2.

In this approach, the L2 eviction set serves as the occupy
set. Since it is a subset of the full eviction set, this structure
prevents false positives and enables effective eviction set
construction on AMD’s non-inclusive caches.

Algorithm 2: Eviction set construction algorithm

Input : Target address x, Address set U
Output: Eviction set EV

EV' < FindEV (z, U, L2_Threshold, ?) ;
U’ + CheckConflict (U, EV’);

EV + FindEV (z,U’, L3_Threshold, EV');

W N -

In our experiments, the FindEV function used the O(n?)
algorithm, proposed in previous work [1], but more efficient
algorithms can be applied. Figure 6 shows the cumulative
success rates: 98% after 7 attempts on 1GB pages and 78%
after 8 attempts on 4KB pages.

Construction Count Construction Count

Fig. 6: Cumulative success rate of eviction set construction on
1GB and 4KB pages.

V. SIDE CHANNELS
A. Eviction from Private Caches

It was observed that a context switch on Intel processors
may flush cache data to memory [22]. This allows an attacker
to evict a victim’s cache lines to memory by inducing a context
switch, for example, by sending a signal. If both processes
share the same user ID, no special privileges are required to
send a signal to a process running on a different core.

However, our experiments on AMD CPUs revealed different
behavior. As shown in Figure 7, we measured the cache latency
of accessing cache lines from the same L2 and L3 cache sets,
both under normal conditions and after the process received a
signal. Under normal conditions, when the number of entries
was below 24 (the combined associativity of the L2 and L3
caches), accesses hit the cache, resulting in low latency. When
the number of entries exceeded 24, cache misses occurred,
leading to a significant increase in latency.

—e— Normal access
—=— Access after signals

300

250

Latency(cycles)

"~ o

9 12 15 18

Entries

Fig. 7: Comparison of cache access latency under normal
conditions and after receiving signals.

21 24

Interestingly, after receiving a signal, no significant increase
in latency was observed, suggesting that the data remained in
the L3 cache. When the number of entries exceeded 16 (the
L3 cache associativity), latency increased, indicating that the
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L2 set was not involved. This suggests that the signal caused
cache lines to be evicted only from private caches.

Thus, we conclude that on AMD platforms, the signal
mechanism can be exploited to flush the victim’s private
caches while retaining data in the L3 cache, presenting a
unique opportunity for cache-based side-channel attacks.

B. Prime+Signal+Probe

Based on these findings, we propose a cache attack targeting
the LLC in AMD’s non-inclusive cache architecture. In this
attack, the attacker first identifies the victim’s target LLC sets,
utilizing power spectral density to detect periodic accesses to
the LLC sets in the frequency domain [21]. Once the target
LLC sets are identified, the attack proceeds as follows.

The attacker constructs an eviction set, either through an
eviction set construction algorithm or by selecting cache lines
from a 1GB large page. The relevant cache sets are primed
to establish a known state. A signal is sent to the victim
process, triggering a context switch that evicts the victim’s
cache lines from private caches. The attacker then probes the
cache sets by measuring access latency. By analyzing these
latency measurements, the attacker can determine whether the
victim accessed specific cache lines. If the victim accessed
cache lines containing secret data, the attacker’s corresponding
cache lines would be evicted, leading to increased access
latency. This process is illustrated in Figure 8.

B

®Prime

Fig. 8: Overview of the Prime+Signal+Probe attack. The
attacker primes the cache set with their data (step @), and
sends a signal to the victim, triggering a context switch that
evicts the victim’s cache lines from the private L2 cache to the
shared LLC if they were accessed by the victim beforehand
(step @). Finally, the attacker probes for increased latency to
detect if specific lines were accessed by the victim (step ®).

Private Caches

Shared Caches

EEEEES

B <—®Timing

" @Evited After signal
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We selected the AES T-table implementation as our side-
channel attack target. Despite countermeasures [23]-[25] that
mitigate most cache side channels in AES implementations,
the T-table approach remains widely used for examining
emerging side-channel attacks compared to earlier methods
[31, [26], [27]. Drawing from similar attack scenarios [1], [21],
our Prime+Signal+Probe technique also applies to other cryp-
tographic algorithms, including RSA, ElGamal, and ECDSA.

The T-table implementation optimizes AES by convert-
ing SubBytes, ShiftRows, and MixColumns into 16 memory
lookups from four precomputed tables. In the first round, table
accesses are made to entries 7T [p; @ k;|, where ¢ = j mod 4
and 0 <4 < 16, allowing attackers to infer possible key-byte
values (k;) when the plaintext (p;) is known.

We conducted a known-plaintext attack on the AES T-table
implementation in OpenSSL. By analyzing whether the victim
accessed specific T-table entries, we inferred possible key-byte
values. For each round, we recorded the results of 1024 AES
encryptions. Figure 9 illustrates a cache template generated
from 1024 encryptions, revealing a discernible pattern.

’l | |H Illﬁlll‘ﬂlw‘ \I ” lllll| } rIIIH
I T |< HWh
’mmm u'»m;n m'm(l

Monitored Cacheline Number
Normalized Cache Miss Frequency

150 %o 200 250
Plaintext Byte

Fig. 9: Cache templates showing the cache miss frequency of
the eviction set.

We performed multiple rounds of the attack, applying ma-
jority voting to the results. Scenarios included selecting cache
lines from the same L3 set on a 1GB page and constructing
eviction sets with the proposed algorithms on 1GB and 4KB
pages. Figure 10 shows the accuracy of majority voting:
on 4KB pages, accuracy reached 100% with zero standard
deviation when the vote count exceeded 16, allowing key-byte
inference. For 1GB pages, achieving 100% accuracy required
a majority vote count of 30 when constructing eviction sets
and 22 when selecting cache lines directly.

100

95
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85

80 i

75 I

Accuracy (%)

—$— Eviction set construction algorithm on 4KB pages
Eviction set construction algorithm on 1GB pages
—%- Directly selecting the eviction set on 1GB pages

60 l

1456 78 91011121314151617 181920 212223 24 25 26 27 28 29 30
Number of votes

Fig. 10: Accuracy of majority voting on 1GB and 4KB pages.

VI. CONCLUSION

We analyzed the security of AMD’s non-inclusive caches.
By reverse-engineering the cache addressing functions, devel-
oping an eviction set construction algorithm, and employing
signals to evict cache lines from private caches, we suc-
cessfully execute the last-level cache side-channel attack on
AMD processors. Given the challenges of applying software
mitigation to arbitrary applications, our findings highlight the
need for hardware-based defenses in commercial processors.
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