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Abstract. This paper presents SPECULARIZER, a framework for uncovering spec-
ulative execution attacks using performance tracing features available in com-
modity processors. It is motivated by the practical difficulty of eradicating such
vulnerabilities in the design of CPU hardware and operating systems and the prin-
ciple of defense-in-depth. The key idea of SPECULARIZER is the use of Hardware
Performance Counters and Processor Trace to perform lightweight monitoring of
production applications and the use of machine learning techniques for identi-
fying the occurrence of the attacks during offline forensics analysis. Different
from prior works that use performance counters to detect side-channel attacks,
SPECULARIZER monitors triggers of the critical paths of the speculative execu-
tion attacks, thus making the detection mechanisms robust to different choices
of side channels used in the attacks. To evaluate SPECULARIZER, we model all
known types of exception-based and misprediction-based speculative execution
attacks and automatically generate thousands of attack variants. Experimental re-
sults show that SPECULARIZER yields superior detection accuracy and the online
tracing of SPECULARIZER incur reasonable overhead.

1 Introduction

Speculative execution attacks exploit micro-architectural design flaws and side channels
in modern processors and enable unprivileged processes to exfiltrate sensitive informa-
tion across security boundaries. These attacks have seriously undermined the funda-
mental security assumptions made in the design of the operating systems and have been
in the spotlight since their very first public disclosure in early 2018. The most promi-
nent examples of speculative execution attacks are Meltdown [27] and Spectre [23], and
later variants, such as Foreshadow [41], Micro-architectural Data Sampling (MDS) [31,
37,43], Load Value Injection (LVI) [42] are also well-known examples of such attacks.

In this paper, we apply the principle of defense-in-depth and propose SPECULAR-
IZER4, a software framework for uncovering speculative execution attacks using hard-
ware performance tracing features available in commodity processors, i.e., hardware
? This work was mainly done at Baidu Research.
4 SPECULARIZER is a portmanteau of “Speculative” and “Polarizer”.



performance counters (HPC) and processor trace (PT). SPECULARIZER complements
existing defenses against speculative execution attacks, by offering a capability of log-
ging both architectural and micro-architectural behaviors of the monitored software to
enable forensic analysis and offline attack detection.

In contrast to prior work that detects cache side channels to identify speculative
execution attacks [19], which can be easily circumvented by attacks using alternative
side channels, SPECULARIZER is inspired by the following key observations: Although
speculative execution attacks may leverage a variety of micro-architectural side chan-
nels (e.g., TLBs, caches) to leak secrets from speculatively executed instructions, the
invariant of these attacks is the method with which the speculative execution can be
triggered. In exception-based attacks, speculative execution is triggered by exceptions,
which are either handled or suppressed; in misprediction-based attacks, speculative ex-
ecution is triggered either by control-flow misprediction or by misprediction in the
memory disambiguation. Therefore, SPECULARIZER utilizes the inevitable execution
patterns of exceptions and mispredictions as signatures.

We identify PT packets and HPC events that can reveal crucial information neces-
sary for attack detection, such as control-flow transfers for exception handling and TSX
aborts, mispredicted branch instructions, machine clears due to memory order conflicts,
etc. While each type of PT or HPC record alone is insufficient for reconstructing all at-
tack activities, collectively they offer greater insight into the micro-architectural level
behavior of the monitored applications. Therefore, we develop techniques to combine
HPC and PT data to construct execution traces. With these traces, we build classifi-
cation models using the Long Short Term Memory (LSTM) network to perform the
classification of attack and benign programs.

SPECULARIZER consists of two components: an online trace collection component
that is integrated into the operating system of a production machine, on which the
monitored application runs, and an offline attack detection component that performs
HPC and PT records parsing, trace processing, and trace classification, which are time-
consuming and hard to finish in real-time. In fact, rarely do HPC or PT-based monitor-
ing systems perform real-time analysis [14,51]. As such, SPECULARIZER is best suited
for VM or container-based cloud systems, where suspicious workloads from untrusted
cloud tenants are monitored on cloud servers and forensic analyses are performed on
separate servers to detect attack activities. While deferred attack detection does not pre-
vent the attacks from happening, it can trigger further investigation of attacks to identify
their sources and assess their consequences.

We have implemented a prototype of SPECULARIZER and evaluated its effective-
ness and efficiency in a lab setting. Specifically, to evaluate SPECULARIZER, we de-
velop parameterized models for each type of the speculative execution attacks we aim
to detect, and then automatically generate thousands of attack variants by tuning the
parameters of these models. With the data sets collected from both benign and attack
samples, the evaluation of SPECULARIZER suggests it has promising detection accuracy
while inducing reasonable performance overhead. The evaluation results also indicate
that SPECULARIZER significantly raises the bar for performing speculative execution
attacks even if the attackers understand the detection mechanism.



Contributions. The paper makes the following contributions: À SPECULARIZER is the
software tool that detects speculative execution attacks, by their triggers of speculative
execution rather than specific covert channels. Á SPECULARIZER provides new insights
of combined use of multiple performance tracing hardware features, e.g., PT and HPCs,
in the context of offline attack detection. Â The paper presents parameterized models
of speculative execution attacks and methods to automatically generate attack variants
with varying attack success rates. Ã The paper presents a prototype implementation of
SPECULARIZER and empirically evaluates its selection of parameters, its effectiveness,
and performance overhead.

2 Background

Speculative Execution Attacks. A speculative execution attack contains the following
components [3]: Speculation primitive triggers speculative execution of instructions.
Disclosure gadget transmits information through a side channel. Disclosure primitive
reads the side-channel information that was transmitted by the disclosure gadget. As
such, a speculative execution attack can be performed in the following steps: À exe-
cutes the speculation primitive to trigger speculative execution of instructions. Á uti-
lizes the speculative instructions (including the speculation primitive itself) to access
secrets across the security boundary; Â speculatively executes the disclosure gadget to
encode the secret value into the cache states; Ã uses the disclosure primitive to decode
the secret data from cache states.

According to the speculation primitives, we classify speculative execution attacks
into the following three categories [11]. Misprediction-based attacks leverage branch,
Store-To-Load (STL), and memory-order buffer mispredictions as the speculation prim-
itive and performs attacks before the correct target is resolved. Exception-based attacks
and assistance-based attacks use exceptions (e.g. Page fault, General Protection fault,
etc.) and microcode assists (e.g. line-fill buffer, store buffer, and load port conflict [1],
etc.) as speculation primitive, respectively, and speculatively execute instructions before
they are handled by the processor.

Performance Tracing Hardware. Intel PT is a hardware feature available in Intel pro-
cessors since Broadwell. It is designed to record the information regarding the control-
flow transfers of software programs with very low performance overhead. The PT
hardware generates PT packets to reconstruct the timestamped control flow for a pro-
gram [17, 45]. HPCs are a set of model-specific registers that can be used to count
user-selected processor architectural or micro-architectural events. Each HPC register
can be configured to count a specific event supported by the processor. At runtime,
when the specified event happens, the corresponding HPC counter will be incremented.

The HPCs have two different approaches for software to collect event samples. First,
when the performance monitor interrupt (PMI) is enabled in a specific counter, a PMI
will be triggered when the counter overflows, which provides the software with an op-
portunity to handle the HPCs data [7]. However, the large volume of interrupts dramat-
ically increases the performance overhead. Second, to address the performance issues,
Intel introduces Precise Event-Based Sampling (PEBS), which can store the events in a



buffer (dubbed Debug Store (DS) area).Only one interrupt is triggered when the buffer
is almost full (determined by a threshold).

3 Threat Model and SPECULARIZER Overview

Threat model. All misprediction-based and exception-based attacks are in-scope of this
paper. Our method detects these two types of attacks by monitoring its execution of the
speculation primitives, which are either a branch instruction that takes time to resolve
its target address or a memory load that accesses data across the security boundary. We
consider MDS and LVI attacks that are triggered by exceptions, which are the most
common cases in current state-of-the-art attack examples, as exception-based attacks,
and hence SPECULARIZER will detect those attacks.

SPECULARIZER architecture. The overall architecture of SPECULARIZER is shown in
Fig. 1, which consists of two components: Online Trace Collection and Offline Attack
Detection. Online Trace Collection is an online component that runs on a production
system, running as system programs, which produces execution traces collected using
PT and HPC. Offline Attack Detection is a component that runs offline that includes two
parts (i.e. Trace Processing and Attack Detection), possibly on a separate machine, and
performs analysis of the collected traces to identify speculative execution attacks.
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Fig. 1. Architectural of SPECULARIZER.

Online trace collection. To detect exception-based speculative execution attacks, SPEC-
ULARIZER monitors exceptions using PT. When the attacks use TSX to suppress ex-
ceptions, PT packets can record TSX aborts; when the attacks handle the exceptions
directly, PT packets can record control-flow transfers that correspond to exception han-
dling.

To detect misprediction-based attacks, SPECULARIZER needs to monitor the pat-
tern of mispredictions, which includes misprediction in control-flow predictors (branch
prediction units like BTB, PHT, and RSB) and data-flow predictors (the memory dis-
ambiguator in load/store buffers). However, PT is insufficient to monitor these micro-
architectural events. HPCs are utilized instead. The limitation of using HPCs to monitor
misprediction is that they are asynchronous with execution context, which is insufficient
for detecting misprediction-based attacks. To address this problem, SPECULARIZER uti-
lizes Intel PT to provide the execution contexts.

Offline attack detection. During the execution of benign programs, exceptions, TSX
transaction aborts, and misprediction in control-flow and data loading is normal. There-
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Fig. 2. Architectural and workflow of trace collection.
fore, we cannot simply detect speculative execution attacks using exception handling/-
suppressing and branch/data misprediction as signatures. Instead, patterns of exceptions
and mispredictions must be learned from both benign and attack programs and utilized
to detect attacks in the program to be monitored.

4 Trace Collection

The overall workflow of trace collection (shown in Fig. 2) is as follows: 1© SPECULAR-
IZER enables PT and HPC to monitor the execution of the target program and specify
the memory buffer to record the execution traces. 2©When the memory buffer is full, an
interrupt is triggered. 3© After replacing the full buffer with an empty one for the hard-
ware to continue recording data, the interrupt handler sends a signal to the userspace
data collector. 4© Upon receiving the signal, the data collector reads data from the full
buffer. 5© Finally, the data collector saves the collected data into files.

Collecting Traces from HPC. To gain visibility into micro-architectural events, SPEC-
ULARIZER activates HPCs to monitor branch mispredictions (e.g. direct, indirect branches)
and machine clear events caused by memory order conflicts by activating the events
BR MISP RETIRED.ALL BRANCHES and MACHINE CLEARS.MEMORY ORDERING.
SPECULARIZER uses the PEBS to monitor the branch misprediction event and PMI to
monitor the memory order conflict event, as the memory order conflict event is not
available in PEBS mode. These two events are monitored simultaneously on differ-
ent HPCs. When monitoring in the PMI mode, the overhead mainly comes from PMI
handling. When monitoring in the PEBS mode, although the interrupts are significantly
reduced, there are still two sources of overhead: First, writing each PEBS record into the
DS area takes about 200 nanoseconds [8]. Second, DS-area-overflow interrupts need to
be generated when the DS area is full (maximum size is 4 MB). Thousands of interrupts
need to be generated during trace collection for one application.

Two performance optimization were implemented: First, SPECULARIZER imple-
ments a ring buffer [51] to cache the data in the DS area. Specifically, SPECULARIZER
allocates two buffers for the DS area to reduce the overhead introduced by dumping data
inside the interrupt handler. When the data in one of the buffers reaches the threshold,
SPECULARIZER switches the buffer used by the DS area upon receiving the interrupt.
A signal is sent to the user-space component of SPECULARIZER to dump data from the
full buffer. Second, to reduce the number of generated PEBS records, SPECULARIZER
tunes the PEBS sampling rate (ρ), which indicates the fraction of events (1/ρ) sampled
by PEBS to create PEBS records. ρ > 1 means PEBS are sampled less frequently with



a higher performance overhead and hence some branch misprediciton information is
missing. We will evaluate the impact of ρ on detection accuracy in Sec. 8.

Collecting Traces from PT. To collect control-flow transfer and timestamp informa-
tion, SPECULARIZER activates Intel PT by setting the following control bits of the
MSR IA32 RTIT CTL: TraceEn (to enable PT), BranchEn (to generate control-
flow related packets, e.g., TNT, TIP & FUP), OS & User (to monitor both user-mode
processes kernel threads), TSCEn, MTCEn & CYCEn (to generate timestamp related
packets, e.g. TSC, MTC & CYC).

The overhead incurred in generating PT packets is negligible. The main overhead
comes from handling the memory buffer that stores the PT packets when it is full.
Unlike PEBS’s DS area, which has a fixed size (i.e., 4MB), the memory buffer used
by PT can vary. Specifically, PT uses a Table of Physical Addresses (ToPA) to store all
generated packets, which is a linked list that links multiple output regions. Therefore,
the total size of the ToPA is flexible, and the number of generated interrupts can be
controlled to decrease the runtime performance overhead.

5 Trace Processing

SPECULARIZER processes HPC events and PT packets offline, possibly on a machine
that is different from the host that implements the SPECULARIZER monitors. The exception-
based output sequences are generated using PT traces only, and the misprediction-based
output sequences are extracted with information from both PT traces and HPC records.

5.1 Processing Exceptions

Among the three approaches to tackling exceptions in exception-based speculative ex-
ecution attacks, namely handling exceptions, suppressing exceptions with TSX, and
suppressing exceptions with branch misprediction, the first two cases trigger an indirect
control-flow transfer. Therefore, SPECULARIZER extracts exception-triggered control
flow transfers in collected PT records. The third case is categorized as misprediction-
based and discuss later.

Extracting addresses of exceptions. When the exception is handled by exception han-
dlers, the control flow will transfer from user space to kernel space. With the PT packets,
we can extract all kernel traces—a sequence of instructions in the kernel space. After-
wards, by comparing those traces with the kernel symbol table, the kernel traces can be
used to identify different types of exceptions.

When the exception is suppressed by TSX transactions, the exception type is not
revealed through kernel traces. Nevertheless, the exception is recorded by the MODE
packet which has a field called TXAbort, with its value as 1. The addresses of the
instructions that trigger TXAbort are recorded by the FUP packet that follows.

Extracting timestamps of exceptions. PT can be used to recover the timestamp of ex-
ceptions, as PT records the following time-related packets: Timestamp Counter (TSC)
packets provide the wall-clock time (wc); Mini Time Counter (MTC) packets are gen-
erated periodically based on the core-crystal clock (ccc); a TMA packet is generated



immediately after each TSC packet, with a common timestamp copy (ctc) value in
its payload; a Cycle Accurate (CYC) packet is generated immediately preceding TIP
packets and provides the accurate ctc value since the last CYC packet. To extract ex-
ception timestamp, SPECULARIZER calculates ccc for each TIP packet based on the
relationship between these time-related packets [7], as PT generates a TIP packet when
an exception is raised.

Output. SPECULARIZER analyzes each PT trace offline, identifies and records all ex-
ceptions, the virtual address of the instruction that triggers it, as well as the timestamps
of the identified exceptions. Two parameters, δ and µ, were involved in the data out-
put: PT traces are segmented into windows of δ CPU cycles, and the attack detection
algorithm runs over the traces in each window.

The output of this step is a set of sequences of two tuples, which is denoted as
Xek = [(c1, t1), (c2, t2), · · · , (cn, tn)], where ek is the virtual address of the instruction
that triggers the exception, ci indicates whether exists an exception of the ith occurrence
of the virtual address ek, ti is the timestamp of its occurrence, and µ is the length of
each sequence, which is the input of attack detection model in Sec. 6. For each δ-cycle
window, one or multiple sequences are gathered: if the total number of exceptions is
greater than µ, a new sequence is created; a sequence less than µ is padded to µ with
(0, 0). We will evaluate the impact of different values of δ and µ on the effectiveness of
the detection algorithm in Sec. 8.

5.2 Identifying Branch and Data Misprediction

SPECULARIZER identifies branch and data misprediction from the recorded HPC events.
Particularly, SPECULARIZER first extracts the timestamp of each misprediction event
from the HPC records, then extracts the timestamp of each branch instruction from the
PT traces. Finally, by aligning the timestamp information from the HPC records and PT
traces, SPECULARIZER outputs traces of correctly predicted and mispredicted branches
for attack detection.
HPC records parsing. SPECULARIZER parses the HPC records and identifies the records
that are related to either branch misprediction or data misprediction, and then outputs a
sequence of two tuples: [(c1, t1), (c2, t2), · · · , (cn, tn)], where ci is the event (i.e., the
branch misprediction or data misprediction) of the ith occurrence of the misprediction
and ti is its timestamp. The accuracy of misprediction information could depend on the
PEBS overflow threshold ρ discussed in Sec. 4.

PT trace reconstruction. SPECULARIZER first reconstructs the program execution
trace and the timestamp value of each branch with packets generated by the PT hard-
ware. Meanwhile, PT timestamp packets are used to reconstruct the timestamp of each
branch instruction using the method described in Sec. 5.1. By combining program ex-
ecution trace with the timestamp information, SPECULARIZER outputs a sequence of
two tuples: [(b1, t1), (b2, t2), · · · , (bn, tn)], where bi is the virtual address of the ith
occurrence of the branch and ti is the timestamp when the branch is executed.

HPC and PT alignment. SPECULARIZER aligns HPC records with the control-flow
transfer information collected from PT to attribute HPC records to a specific branch
of the program. The alignment can be performed by matching the timestamp value ti



in the two sequences. Particularly, for each element (ck, tk) in the HPC sequence, we
search the PT sequence to find an element with index i that satisfies ti ≤ tk < ti+1.
Then we associate (ck, tk) with bi.

Output. For each δ-cycle window, each branch instruction bk, SPECULARIZER outputs
a set of sequences of two tuples, which is denoted asXbk = [(c1, t1), (c2, t2), · · · , (cn, tn)],
where ti is the timestamp when the ith execution of the branch bk, ci indicates whether
there is a misprediction and the misprediction type (i.e. branch or data) in the ith exe-
cution of this branch, and µ is the length of the sequences.

6 Attack Detection

Given the traces produced in the previous section, SPECULARIZER uses the LSTM to
extract the temporal information of the traces for attack detection. SPECULARIZER uses
four detection models to detect four different attack types, which are exception-based
attacks, misprediction-based attacks exploiting BTB/PHT, RSB, and memory disam-
biguator, respectively. These four detection models share the same layout: one LSTM
layer and one Dense layer. Particularly, the detection model inputs the traces to the
LSTM layer and outputs the likelihood for the trace to be an attack (between 0 and 1)
from the Dense layer.

An end-to-end construction of SPECULARIZER, therefore, works as follows: (1) for
every program monitored, both HPC and PT traces are collected and processed; (2) all
processed traces for the program are classified by all four models. If one of the models
classifies any of the traces as “attack” with a likelihood higher than a threshold α, the
program is labeled by SPECULARIZER as performing speculative execution attacks.

7 Attack Variants Generation

To systematically evaluate how accurate SPECULARIZER can detect speculative exe-
cution attacks, we produce a data set of attack variants. To do so, we first propose
parameterized models for speculative execution attacks and then systematically tuning
the parameters of these models to generate a set of attack variants.

7.1 Exception-based Attack Variants

Modeling attacks. The attack model of exception-based speculative execution attacks
is described in Fig. 3 (a) , which depicts the timestamps of exceptions that happened at
a specific virtual address of the monitored program; each dot on the timeline represents
the occurrence of an exception.Na is the number of exceptions in a cluster that any two
consecutive exceptions are no more than La cpu cycles apart.

To understand the practical implication of Na and La, we performed an empirical
evaluation of these two parameters using the Proof-of-Concept (PoC) code provided by
Canella et al. [11]. We executed each of the PoC 10, 000 times when the system is idle
and report the relationship between minimum Na and the success rate (p) in Table 1.
When the system is busy, the Na increases for the same p. Therefore, we only present
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Success Rate Exception Type

(p) US RW NM BR GP P LFB LP LVI
10% 1 1 17,000 1 10,000 300 3 1 4,000
30% 1 1 80,000 1 18,000 30,000 3 1 15,000
50% 2 1 130,000 1 58,000 60,000 3 1 28,000
80% 2 1 300,000 1 120,000 140,000 3 2 68,000
85% 3 1 400,000 1 140,000 180,000 3 2 86,000
90% 3 1 1,000,000 1 180,000 240,000 4 4 110,000
95% 4 1 1,300,000 1 300,000 400,000 8 6 140,000

Table 1. Relationship between Na and p in exception-based attacks.

the data when the system is idle in Table 1. As we see from the result, when utilizing
different speculation primitives, to have p ≥ 95%, Na ranges from 1 to 1,300,000.

We also measured the relationship between La and p. When FLUSH+RELOAD
is selected as the disclosure primitive, it takes at least 150, 000 CPU cycles to fin-
ish reloading 255 elements (the minimum for encoding one byte). Therefore, with Na
= 100, we selectLa from 150K, 250K, 350K, 450K, 550K, 650K, 750K cycles. The ex-
periment results suggest that the variation of La does not have an observable effect on p.

Generating attack variants. For each type of speculation primitives (e.g. #PF, #GP,
etc.), we generate one attack variant for each of the following 23 value ranges for Na:
{[1, 1], [2, 2], [3, 3], [4, 4], [5, 5], [6, 6], [7, 7], [8, 8], [9, 9], [10, 10], [11, 20], [21,
30], [31, 40], [41, 50], [51, 60], [61, 70], [71, 80], [81, 90], [91, 100], [1,000, 10,000],
[10,001, 100,000], [100,001, 1,000,000], [1,000,001, 2,000,000]}. In all attack variants,
La was chosen from 150K, 250K, 350K, 450K, 550K, 650K, 750K cycles. For each
variant, Na was chosen uniformly at random within the corresponding range.

Therefore, in total 9 × 7 × 23 = 1449 attack variants were generated. Then we
created 3 separate data sets from these samples. Specifically, we first selected three
thresholds (i.e., 85%, 90%, and 95%) for the attack success rate p, as attack variants
with low p are meaningless, which will be discussed in Sec. 8. Second, for each p and
each type of speculation primitives, we determine the minimum Na such that attack
variants with equal or greater Na yield attack success rates larger than the correspond-
ing p (from Table 1). As such, the three data sets have 476, 448, and 399 attack variants,
respectively.

7.2 BTB/PHT Misprediction Variants

Modeling attacks. To perform a successful misprediction-based speculative execution
attack against BTB (e.g., Spectre-BTB) and PHT (e.g., Spectre-PHT), one needs to train
(poison) the prediction unit in a loop multiple times before performing the attack to re-
trieve one byte of data [23]. This training can be performed either from the same address



BTB/PHT

Nt

Lt 350 450 550 650 750
Na

La 150K 250K 350K 450K 550K

1 0.13 0.46 0.52 0.65 0.38 1 0.20 0.21 0.20 0.21 0.25
2 0.72 0.95 0.99 0.99 0.98 3 0.48 0.87 0.90 0.86 0.89
3 0.81 0.99 0.99 0.99 0.98 5 0.46 0.87 0.89 0.91 0.92
4 0.81 0.99 0.98 0.99 0.98 10 0.49 0.90 0.91 0.94 0.95
5 0.83 0.99 0.98 0.98 0.98 30 0.52 0.96 0.96 0.95 0.95
6 0.80 0.99 0.99 0.98 0.97 50 0.57 0.96 0.95 0.96 0.95
7 0.81 0.99 0.99 0.99 0.98 100 0.51 0.95 0.94 0.96 0.96

RSB STL

Na

La 150K 250K 350K 450K 550K
Na

La 150K 250K 350K 450K 550K

10 0.00 0.00 0.00 0.00 0.00 10 0.00 0.00 0.00 0.00 0.00
100 0.00 0.00 0.00 0.05 0.06 100 0.00 0.00 0.01 0.01 0.02

1,000 0.13 0.25 0.30 0.33 0.33 1,000 0.07 0.17 0.14 0.05 0.05
10,000 0.47 0.81 0.94 0.96 0.96 10,000 0.19 0.30 0.62 0.67 0.74
20,000 0.83 0.96 0.97 0.98 0.98 20,000 0.72 0.86 0.90 0.90 0.91
30,000 0.91 0.97 0.98 0.98 0.98 30,000 0.90 0.95 0.97 0.97 0.96
50,000 0.97 0.98 0.98 0.98 0.97 50,000 0.98 0.99 0.99 0.98 0.98

Table 2. The success rate of misprediction-based attacks.

space or cross different address spaces [11]; moreover, the training can be performed
either in-place or out-of-place [11]. Our detection target is the process that performs the
training, regardless of whether it aims to perform same-address-space/cross-address-
space or in-place/out-of-place attacks.

Therefore, the attack model of different types of misprediction-based speculative
execution attacks is described in Fig. 3(b), which depicts the timestamps of branch/data
prediction happened at a specific virtual address of the monitored program; each dot on
the timeline represents the occurrence of one prediction. There are four parameters: Na
is the total number of attack attempts, La is the time interval between an attack attempt
and the next training phase (in cpu cycles),Nt is the number of training attempts in each
training phase, and Lt is the time interval between two consecutive training attempts.

To measure the parameters of the model, we used the PoC from Kocher et al. [23]
and Canella et al. [11]. First, we tested the relationship between the occurrence of
branch misprediction when the “attack” is performed and the success rate of the attack
by leveraging the HPC event. The result shows that whenever the branch mispredic-
tion occurs, the attack can always have a 100% attack success rate. This is because the
speculative window caused by BTB/PHT misprediction is large enough to load secret
into the microarchitecture [52]. Therefore, an occurrence of a branch misprediction is
equivalent to a successful attack.

Next, we evaluate how Nt and Lt affect the success rate of triggering branch mis-
prediction. In the experiments described below,Na = 1 and La = 150K cycles, and the
result is shown in the BTB/PHT portion of Table 2. Each Lt is the CPU cycles (starting
from the minimum value 350) and Nt enumerates each integer between 1 and 7 (inclu-
sive). Each number in the table is the attack success rate in 10, 000 trials. As we see
from the table, when Lt ≥ 450 and Nt ≥ 2, p is greater than 95%.

Finally, we evaluated how Na and La affect the attack success rate (p). In these ex-
periments, we set Nt = 1 and Lt = 350 cycles, because this pair of Nt and Lt has the
worst p, which is the best scenario for analyzing the effects of Na and La. The result
in Table 2 shows that larger Na has greater p. La has very little impact on p: For La
between 250k and 550k CPU cycles, p is greater than 95% when Na > 30. When La is
large enough (e.g. La > 450k CPU cycles), La has no observable effect on p.



Generating attack variants For each type of speculation primitives (e.g., BTB sa-ip,
PHT ca-ip, etc.), we generate one attack variant for each combination of Nt, Na, Lt,
and La. The values of Nt and Na are sampled uniformly at random from the following
14 value ranges: {[1, 1], [2, 2], [3, 3], [4, 4], [5, 5], [6, 6], [7, 7], [8, 8], [9, 9], [10, 10],
[11, 20], [21, 30], [31, 50], [51, 100]}; The values of Lt are chosen from {350, 450,
550, 650, 750} CPU cycles; and the values of La are chosen from: {150K, 250K, 350K,
450K, 550K} CPU cycles. Therefore, in total 14× 14× 5× 5× 2× 4 = 39, 200 attack
variants were generated. With the similar approach described in Sec. 7.1, we created 3
separate data sets with 37,904, 37,544, and 36,968 attack variants, respectively.

7.3 RSB and STL Misprediction Variants

Modeling attacks Spectre-RSB [11] and spectre-STL [11] exploits RSB and the mem-
ory disambiguator to trigger misprediction. In these two attacks, because RSBs can be
poisoned by push and pop instructions, which is difficult to monitor using HPC and
PT, and the memory disambiguator can be triggered simply by load instructions, which
does not need training phase. Therefore, we use the model described in Fig. 3(a) to
model these attacks.

To measure the impact of the parameters of the model on the success rate of the
attacks, we used the PoC released with the published paper [11]. Using HPC events, we
tested the relationship between p with Na and La, respectively. Tested La and Na start
from the minimum ones, 150K and 1, respectively. The results are shown in Table 2.
For Spectre-RSB, the value of Na must be greater than 10, 000 for p to be larger than
90%. For Spectre-STL, the value ofNa must be greater than 20, 000 to achieve a similar
success rate. For both attacks, La does not seem to play a significant role.

Generating attack variants For each of RSB and memory disambiguator, we gener-
ated one attack variant for each of the following 15 value ranges for Na:{[1, 10], [11,
100], [101, 1,000], [1,001, 2,000], [2,001, 3,000], [3,001, 4,000], [4,001, 5,000], [5,001,
6,000], [6,001, 7,000], [7,001, 8,000], [8,001, 9,000], [9,001, 10,000], [10,001, 20,000],
[20,001, 30,000], [30,001, 50,000]} and 5 values for La: {150K, 250K, 350K, 450K,
550K}. In each variant, Na was chosen uniformly at random during run-time with the
corresponding value range. Therefore, in total 15 × 5 × 2 = 150 attack variants were
generated. With the similar approach described in Sec. 7.1, we created 3 separate data
sets with 21, 20 and 14 attack variants, respectively.

8 Evaluation

In this section, we evaluate the detection accuracy and performance of SPECULARIZER.
The data sets used in the evaluation are collected in the following approaches: The be-
nign programs are selected from GNU Binutils5 and SPEC benchmark 2006. The attack
samples are drawn from the attack variants discussed in Sec. 7. The experiments were
conducted on desktops with Intel Core i7-7700 Processors and 32GB RAMs. 64-bit
Ubuntu 16.04.6 LTS operating systems with the kernel version 5.4.0 were installed on
the desktops.

5 https://www.gnu.org/software/binutils/



8.1 Evaluation of SPECULARIZER’s Parameters

There are a few parameters that can be tuned for SPECULARIZER: À In the collec-
tion phase, the PEBS sampling rate (ρ) specifies the accuracy of branch misprediction
records. We collected traces with 4 different ρ values: 1, 3, 5, 10. Á In the trace pro-
cessing phase, the window size δ and trace length µ determine how the collected HPC
and PT data are segmented for the LSTM algorithm to work on. We particularly picked
two window sizes δ, 10 million CPU cycles and 100 million CPU cycles, and two trace
lengths, 500 and 1000 data points. Â The parameter we use to select training data set is
the success rate p of the attack variants, which can be chosen from 85%, 90%, and 95%.

Index Window Size δ Trace Length µ Sample ρ Success Rate p
1 10M 1000 1 95%
2 100M 1000 1 95%
3 100M 500 1 95%
4 100M 1000 3 95%
5 100M 1000 5 95%
6 100M 1000 10 95%
7 100M 1000 1 90%
8 100M 1000 1 85%

Table 3. Data sets for parameter evaluation.

In this section, we analyze how these parameters affect the detection results. We
created 8 data sets, whose parameter configuration is shown in Table 3. Each data set
contains four groups of traces; each group is used to evaluate one LSTM model, as spec-
ified in Sec. 6. In each group, around 30, 000 benign traces and 30, 000 attack traces
were collected. Then the traces in each group are randomly split into the training set
(80%) and a testing set (20%).

By running the LSTM classification, the algorithm outputs a class label (“benign”
or “attack”) for each trace together with the likelihood between 0 and 1. We selected
a threshold α of the likelihood, such that SPECULARIZER alerts the detection of an
“attack” trace when the LSTM classifier outputs “attack” with a likelihood greater than
α. Two values were selected for α, 0.5 and 0.75. The accuracy is evaluated using the
F1 scores when α = 0.5 and when α = 0.75. A high F1 score suggests a balanced
precision and recall. Here recall is defined as the percentage of detected attack traces in
all attack traces and precision is defined as the percentage of correctly detected attack
traces in all detected attack traces.

PEBS sampling rate ρ. We only evaluated ρ for misprediction-based attacks, because
the detection of exception-based attacks does not need HPC. The data sets we used in
this test are (2), (4), (5), and (6) (as shown in Table 3), where the window size (δ) is
selected as 100 million cycles, trace size (µ) is selected as 1000, and p > 95% for at-
tack variants selected in the training/testing set. The result is shown in Table 4. We see
from the table that ρ only affects the detection of BTB/PHT-based attacks. Specifically,
only when ρ ≤ 3, F1 scores yield good detection accuracy (F1 score greater than 90%).
In contrast, regardless of the ρ value, the detection accuracy for RSB and STL-based
attacks is high. This is because losing branch misprediction information due to larger ρ
values is more critical to detecting attacks that require training.

Window size δ. To evaluate the effect of δ, we used data set (1) and (2), where for both
data sets ρ = 1, p > 95%, and µ = 1000. For each window size (δ), we evaluate the



F1 score when the threshold is 0.5 and 0.75 and the result is shown in Table 5, which
suggests δ does not have a strong impact on the detection accuracy.

Mispredic
tion-based

PEBS sampling rate ρ
1 3 5 10

F1
(0.5)

F1
(0.75)

F1
(0.5)

F1
(0.75)

F1
(0.5)

F1
(0.75)

F1
(0.5)

F1
(0.75)

BTB/PHT 0.977 0.977 0.910 0.909 0.716 0.715 0.593 0.593
RSB 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0
STL 0.993 0.991 0.974 0.971 0.955 0.954 0.913 0.911

Table 4. Impact of PEBS sample rate ρ.

Window Size δ (CPU Cycles) Trace length µ (elements) Attack Success Rate Threshold p
10M 100M 500 1000 0.85 0.90 0.95

F1
(0.5)

F1
(0.75)

F1
(0.5)

F1
(0.75)

F1
(0.5)

F1
(0.75)

F1
(0.5)

F1
(0.75)

F1
(0.5)

F1
(0.75)

F1
(0.5)

F1
(0.75)

F1
(0.5)

F1
(0.75)

Mispre
diction
-based

BTB/PHT 0.963 0.962 0.977 0.977 0.969 0.970 0.977 0.977 0.976 0.976 0.976 0.975 0.977 0.977
RSB 0.992 0.992 1.0 1.0 0.997 0.997 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0
STL 0.992 0.993 0.993 0.991 0.994 0.995 0.993 0.991 0.991 0.991 0.990 0.989 0.993 0.991

Exception-based 0.945 0.937 0.960 0.955 0.936 0.938 0.960 0.955 0.961 0.960 0.959 0.956 0.960 0.955
Table 5. Impact of window size δ, trace length µ and threshold of attack success rate p.

Trace length µ. The evaluation utilized data set (2) and (3), with ρ = 1, p ≥ 95%
and δ = 100M cycles. The result is presented in Table 5, which means µ = 500 or
µ = 1000 does not affect the detection accuracy dramatically.

Success rate threshold p. The data sets used in this evaluation are (2), (7), and (8),
with ρ = 1, µ = 1000 and δ = 100M cycles. The result shown in Table 5 suggests that
p does not have much impact on the detection accuracy.

Classification likelihood threshold α. The result shown in Table 4 and Table 5 sug-
gests that α = 0.5 or α = 0.75 does not affect F1 score. Thus, we chose α = 0.5 for
the following evaluation.

Summary: In parameters ρ, δ, µ, p, and α; only ρ has a significant impact on detec-
tion accuracy of attacks that exploit BTB/PHT.

8.2 Evaluation of Detection Accuracy

We evaluated the detection accuracy of the LSTM models trained using data set (4)
in Table 3. Using these parameters, in the following experiments, we evaluate the mod-
els’ capability of detecting various attack variants. Because the traces that are classified
as benign all have a precision that is close to 100%, the F1 score does not provide more
information than recall, or true positive rate (TPR). Therefore, we use TPR as the metric
for evaluating detection accuracy, which is defined as the percentage of correctly clas-
sified traces among all traces that are classified as attacks. The results are represented
in Fig. 4, while the blue line is the TPR and the red line is the attack success rate p. In
the cases where TPR>p means the probabilistic to detect the attack is higher than the
secret been leaked.

Exception-based attacks. We collected 11, 700 traces from all types of exception-
based variants we generated and split them into separate groups according to their Na
value. Then we perform classification on each of the groups and show the results in



Fig. 4(a) . In this figure, the X-axis is the value of Na, the red line is the attack success
rate p and the blue line is the TPR. When Na = 4, TPR= 99.1%; when Na > 10,
TPR≥ 99.9%; but when Na ≤ 3, TPR drops to 0, which means we were not able to
detect exception-based attacks with fewer than 4 attempts within a time window of 100
million CPU cycles.

Misprediction-based attacks on BTB/PHT. We collected 980, 000 traces from the BT-
B/PHT attack variants. To evaluate SPECULARIZER with varying Nt, Na, Lt, and La
values, we split the traces accordingly. The results are shown in Fig. 4 (b), Fig. 4 (d),
Fig. 4 (c) and Fig. 4 (d), respectively. As we see from these figures, SPECULARIZER
can detect attack variants with Nt ≥ 2, Na ≥ 3, 350 ≤ Lt ≤ 750 CPU cycles, and
150K≤ La ≤ 550K CPU cycles with TPR≥ 90%.

Misprediction-based attacks on RSB and memory disambiguator. We collected
7, 500 traces from attack variants exploiting RSB and memory disabmiguators. To eval-
uate SPECULARIZER with varying La and Na values, we split the traces accordingly.
The results are presented in Fig. 4 (g), Fig. 4 (i), Fig. 4 (f), and Fig. 4 (h), respectively.
As we see from these figures, SPECULARIZER can detect attack variants with 150K≤La
≤ 550K cpu cycles with TPR> 80%. TPR increases almost monotonically whenNa in-
creases. SPECULARIZER can detect attack variants when Na > 3000 with TPR> 80%.
It is worth noting that when TPR < 80% for both attacks, the success rate of these
attacks goes below 30%, which suggests that the adversary needs to balance the attack
efficiency with the risk of detection.

Summary: With the selected parameters, SPECULARIZER can detect most of the at-
tack traces we collected from the generated attack variants with high recalls. However,
In cases where the detection is less accurate, p of these attack variants is also low.

8.3 End-to-End Evaluation

In practice, SPECULARIZER monitors the execution of a program and raises alarms if
any of the traces collected from the program is detected as “attacks”. To perform end-
to-end evaluation, we use the same model as trained using data set (4).

The data set we used has 26 benign programs collected from GNU Binutils and
SPEC benchmark 2006, and randomly selected 160 attack variants we generated (i.e.
40 variants for each attack type). Each of the 186 programs was examined using all
the four LSTM models. Among the 41 benign programs, only one (gobmk) is falsely
classified as BTB/PHT misprediction attacks and four benign programs (i.e., ld, perl-
bench, sophlex, and gobmk) were misclassified as exception-based attacks. However, in
all these misclassified cases, less than 3 traces (out of over 1000 traces) extracted from
each program were indeed misclassified, which means these false detections can be
prevented if SPECULARIZER only raises alarms when multiple traces (e.g., > 3) were
detected as attacks, which can be another parameter the user of SPECULARIZER could
tune. Nevertheless, all attack variants are successfully detected by their corresponding
LSTM classifier. The BTB/PHT classifier also detects 117 out of 120 other attack vari-
ants, because these attack variants also exhibit this type of branch misprediction.
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Fig. 4. Accuracy of attack detection (recall). (a) Na in exception-based attacks, (b) Nt in BT-
B/PHT misprediction attacks, (c) Lt in BTB/PHT misprediction attacks, (d) Na in BTB/PHT
misprediction attacks, (e) La in BTB/PHT misprediction attacks, (f) Na in RSB misprediction
attacks, (g) La in RSB misprediction attacks, (h) Na in STL attacks, (i) La in STL attacks.

8.4 Performance Analysis
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Fig. 5. The performance overhead of online trace collection.

Overhead of Online Trace Collection In our experiments, SPECULARIZER enabled
trace collection of both HPC and PT, with the HPC events and MSR configurations
specified in Sec. 4. The ρ was set to 3. The experiments on LMbench [29] show the
runtime overhead on I/O is negligible. The results of the SPEC benchmark are shown
in Fig. 5. The runtime overhead was introduced from 0.038% to 231.42%, with a geo-
metric mean of 14.36%. Some of the benchmark programs (e.g. mcf, gobmk, and sjeng)
had high performance overhead; as their execution triggers a lot of branch mispredic-
tion. We note that the performance can be reduced with Intel’s new feature that redirects
PEBS’s sampling output to PT packets [7], as PT packet generation introduces much
less overhead [16]. We leave this evaluation to future work.
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Fig. 6. Running time of offline attack detection.
Running Time of Offline Attack Detection Fig. 6 shows the running time of offline
attack detection. The number above each bar is the average running time (of 1000 tri-
als) of the offline analysis for each SPEC benchmark (in seconds), which ranges from
3s to 1709s with PT trace files between 13M bytes and 13G bytes. More specifically,
the offline analysis includes three phases: trace loading, trace processing, and attack
detection. On average, they account for 70.01%, 29.85%, and 0.14% of the entire run-
ning time. One reason for the long-running time for trace loading/processing (99.86%)
is that PT generates a large number of packets, which takes a long time to parse and an-
alyze. The attack detection phase typically takes less than 1s. Finally, it is worth noting
our offline analyses were performed within a single thread with limited memory, which
can be further optimized using multi-threading and larger memory. And for applications
such as forensics, the overhead of offline analysis is not critical.

9 Discussion

Detecting assistance-based attacks. Microcode assist was exploited in some recent
works [31,37,42,43]. However, there is no systematic study of these microcode assists
yet. It is not clear how many methods can trigger microcode assists and how many of
them can be exploited in speculative execution attacks by unprivileged programs. With-
out such systematic exploration, an ad-hoc detection technique is likely to be bypassed.
We leave the detection of assistance-based attacks to future work.

Completeness of the attack data sets. We could hardly claim that our generated at-
tack data sets cover all possible attack variants. However, as the models used for attack
variants generation only specify the patterns of misprediction and exception, they are
general enough for modeling attacks that use different types of disclosure gadgets and
disclosure primitives. Moreover, the parameters in the attack models can be tuned to
alter specific properties of an attack variant, which in combination can be used to ap-
proximate most attack methods one could think of.

Using simpler classification models for attack detection. One might think deep learn-
ing algorithms like LSTM are too heavyweight for our scenarios. In fact, we have also
tested multiple alternatives, such as decision trees, K-means, random forest, etc.. How-
ever, we found those models very fragile for any practical use. In contrast, LSTM offers
an automated selection of parameters and thresholds, greatly reducing the subjectivity
in the selection of classification models.

Adversarial machine learning (AML). SPECULARIZER is vulnerable to AML-based
techniques that generate carefully crafted attack variants to evade detection. As shown



in Fig. 4, in general, attack code that evades detection is likely to have a lower success
rate. In that sense, SPECULARIZER makes speculative execution attacks harder to per-
form, but may not eliminate the threats. However, we note this arms race is common in
all machine-learning-based defense systems [14, 32].

Real-time attack detection. Ideally, attack detection should be performed in real-time
and for all programs. However, as parsing PT packets and processing the traces are
time-consuming (as shown in Fig. 6), it is very challenging to do so in practice. More-
over, enabling whole system monitoring with PT will drastically increase the overhead
of trace parsing and analysis. These are common issues for PT/HPC-based monitoring
systems [39, 51].

10 Related Work

Detecting speculative execution attacks. Prior works on detecting speculative ex-
ecution attacks mainly focus on the detection of disclosure primitives, such as the
Flush+Reload cache side channels [19]. In contrast, SPECULARIZER detects the specu-
lative execution attacks by monitoring its root cause—the speculation primitives. Close
to our work is due to [25, 44] who also leverages HPC to detect speculative execution
attacks. However, as their approach only uses HPC, it omits the context of program ex-
ecution in the detection of attacks. Therefore, their approach is less accurate and only
applicable to simple proof-of-concept attacks.

Mitigating speculative execution attacks. Software solutions provide temporary miti-
gation of the threats, which are reactive to only known attacks and ad hoc. For instance,
page table isolation (e.g., KPTI of Linux) PTE inversion, and L1d flush [5], compiler-
based mitigation [12, 23, 30, 40] provides generic solutions for exception-based and
misprediction-based speculative execution attacks. SPECCFI [24], ConTExT [36] miti-
gates a specific type of speculative attack. Furthermore, many works focus on detecting
the code gadget of speculative execution attacks [13, 18, 20, 28, 33, 47].

Proposals from the computer architecture research community mitigate speculative
execution attacks with more dramatic revision on the micro-architectural level [2, 4, 6,
9, 10, 15, 21, 22, 26, 34, 35, 38, 43, 46, 48–50]. While these approaches may be efficient
in addressing the targeted problems, however, it may take a longer time before these
academic proposals can be adopted by the industry.

11 Conclusion

In this paper, we present SPECULARIZER, a software tool for uncovering speculative
execution attacks using performance tracing hardware features (PT and HPCs). SPEC-
ULARIZER monitors the execution of the inspected applications in an online mode,
introducing modest runtime performance overhead, and then performs attack detection
in an offline analysis using LSTM networks. Empirical evaluation of SPECULARIZER
suggests that the proposed approach leads to high detection accuracy with reasonable
overhead, particularly suitable for offline forensic analysis.
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