
Uncovering and Exploiting AMD Speculative
Memory Access Predictors for Fun and Profit

Chang Liu†, Dongsheng Wang†‡, Yongqiang Lyu†, Pengfei Qiu§,
Yu Jin§, Zhuoyuan Lu§, Yinqian Zhang¶, Gang Qu‖

†Tsinghua University, cliu21@mails.tsinghua.edu.cn, {wds, luyq}@tsinghua.edu.cn
‡Zhongguancun Laboratory

§Beijing University of Posts and Telecommunications, {qpf, jinyu, luzhuoyuan}@bupt.edu.cn
¶Southern University of Science and Technology, yinqianz@acm.org

‖University of Maryland, College Park, gangqu@umd.edu

Abstract—This paper presents a comprehensive investigation
into the security vulnerabilities associated with speculative
memory access on AMD processors. Firstly, employing novel
reverse engineering techniques, our study uncovers two key
predictors, namely the Predictive Store Forwarding Predictor
(PSFP) and the Speculative Store Bypass Predictor (SSBP), along
with elucidating their internal structures and state machine
designs. Secondly, our research empirically confirms that these
predictors can be deliberately manipulated and altered during
transient execution, resulting in secret leakage across security
domains. Leveraging these discoveries, we propose innovative
attacks targeting these predictors, including an out-of-place
variant of Spectre-STL and an entirely new form of Spectre
attack named Spectre-CTL. Finally, we establish experimentally
that enabling Speculative Store Bypass Disable alleviates the
vulnerabilities. However, this comes at the expense of significant
performance degradation.

I. INTRODUCTION

Speculative execution is an essential approach that effec-

tively reduces performance penalties caused by pipeline stalls.

Branch prediction is a prominent example of speculative

execution, whereby unresolved branches are speculatively

executed using branch predictors. This enables earlier

execution of instructions following the branch, provided that

the prediction is accurate. It’s worth noting that branch

prediction is just one instance of speculative execution, as there

exists another significant category called speculative memory

access. In this type, operations such as data store, data load,

or micro assists are performed before the data address is

generated. This ensures that slow memory access does not

hinder the execution of subsequent instructions.

However, the improper implementation of speculative

memory access can potentially lead to significant security

issues, such as data leakage and data injection. One type

of speculative memory access is facilitated by the Line Fill

Buffer (LFB), which effectively handles cache misses. LFB

holds the load operations that miss in the cache, making the

associated cache line available for other loads. On Intel CPUs,

the LFB performs speculative data forwarding. Even if only

part of the data address matches the tag, the LFB speculatively
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sends the ready data to a load. Such speculative data

forwarding can lead to data leakage, and certain attacks exploit

this behavior in LFB to forward secret data through carefully

constructed faulty loads, as demonstrated in RIDL [48] and

Zombieload [44]. These vulnerabilities are commonly known

as Microarchitectural Data Sampling (MDS) vulnerabilities.

Intel processors have been proven vulnerable to transient

execution attacks exploiting variants of such MDS vulnera-

bilities, such as Cacheout [49], Fallout [14], Crosstalk [42],

and LVI [12]. Fortunately, AMD processors have been found

to be immune to these MDS vulnerabilities [8].

Another important category of speculative memory access

involves store-to-load forwarding (STLF) and store bypassing,

which is the focus of this paper. STLF accelerates loads

that share the same data address as preceding stores; store

bypassing permits out-of-order execution of loads when

preceding stores have not retired. False STLF can give rise to

a new type of transient attack referred to as Spectre-STL [26],

affecting both Intel and AMD processors.

In Spectre-STL, a slow store can be bypassed by a load that

follows it, allowing the data of the store to be transmitted to

the load before the data address is generated, even if the store

and load have different target addresses. As noted in a previous

study [29], Spectre-STL is an in-place attack, which requires

an attacker to repeatedly execute a store-load instruction pair

with the same data address for lots of times before triggering

a false store-to-load forwarding on that store-load pair. This

means the attack requires a shared address space between the

adversary and the victim, which makes it less practical. As

such, it is yet unclear whether practical transient execution

attacks exploiting speculative memory access are feasible on

AMD processors.

Inspired by an AMD white paper that describe predictive

forwarding, which suggests the potential for an out-of-place
attack due to the limited size of predictors [6], the goal of

this research is to conduct a comprehensive investigation into

the security vulnerabilities associated with speculative memory

access on AMD processors. Towards this end, we first reverse

engineer the predictors employed in the speculative memory

access on AMD processors. We uncover the involvement of
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two distinct predictors serving different purposes. The first

predictor, comprising three counters, determines whether the

data from a store can be forwarded to a subsequent load

before the store’s data address is generated. As this behavior

corresponds to Predictive Store Forwarding (PSF) [6], we

name this predictor as PSFP (PSF Predictor). The second

predictor, comprising two counters, governs whether a load

can be executed ahead of a slower preceding store and whether

the data is fetched from the store buffer or the data cache.

As this behavior corresponds to Speculative Store Bypassing

(SSB) [2], we name this predictor as SSBP (SSB Predictor).

We further study the state machines and the structures of these

predictors, and identifies the hash function that is used to select

the predictor entries.
Based upon these reverse engineering efforts, we conduct

a systematic analysis of the security of these predictors.

While our experimental results confirm some of the statement

provided in the AMD public document [6], such as both

predictors are isolated between two hyperthreads of the same

physical core and PSFP is flushed during context switches,

our analysis uncovers several new vulnerabilities. First, SSBP

lacks adequate isolation among processes, enabling cross

domain data leakage. Second, SSBP and PSFP can be trained

out-of-place and trigger false predictions, leading to new

variants of Spectre attacks. Third, SSBP and PSFP can be

updated during the transient execution, leading to transient

attacks without the requirements of cache and shared memory.
To effectively showcase the threats posed by these newly

discovered vulnerabilities, we present a series of security

attacks. Specifically, we develop an out-of-place Spectre-STL

attack by training PSFP with an out-of-place store-load pair.

Moreover, we present a novel Spectre attack that exploits

SSBP to trigger transient execution and recover secrets fetched

in the transient window. We call it Spectre-CTL (Cache-To-

Load) since the speculative load fetches data from the cache or

memory during the transient execution. We also show that the

vulnerabilities lead to application fingerprinting across security

domains. Finally, our experimental results suggest that while

Speculative Store Bypassing Disable (SSBD) can mitigate

most of the reported vulnerabilities, it comes at the cost of

significant performance degradation.
Responsible Disclosure. All vulnerabilities discussed in this

paper have been disclosed to AMD’s security team. AMD

has officially acknowledged our findings and confirmed the

existence of these vulnerabilities. Given our study, AMD

has emphasized the critical importance of enabling SSBD to

mitigate data leakage through these predictors.
Contributions. This paper makes several contributions:

• It presents the first comprehensive reverse engineering

effort of speculative memory access predictors, namely

PSFP and SSBP, on AMD processors.

• It performs a systematic security analysis on these

predictors and identifies several vulnerabilities that can be

exploited in typical settings of transient execution attacks.

• It proposes several novel attacks exploiting these

vulnerabilities on AMD processors, including the first

out-of-place Spectre-STL attack and a new Spectre-CTL

attack.

II. BACKGROUND

A. Store Queue and Predictive Store Forwarding

Most modern CPUs that support out-of-order execution

are designed based on Tomasulo algorithm [47]. A store

queue, also known as a store buffer, is used to hold the

address and data of a store that has been issued but not yet

completed. The store queue guarantees that memory writes

are performed in order, and prevents pipeline stalls caused

by slow memory writes. By asynchronously handling memory

writes while executing other independent instructions, the store

queue effectively hides the latency of memory writes. On

AMD CPUs, the size of the store queue varies across different

microarchitectures. For instance, the store queue has up to 48

entries on AMD 17th family CPUs [4], and up to 64 entries

on AMD 19th family CPUs [3].

Store-to-load forwarding, based on the store queue, is a

widely recognized technique that speeds up memory access

in read-after-write (RAW) scenarios. When a load instruction

has the same address as a preceding store instruction, the

load can retrieve the data directly from the store after the

address of the store has been generated but before the store

completes. To further improve the performance for store-

to-load forwarding, AMD implements a technique called

Predictive Store Forwarding (PSF). PSF uses a predictor to

anticipate whether a load has the same address as a preceding

store. If the prediction indicates a match, the data from the

store is directly forwarded to the load even before the data

address of the store is generated [6]. The design of this

predictor, which we refer to as PSFP, has not been publicly

disclosed. We uncover its design and functionality in our study.

B. Predictive Store Bypass

Read-after-write does not always occur for every contiguous

store-load pair. If the RAW does not occur, the load should

bypass the store queue and obtain data from cache or memory.

However, in certain cases, the data address of the store is

generated slow, and the CPU cannot determine whether an

RAW occurs for the store-load pair in a short time. For a

correct execution, the CPU has to stall the load until the data

address of the preceding store is generated, which causes the

performance losses.

In order to avoid such stalls and speed up the load, a store

bypass predictor known as memory disambiguation unit is

involved on Intel and ARM CPUs [34], [41] to predict whether

the load is aliasing with the store (i.e., the store and load

target the same address). The common design of this predictor

is shown in Fig 1. The predictor consists of a buffer with

numerous entries, and each entry contains a counter-based

state machine (f1) that predicts whether a load is aliasing

with its preceding stores. The load selects the entry based

on its instruction address (f2). The update of the chosen state

machine depends on whether an RAW occurs (f3).

32

Authorized licensed use limited to: Southern University of Science and Technology. Downloaded on March 15,2025 at 08:24:14 UTC from IEEE Xplore.  Restrictions apply. 



3

Store Queue

......
DataDA

......

store
IA

SSBP

...

1

Load Queue

......
DataDA

......

DA Data

2

other instruc ons

IA - -

update

select

predict

......
Data Cache

......

...Data

......
load

IA DA -

Fig. 1. The common structure and organization of the store bypass predictor
on modern CPUs.

AMD claims that the speculative store bypass (SSB)

technique is implemented on their processors [2]. However,

apart from a brief patent [40], AMD has not publicly disclosed

the presence of a predictor similar as memory disambiguation

unit that is specifically designed for a predictive store bypass.

We uncover this predictor in our study, which we refer to as

SSBP. Our study reveals that the structure and organization of

SSBP share similarities with the illustration shown in Fig 1,

but the key functions f1 and f3 are significantly different

from those disclosed on Intel and ARM CPUs. We present

our findings in the subsequent sections of this paper.

III. REVERSE ENGINEERING PSFP AND SSBP

In this section, we present our effort to uncover the

design and organization of PSFP and SSBP. Particularly,

PSFP (Predictive-Store-Forwarding Predictor) is used in the

predictive store forwarding and SSBP (Speculative-Store-

Bypass Predictor) is a predictor used in the speculative store

bypass.

A. Experiment Setup

Our experiments is conducted on 4 AMD CPUs including

AMD Ryzen 9 5900X, AMD EPYC 7543, AMD Ryzen 5

5600G, and AMD Ryzen 7 7735HS.

We start with a simple microbenchmark shown in Listing 1.

The microbenchmark includes a function named stld, written

in amd64 assembly. This function employs a store-load pair to

trigger the utilization of speculative memory access predictors,

PSFP and SSBP. This setup allows SSBP to determine whether

the load can be executed without waiting for the store, and

1 stld:
2 .rep 20
3 imul $1, %rdi ; delayed store DA generation
4 .endr
5 mov $0x0, (%rdi) ; store
6 mov (%rsi), %rax ; load
7 .rep 20
8 imul $1, %rax ; data-dependent calculations
9 .endr

10 ret

Listing 1. A microbenchmark for reverse engineering the predictors.

PSFP to determine whether the store data can be forwarded

to the load before the data address is resolved.

In Listing 1, register rdi holds the data address of the

store, and rsi holds the data address of the load. To facilitate

the observation of time differences under different prediction

outcomes, we use another 20 imul instructions to delay the

address generation of the store data. As the execution port

is limited [1], [10], even minor pipeline stalls during the

load operation lead to substantial time differences. Similar to

the previous work [23], we use RDPRU instruction to obtain

cycle-level execution time of our microbenchmark. RDPRU
demonstrates a remarkably stable timing. The noise rate

consistently remains below 1%. Consequently, all experiment

results reported below represent a stable time reading from

RDPRU that do not require special noise reduction.

For ease of representation, we denote an aliasing stld
with the same value in rdi and rsi as a, and a non-

aliasing stld with the different values in rdi and rsi as

n. According to the document [7], the difference between the

two values is greater than 4, so that the CPU treats them as

different data addresses. Additionally, we indicate the multiple

execution times of stlds with a number ahead. For example,

sequence (7n, a) means we execute 7 non-aliasing stlds and

then execute an aliasing stld.

B. State Machine

1) Execution type: In order to analyse different execution

types resulting from various predictions, we measure the

execution time of each stld in sequence (40n, 40a, 40n, 40a).
Fig 2 displays the time distribution, revealing six types of

execution time. By comparing the prediction outcomes and

the ground truth, we further classify the execution type into 8

categories. Type A, B and C occur when the prediction of the

store-load pair as aliasing is correct, while type D, E and F
occur when the prediction of the store-load pair as aliasing is

incorrect. Type G occurs when the prediction as non-aliasing

is incorrect, and type H occurs otherwise.

To further analyse the cause of different execution time, we

use some events in Performance Monitor Counters (PMC) [5].

Some of the typical events are listed in Fig 2. For type A, B,

E and F , the prediction is aliasing, and the first event presents

that the load is stalled until the data address of the store is

generated. On the other hand, for type G and H , the prediction

is non-aliasing, and the load bypasses the store without any

stalls. For type A, B and G, the truth is aliasing, and the

second event presents that the load fetched its data from the

store queue. For type E, F and H , the truth is non-aliasing,

and the load fetches the data from the data cache or memory.

Type C is quite special and no PMC events reveal its unique

behavior. Since the prediction is aliasing, and the execution of

type C is less than type A and type B, we infer that predictive

forwarding occurs in this type, which will be demonstrated in

the following section. For type D and G, the execution takes

more than 240 cycles, since a rollback is triggered, and the

CPU has to fetch and dispatch the instructions following the
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Fig. 2. Execution time and execution type analysis of the store-load pair in
repeated sequences (40n, 40a).

load after flushing the pipeline. The other three events in Fig 1

demonstrate that the rollback happens.

2) Method to reverse engineer the state machine: Having

identified the 8 execution types, we proceed to reverse

engineer the state machine of these predictors. Specifically, we

investigate the execution types for each stld when provided

with a sequence of arbitrary n and a.

We assume the predictor is designed as a finite state

machine, which has several states and each transition between

two states have one input and one output. The input is a

stld function (i.e. n or a), and the outcome is an execution

type with a corresponding typical execution time (i.e. A to

G). For ease of representation, we denote the state machine

as φ. For example, given a state s, the execution types

for sequence (7n, a) are (7H,G), which is presented as

φs(7n, a) = (7H,G). For brevity, we omit s in the rest of

this paper.

Initially, we model the state machine using a single counter,

which is initialized to 0. Next, we detect the execution types of

a sequence by measuring the CPU execution time and adjust

the state machine to align with the actual execution outcomes.

For example, we observe that φ(n, a, 7n) = (H,G, 4E, 3H),
which means that the counter in our model, we denote as C0,

is updated to 4 after an input of a, and it decreases by 1 after

an input of n. The corresponding outcomes for inputs n and a
when C0 = 0 are H and G, respectively. Additionally, when

C0 > 0, the outcome for input n is E.

The state machine is updated and becomes more and more

complicated as we consider more sequences. In some cases,

the structure of the state machine has to be updated in

accordance to our new findings. For example, we observe that

φ(a, 4n, a, 4n, a, 16n) = (G, 4E,G, 4E,G, 15F,H). This

sequence shows that another counter is used to record how

many types G have happened. However, we cannot model

this behavior using only one counter. Therefore, we introduce

another counter, which we denote as C4. When C4 reaches 3,

no less than (15n) has to be executed to make the prediction

as aliasing back to non-aliasing.

3) Counter-based state machine: By collecting numerous

sequences and modifying the state machine model, we finally

get the state machine shown in TABLE I. The input of the

state machine is a store-load pair, either non-aliasing (n) or

aliasing (a), the outcome is an execution type, and the counters

is updated according to current state and the input. The state

machine consists of 5 counters with 7 states. We classify the

states based on the outcomes and update ways of the state

machine model. The state machine can successfully model the

behavior of more than 99.8% sequences generated randomly.

According to TABLE I, counter C0 and C3 determine

whether the prediction is aliasing or non-aliasing. The

prediction is non-aliasing only when both C0 and C3 are equal

to 0. In this situation, we have φ(n) = (H) and φ(a) = (G).
For the latter, a rollback occurs and changes the prediction

from non-aliasing to aliasing. Counter C1 records how many

types D have occurred. A block state is triggered after type

D occurs twice. In the block state, the prediction will always

be aliasing and both SSB and PSF are disabled. Counter C2

determines whether to make store forwarding aggressive (i.e.

forwarding before the address of the store data is generated).

The store forwarding becomes aggressive after executing at

least (4a). In the PSF-enabled states, we have φ(a) = (C) and

φ(n) = (D). For the latter, a rollback occurs and changes the

prediction from aliasing to non-aliasing. Counter C4 records

how many types G have occurred. To change the prediction

from aliasing to non-aliasing, at least (4n) is required when

C4 is smaller than 3. Otherwise, at least (15n) is required if

C4 reaches 3.

C. Selection of Predictor Entries

In the previous experiments, we use a stld with fixed

instruction addresses, and uncover the combined state machine

of the speculative memory access predictors. However, a

predictor commonly consists of numerous entries. Each entry

contains a state machine with several counters, and is selected

by the instruction address, such as the branch predictor [22]

and memory disambiguation unit [30]. In this section, we study

how the speculative memory access predictors are organized

on AMD CPUs. Specifically, we focus on how stlds with

different instruction addresses select the entries, and we show

our discovery that the counters can be further divided into 2

groups that have different organizations.

1) IPA-dependent selection: On Intel CPUs, the instruction

virtual address (IVA) of the load determines which entry to

select [41]. However, we cannot observe a similar design on

AMD CPUs. To identify the selecting function, we design the

following experiments in the Linux kernel.

First, we fix the instruction address of stld and change the

data address of the store and load randomly. We find that the

same entry is always selected and updated, which indicates

that the selection is independent with the data address of a

store-load pair. Second, we use the fork function to create

a new child process with the same address layout with its

father process. Due to the Copy-on-Write [11], the stld of

the father process and child process share the same IVA and
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TABLE I
STATE MACHINE OF SPECULATIVE MEMORY ACCESS PREDICTORS

State Machine Non-aliasing Store-load Pair (n) Aliasing Store-load Pair (a)
Type Counter Update Type Counter Update

[Initialize]
(C0 = 0, C1 = 0, C2 = 0, C3 = 0, C4 = 0)

H No Changes G C0 ← 4, C1 ← 16, C2 ← 2,

C3 ← if C4 < 3 then 0 else 15, C4 ← C4 + 1

[Block]
(C0 > 0, C2 = 0, C3 = 0)

E No Changes A No Changes

[Load From Cache]
(C0 = 0, C2 > 0, C3 = 0)

H No Changes G C0 ← 4, C1 ← 16, C2 ← 2,

C3 ← if C4 < 3 then 0 else 15, C4 ← C4 + 1

[Load From Store Buffer, PSF Enabled, S1]
(C0 > 0, C1 ≤ 12, C2 > 0, C3 = 0)

D
C0 ← C0 − 1,

C1 ← C1 + 4,

C2 ← C2 − 1

C *C0 ← if C1&3 = 3 then C0 + 1 else C0,

C1 ← C1 − 1

[Load From Store Buffer, PSF Disabled, S1]
(C0 > 0, C1 > 12, C2 > 0, C3 = 0)

E C0 ← C0 − 1,

C1 ← C1 + 4
A C0 ← if C1&3 = 3 then C0 + 1 else C0,

C1 ← C1 − 1

[Load From Store Buffer, PSF Disabled, S2]
(C1 > 12, C3 > 0 or C0 = 0, C1 ≤ 12, C3 > 0)

F
C0 ← C0 − 1,

C1 ← C1 + 4,

C3 ← C3 − 1

B
C0 ← if C1&3 = 3 and C0 > 0 then C0 + 1 else C0,

C1 ← C1 − 1,

**C3 ← if C0 > 0 then C3 − 1 else C3 + 16

[Load From Store Buffer, PSF Enabled, S2]
(C0 > 0, C1 ≤ 12, C2 > 0, C3 > 0)

D
C0 ← C0 − 1,

C1 ← C1 + 4,

C3 ← C3 − 2

C
C0 ← if C1&3 = 3 and C0 > 0 then C0 + 1 else C0,

C1 ← C1 − 1,

C3 ← if C0 > 0 then C3 − 1 else C3 + 16

* C0 ≤ 4 always holds. ** C3 ≤ 32 always holds.

physical address (IPA), and we observe that the stld in these

processes select the same entry. Third, in the child process,

we write some dummy data to the page that contains the

stld by calling the mprotect function, which makes this

page executable. As a result, although the stld of the father

process and child process still have the same IVAs, the IPAs

are now different since the kernel remaps the page of the child

process. This time, we cannot observe the selection collision ,

which indicates that the physical address has an effect on the

selection. Finally, we use a shared memory that holds the stld
by calling the mmap function in two processes. Now the stld
has the same IPA and different IVAs in these processes, and

we observe the collision. Therefore, we can conclude that the

selection of the entry depends on the IPA of the stld.

2) Hash function: Since the IPA is up to 48 bits, the size

of the predictors is too large if the whole IPA is used to

select the predictors, and a hash function may be used to

compress the IPA before selecting. To prove this, we use a

code sliding method to collect the collision addresses (i.e.

stld at these addresses select and update the same entry), as

shown in Fig 3. We first fix a stld at an address. Then we

obtain the machine code of the stld, and fill the machine code

into a set of contiguous pages that are mapped using mmap
function. After that, we execute the stld at the fixed address

using the sequence (7n, a, 7n, a, 7n, a), and then execute the

sliding code using the sequence (15n). We check whether the

collision occurs by observing φ(15n). If φ(15n) = (15F ), the

collision occurs. Otherwise, the collision does not occur, and

we add the entry address of the stld one byte, so that the IPA

moves one byte within the page for the next attempt.

By collecting numerous IPAs that select the same entry, we

reverse engineered the hash function. We observe that different

bits of two colliding addresses at a stride of 12 exhibit identical

size of stld

size of a page

target address
1 byte

o set of load A empts

xed address

Collision
= , , , , ,

Fig. 3. Code sliding to find collision for the predictors.

0x16fbe4d2f =
0x16ebe5d2f =

0b 0001 0110 1111 1011 1110 0100 1101 0010 1111
0b 0001 0110 1110 1011 1110 0101 1101 0010 1111

0x1a53be5bf =
0x1b77bc1af =

0b 0001 1010 0101 0011 1011 1110 0101 1011 1111
0b 0001 1011 0111 0111 1011 1100 0001 1010 1111

0x20abd1e7f =
0x1c3df1b96 =

0b 0010 0000 1010 1011 1101 0001 1110 0111 1111
0b 0001 1100 0011 1101 1111 0001 1011 1001 0110

Collide

Collide

Collide

xor 12, 24 bit12 bit24 0x16 be4d2f = bit12 bit24 0x16ebe5d2f = 1

xor 4, 28 = 1, xor 10, 22 = 1, xor 13, 25 = 1

xor 0, 24 = 1, xor 3, 27 = 0, xor 5, 17 = 1, xor 6, 30 = 1, xor 7, 31 = 0,

xor 8, 32 = 0, xor(10, 22) = 1

Fig. 4. Mathematical characteristics of the colliding address pairs.

XOR values. For instance, the XOR values of the 12th bit and

the 24th bit in the first two colliding address pairs depicted in

Fig 4 are both 1. We hypothesize that bits at intervals of 12 can

be grouped together to determine the hashed value. We verity

our hypothesis through an extensive examination of colliding

addresses. Based on our analysis, the hash function consists

of 12 xor operations, with each xor being performed on 4

bits of the IPA at a stride of 12 bits. For example, one of the

output bits is the result of xor on the 1st, 13th, 25th and 37th
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bits of a given IPA. In addition to the hash function, we find

that the IPA of the load inside the stld, instead of the IPA of

stld entry, determines whether the collision occurs.

3) IPA dependence for different counters: In the analysis

of hash function, we only study the collision of C3 because

of the sequence we choose. Now we extend our study to other

counters. To better label the stlds with different IPAs and

hashed values, we denote them as ny
x and ayx, where x and y

represent the hashed value of the load IPA and the store IPA,

respectively. For example, n0
0 and n0

1 have the same hashed

value of the store IPA and different hashed values of the load

IPA. Particularly, n and a represent n0
0 and a00.

We present some of the important experiments and their

corresponding results in TABLE II. Each experiment is

conducted with carefully constructed stld sequences that

modify the tested counters. For example, when studying

the selection mechanism of C3, we use the sequence

(7n, a, 7n, a, 7n, a, 6a10, 35n). The prefix (7n, a, 7n, a, 7n, a)
sets C3 to 15. The following a10 has the same hashed value of

the load IPA and different hashed value of the store IPA with

a. If we observe that φ(6a10, 35n) = (6F, 9F, 26H), we can

conclude that C3 is selected by the load IPA only. Otherwise,

if we observe that φ(6a10, 35n) = (6H, 15F, 20H), we can

conclude that the selection of C3 dose not depend on the

load IPA only. Since the result shows that φ(6a10, 35n) =
(6F, 9F, 26H), we can conclude that C3 is selected solely

by the hashed value of the load IPA.

The other experiments in TABLE II can be analysed in a

similar way. We find that C0, C1 and C2 are selected by the

hashed values of both the store IPA and the load IPA, while

C3 and C4 are selected by the hashed value of the load IPA

only. Therefore, The first 3 counters are in the same entry,

and support the predictive store forwarding, while the last 2

counters are in another entry, and support the predictive store

bypassing. Thus, we conclude that C0, C1 and C2 belong to

PSFP and C3 and C4 belong to SSBP.

D. Organization of Predictors

We further study the organization of PSFP and SSBP

respectively.

1) Organization of PSFP: We already know that the hashed

values of both the store IPA and the load IPA are used to

select the PSFP entry, and each entry consists of 3 counters.

Besides, according to the document [6], PSFP is flushed during

a context switch. As a result, it is reasonable to assume that

PSFP has a small size. Otherwise, the performance overhead

of flushing this predictor would be too high to be acceptable.

To reverse engineer the size of PSFP, we use the

sequence (7n, a, 7n, a, 7n, a, 40nj0
0 , aj1i1 , a

j2
i2
, aj3i3 , ..., a

jk
ik
, 5n),

where each i and j are non-zero and differ from each other.

The prefix (7n, a, 7n, a, 7n, a) initializes an entry of the PSFP,

which we denote as the base entry. The stld whose hashed

values of the store and load IPAs are both 0 selects the base

entry. For the base entry, the prefix sequence sets its C0 to 4.

Next, (40nj0
0 ) is executed to clear C3 selected by both nj0

0 and

n (i.e. n0
0), which avoids the effects of SSBP. Note that nj0

0

ev
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ev
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 ra

te

evic on set size evic on set size

PSFP SSBP

Fig. 5. Eviction rate of PSFP and SSBP under different eviction sizes.

have no effects on the base entry, because the hashed values

of the store IPA are different from a and it selects a new PSFP

entry instead of the base entry.

Then we randomly use k different stlds to prime the PSFP

and try to evict the base entry. By changing k, we effectively

build an eviction set with different sizes and observe which

size of the eviction set is capable of evicting the base entry.

Finally, we observe the execution types of the last (5n) by

measuring the execution time. If we observe that φ(5n) =
(4E,H), the base entry is not evicted. Otherwise, we have

φ(5n) = (5H) and the base entry is evicted.

The experiment results are shown in Fig 5. When the

eviction size is less than 11, the base entry is not evicted,

while when the eviction size is larger than 11, the base entry

is consistently evicted. Therefore, we can conclude that the

size of PSFP is 12. Since the hashed values in the eviction set

are random, it is likely that PSFP is implemented as a 12-entry

fully associative buffer, with two 12-bit tags corresponding to

the hashed value of the store and load IPAs.

2) Organization of SSBP: We design similar experiments

to study the organization of SSBP. The results are shown in

Fig 5. Unlike PSFP, SSBP has a complex selection mechanism,

and we cannot determine the exact size due to the absence of

an abrupt change in the eviction rate. However, we observe

some typical changes corresponding to the eviction set size.

For example, the eviction rate exceeds 50% when the eviction

size is 16, and reaches 90% when the eviction size is 32.

3) Summary: We summarize the organization of PSFP and

SSBP in Fig 6. The 48-bit IPAs of the store and load serve as

the input to a hash function, resulting in a 12-bit compressed

output. The PSFP is 12-way fully associative, consisting of 3

counters C0, C1 and C2, with the hashed IPAs of both the store

and load serving as the tags. The SSBP consists of 2 counters

C3 and C4, and has a more complex selecting function F2.

These 5 counters are combined to form a prediction regarding

whether the store-load pair is aliasing and whether to forward

the store data to the load before the data address is generated.

According our experiments, all 4 AMD Zen 3 CPUs in our

study share the same design of PSFP and SSBP.

IV. SECURITY ANALYSIS OF PSFP AND SSBP

In this section, we conduct an in-depth analysis of the

security of PSFP and SSBP. We conduct empirical experiments
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TABLE II
SOME IMPORTANT EXPERIMENTS FOR STUDYING THE COUNTER ORGANIZATION

Counter Experiments Dependence

C0
seq 7n 1a 7n 1a 7n 1a 4a 1n 4a 1n 3a 6n1

0 35n store IPA load IPA
type 7H 1G 4E 3H 1G 4E 3H 1G 4B 1D 4B 1D 3B 6H 5E 30H � �

C1
seq 7n 1a 6n1

0 35n 7n1a 6a10 35n - store IPA load IPA
type 7H 1G 1G 4E 1C 4E 31H 7H 1G 6E 32F 3H - � �

C2
seq 5a 1n 7n0

1 5a01 1n0
1 42n 5a 1n 7n0

1 5a01 1n0
1 35n store IPA load IPA

type 1G 4E 1D 7H 1G 4E 1D 4E 38H 1G 4E 1D 7H 1G 4E 1D 35E � �

C3
seq 7n 1a 7n 1a 7n 1a 6a10 35n - - store IPA load IPA
type 7H 1G 4E 3H 1G 4E 3H 1G 6F 9F 26H - - � �

C4
seq 4n 7n1

0 1a10 39n 7n1
0 1a10 39n 7n1

0 1a10 35n store IPA load IPA
type 4H 7H 1G 39H 7H 1G 39H 7H 1G 15F 20H � �
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Fig. 6. Overview of the organization of PSFP and SSBP.

TABLE III
CPU AND KERNEL INFORMATION IN VULNERABILITIES ANALYSIS

Processor Microcode Kernel
AMD Ryzen 9 5900X

(Zen 3)
0xA201205 Linux 5.15.0-76-generic

AMD EPYC 7543
(Zen 3)

0xA001173
Linux 6.1.0-rc4-snp-
host-93fa8c5918a4

AMD Ryzen 5 5600G
(Zen 3)

0xA50000D Linux 5.15.0-76-generic

AMD Ryzen 7 7735HS
(Zen 3+)

0xA404102 Linux 5.4.0-153-generic

on four platforms (TABLE III) to answer the following

questions:

1) Are the predictors well isolated between security do-

mains, e.g., user-kernel isolation and host-VM isolation?

2) Can the predictors be trained out-of-place deterministi-

cally? In other words, can we find a collision between

the predictions of different store-load pairs?

3) Can the predictors trigger a transient window with

attacker-controlled values?

4) Can the predictors be updated during the transient

execution?

A. Breaking Isolation

In the in-place experiments, we use a shared executable

page between two different security domains. We specifically

consider three security domains: a user process in the host

OS, a process inside a VM, and a kernel thread. We repeat

the following experiments for all three pairs of security

domains. We fill a stld in the shared page, train the

predictors using this function in a domain, and probe it

using this function in the other domain. For PSFP, we use

the sequence (7n, a, 7n, a, 7n, 5a, n, 4a, n, 3a) to train the

predictor because it sets C0 to 5 and clears C3. Then we

probe PSFP with the sequence 5n. For SSBP, we use the

sequence (7n, a, 7n, a, 7n, a) to train the predictor, and probe

it with sequence (32n). In the out-of-place experiments, we

use PTEditor [39] to get the IPA from a given IVA, and find

collisions between 2 stlds in different address space. Then we

use the same sequences mentioned before to observe the state

changes of these predictors.

Our experiments confirm that PSFP is well isolated.

However, SSBP is not isolated between two security domains,

allowing one domain to leak data from another domain.

Furthermore, we find that PSFP is flushed during a context

switch due to a system call or the yield function, which

matches the information provided in the official document [6].

However, SSBP is not affected by the context switch, and

retains the legacy data from the previous process. Additionally,

both SSBP and PSFP are flushed if the process is suspended

due to a sleep function.

We also study the isolation between two Simultaneous

Multi-Threading (SMT) threads by running two processes in

two hyperthreads, and find that both SSBP and PSFP are

partitioned amongst SMT threads, and thus the activity of one

SMT thread does not influence the other thread’s predictors. To

investigate how CPUs manage the resources of these predictors

between the SMT threads, we repeat the experiment mentioned

in Section III-D after switching the CPU from SMT mode to

single-thread mode. We do not observe a significant change

in the eviction size, suggesting that the predictors might be

duplicated resources [46].

Vulnerability 1: SSBP is not isolated between two security

domains, which means the data from a security domain may

be leaked to another domain.
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Fig. 7. Collision finding for PSFP and SSBP.

B. Finding Collisions

According to Section III-C, a specially designed hash

function takes an IPA as the input and compresses it into a

12-bit value before selecting the predictors. We show that it

is easy to find hash collisions for PSFP and SSBP.

1) Collision For SSBP: According to Section III-C, two

stlds select the same SSBP entry when the hashed values

of their load IPA are the same. Assume the hash function

is implemented as the way in Fig 6, and we need to find a

collision with a given IPA, whose physical page frame is F
and page offset is O. Now we prove that the collision for this

given IPA can always be found in any executable pages.

The hashed value of the given IPA has 12 bits, and we

denote it as h. The ith bit of h can be calculated as:

hi = Oi ⊕ Fi ⊕ Fi+12 ⊕ Fi+24

for each i from 0 to 11, where ⊕ is an xor operation. For a

random page P with its physical page frame denoted as F ′,
the ith bit of its hashed value h′ is:

h′
i = x⊕ F ′

i ⊕ F ′
i+12 ⊕ F ′

i+24

where x is ith bit of its page offset. Given that the page frame

of P is fixed, F ′
i ⊕ F ′

i+12 ⊕ F ′
i+24 is a fixed value. Therefore,

for each i from 0 to 11, it is satisfiable for the ith bit in the

page offset of P to make hi = h′
i. In other words, it requires

at most 4096 attempts to find an IPA in any pages that selects

the same SSBP entry with another IPA.

To further verify it, we measure the distribution of the

number of attempts to find a collision, and the results are

shown in the left part of Fig 7. The figure shows that the

distribution of the number of attempts follows a Gaussian

distribution with an approximate average of 2200.

2) Collision For PSFP: Unlike SSBP, PSFP is selected

using both the store and load IPAs. The hashed values of the

store and load IPAs serve as the tags to select the PSFP entry,

making it much more difficult to find a collision for PSFP.

An intuitive idea is that the distance between the store IPA

and the load IPA matters whether a collision can be found. To

prove it, we measure the average number of attempts required

to find a collision for different IPA distances. A portion of

the results is shown in Fig 7. The collision can always be

found when the IPA distances are the same for two stlds, but

the collision may not be found (i.e. number of attempts are

more than the upper threshold) if the distances are different.

Therefore, it is better to keep the distance equal so that the

collision of PSFP can be found deterministically.

Vulnerability 2: Collisions for PSFP and SSBP can be

deterministically found, and at most 4096 attempts are

required to find a collision for SSBP, which means out-

of-place attacks are feasible using these predictors.

C. Transient Execution

Based on the state machine and organization of the

speculative memory access predictors, we can train any entries

of these predictors to any states and trigger the mispredictions.

In this section, we study the behavior of the CPU when a

misprediction of PSFP or SSBP occurs.

As shown in Fig 8, we delay the data address generation

of the store by performing time-consuming calculations or

loading the data address from memory (1). This allows the

predictors to be used to predict whether the load can bypass

the store and whether the data of the store can be forwarded

to the load before its address is generated. For simplification,

assume that the DPA of the store is 0xaa, and the data is 0xdd.

The DPA of the load is 0xaa (2a) or 0xbb (2b) in different

cases. The memory 0xaa contains the value 0xcc.
By training the predictors, we can trigger a misprediction

of PSFP (3a) or SSBP (3b). In the misprediction of PSFP, the

DPA of the store is predicted as 0xbb, and a predictive store

forwarding is performed (4a). In the misprediction of SSBP,

the DPA of the store is predicted as another value that is not

equal to 0xbb, and then a speculative store bypass is performed

to load the data from the data cache or memory (4b).

Before the data address of the store is generated, the

CPU does not stall the following instructions, but continues

to consume the incorrectly loaded data (5). Since the CPU

will find the misprediction and reissue the load later, the

execution is referred to as the transient execution. To observe

the loaded data in the transient window, we use the cache side

channel [50] to recover it. When the data address of the store

is generated, the CPU identifies a misprediction and triggers

a rollback to eliminate the effects of the transient execution

(6). After the rollback, we recover the data in the transient

window by timing the cache access.

The results indicate that 0xbb is loaded in the transient

window triggered by PSFP, and 0xcc is loaded in the transient

window triggered by SSBP. Therefore, both predictors can be

misused to trigger the transient execution, during which an

unexpected value is loaded and consumed.

D. Transient Update

A lot of studies focus on searching microarchitecture covert

channels that can be used to recover the data in a transient

window. The new covert channels are proposed to bypass the
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Vulnerability 3: Both PSFP and SSBP can be misused

to trigger the transient execution with an incorrect loaded

value, which means an attacker can control any malicious

data as an address to fetch secrets using PSFP and SSBP.
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Fig. 8. Transient Execution of PSFP and SSBP.

cache-related defenses [9], [43], make timing easier [34], [51],

and expand available gadgets [14], [17]. This inspires us to

study whether PSFP and SSBP can serve as the covert channels

for transient execution attacks.

As shown in Fig 9, we trigger a transient window in

different ways, including a branch misprediction, a faulty

load, and a speculative memory access misprediction. In

the transient window, we execute a store-load pair and try

to update the states of PSFP or SSBP. After the transient

execution, we probe the state of PSFP or SSBP using a stld
that selects the same entry of PSFP or SSBP. The results show

that both predictors can be updated in any kind of transient

windows, and the update is not rolled back.

Vulnerability 4: Both PSFP and SSBP can be updated

during the transient execution and the updates to these

predictors are not rolled back, which means that these

predictors can be used to construct covert channels for data

transmition during transient execution.

V. EXPLOITATION

In this section, we propose novel attacks against AMD’s

SSBP and PSFP, which includes two new variants of Spectre

attacks, out-of-place Spectre-STL and Spectre-CTL, on AMD

Zen 3 processors. We also show that SSBP can be misused to

perform application fingerprinting.

A. Threat Model

We assume that an attacker and a victim use the same AMD

Zen 3 CPU, and the attacker aims to leak secrets, such as the

secret data and secret-dependent control flow, from the victim.

We do not make any special assumptions about the victim, who

can be a normal application or a kernel thread running on any

versions of operating system and microcode.

branch mispredic on

memory access mispredic on

faulty load

Transient Window
store
load

PSFP

SSBP

update ?

Fig. 9. Transient Execution of PSFP and SSBP.

For most of attacks, we assume that the attacker is a

normal user without root privilege. The attacker can execute

unprivileged instructions such as mfence, clflush and

rdpru. rdpru provides the cycle-level timing method,

allowing the attacker to measure the execution of any code.

Without root privilege, the attacker cannot use both PTEditor

and pagemap of Linux to get the physical address directly,

but has to find the collision by probing the PSFP or SSBP

counters.

B. Out-of-place Spectre-STL

Spectre-STL, also known as Spectre V4, has been

discovered on AMD CPUs [13]. AMD further claims that

Spectre-STL can be executed by misusing a predictor [6].

However, the exploitation is limited to a single process because

the predictor is flushed during a context switch. In this paper,

we proves that Spectre-STL’s implementation is restricted to a

single process by uncovering the design and security features

of PSFP.

Beside being an inner-process attack, current research also

suggests that Spectre-STL can only be exploited in-place [13].

This implies that the attacker needs to execute the same store-

load pair multiple times within the victim’s address space,

so that a false store-to-load forwarding is performed by that

particular store-load pair. While AMD claims that out-of-

place exploitation is possible, since the associated PSFP is not

publicly available, no research has yet discovered a method

to implement Spectre-STL using a different store-load pair

within the attacker’s address space and under the attacker’s

full control.

In this paper, we first propose an out-of-place approach to

misuse PSFP and implement Spectre-STL on AMD Zen 3

CPUs, which extends the attack surface. Both in-place and out-

of-place Spectre-STL require the same gadget in the victim’s

address space as shown in Listing 2. In the gadget, a store that

targets address &array2 + (idx << 12) is performed

with the data x. Then three loads are performed following the

store. The first load fetches the data from address &array2,

and the fetched data serves as a new address in the second load

to fetch another data stored in &array1 + array2[0].

The third load encodes the data fetched by the second load

into a cache line, which is a common way to implement the

Flush+Reload cache side channel [50].

For in-place attack, in order to train PSFP, the attacker

sets idx to 0 and executes a lot of victim_function.

For out-of-place attack, however, the attacker tries to find

another store-load pair that is fully controlled in attacker

space, and trains PSFP, so that only one execution of

victim_function is required for leaking each secret. The
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1 void victim_function(size_t x) {
2 array2[idx * 4096] = x;
3 temp = array2[array1[array2[0]] * 4096];
4 }

Listing 2. Gadget in Spectre-STL.

code sliding mentioned in Section III-C is used to find the

collision for PSFP. The attacker needs to carefully control the

distance of store and load IPAs to be the same with the store-

load pair in victim_function.

After training, PSFP will predict the store-load pair in

victim_function as aliasing. The attacker now sets idx
to another value, sets x to reach the address of secret, and

executes the victim_function. The attacker flushes idx
from the cache to delay the store, and creates a transient

window, as shown in Fig 8. In the transient execution, x will

be forwarded to the first load, and the second load fetches

the secret from &array1 + x. The secret will be encoded

to a cache line by the third load. Finally, the attacker uses

Flush+Reload to recover the secret.

In our implementation, we use 16 pages to search for the

PSFP collision, achieving a collision-finding rate of over 90%.

We test the accuracy and bandwidth of out-of-place Spectre-

STL by leaking 10,000 randomly generated bytes in a user

process. The accuracy achieved is 99.95%, with the attack

leaking an average of 416 bytes per second (B/s).

C. Spectre-CTL

Spectre-STL, as mentioned earlier, has several limitations.

Firstly, the forwarded data is stored in a register, making it easy

to being overwritten by other instructions. This necessitates

the store operation to be in close proximity to the victim

load to be effective. Secondly, Spectre-STL is constrained to

operate within a single process. Even though our study extends

the attack from in-place to out-of-place, the isolation of

PSFP among different processes prevents its application across

process boundaries. Thirdly, the recovery of the secret relies

on a cache side channel, requiring the secret to be multiplied

by a large value in the gadget so that it is distinguishable

across different cache lines.

In this section, we present a novel Spectre Attack named

Sepctre-CTL, which overcomes the limitations of Spectre-STL

by leveraging SSBP. The gadget of Spectre-CTL is illustrated

in Listing 3, where the secret address is not required in the

gadget, and the secret is not required to multiply a large

number, which makes it more feasible to find the gadget within

the victim’s code.

1) Spectre-CTL Attack in C Code: The attack process

is shown in Fig 10. Similar to Spectre-STL, Spectre-CTL

requires one store and three loads in the victim’s address

space. During the train phase, the attacker tries to discover two

collisions with the first and the third load of the victim through

code sliding. Upon finding these collisions, the attacker

proceeds to train the relevant SSBP entries by clearing C3

1 void victim_function() {
2 array2[idx] = 0;
3 temp = array2[array1[array2[idx2]]];
4 }

Listing 3. Gadget in Spectre-CTL.

so that a misprediction as non-aliasing will occur. Then the

attacker sets the first loaded data as the secret’s address.

After training, the attacker executes the victim function with

idx=idx2. The store is delayed by evicting idx from the

cache, and SSBP gives a misprediction that the first load can

bypass the store and fetch data from the cache or memory.

In the transient window, the second load fetches the secret.

Subsequently, the third load treats the secret as an address,

updates the second SSBP entry. C3 in this entry is updated to

15 if the secret is equal to idx, and remains 0 otherwise.

The leak phase is finished when the CPU detects the

misprediction and triggers a rollback. Then the attacker probes

the second SSBP entry in the recover phase. If the execution

type F is observed, it indicates that the secret is equal to idx,

signifying a successful recovery of the secret.

In Spectre-CTL, for each secret byte, the attacker is required

to attempt at most 256 values of idx to successfully recover

the secret. Due to the complex hash function, very little

noise is induced in Spectre-CTL. We test the accuracy and

bandwidth of Spectre-CTL by leaking 10,000 bytes randomly

generated bytes. The accuracy achieved is 99.97%, with the

attack leaking an average of 384 bytes per second (B/s).

Spectre-CTL is much more powerful than Spectre-STL, as

it offers a broader scope of applicability and more extensive

attack capabilities. Spectre-CTL can be implemented out-of-

place and even across different processes, as SSBP is not

isolated for individual processes. We successfully exploit the

attack to leak secrets from another process or kernel thread.

Moreover, despite being named Spectre-CTL, the first load

that bypasses the store in the transient window can also

fetch data from the memory if the cache miss occurs. This

flexibility allows the attacker to control the secret address

array2[idx2] through various data injection techniques,

such as Rowhammer [25]. By incorporating such methods,

the attacker’s capabilities are further amplified, making the

attack more formidable and posing a higher threat level to the

targeted system’s security.

2) Spectre-CTL Attack in Web Browser: In this section,

we demonstrate that Spectre-CTL is a practical and powerful

attack in web environments, by implementing the Spectre-CTL

attack in Chrome version 86 on AMD Zen 3 CPUs.

Firstly, we verify that the SSBP state can be detected

within a web browser. To accomplish this, we implement

a high-resolution timer directly within the browser, capable

of achieving a timing level at about 10 nanoseconds. This

timer enables us to measure the execution time of stld in the

web context. We implement stld by using WebAssembly for

its flexibility. Our experiment demonstrates that SSBP side

channel attack is practical in the context of web browser, and
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Fig. 10. Overview of the Spectre-CTL Attack.

1 function spectreCTL(trash) {
2 spectreArgs[argsIdx[16 * 256]] = 0;
3 return probeArray[((
4 (spectreArray[spectreArgs[0]]) >> bit
5 ) & 1 ) * 0x800];
6 }

Listing 4. JavaScript Gadget in Spectre-CTL.

is an alternative to the commonly used Evict+Reload covert-

channel in the browser.

The prior work, leaky page [45], has already demonstrated

that JavaScript can be used to implement Spectre-V1 [29],

enabling the leakage of information from the browser’s

memory. In our research, we implement the Spectre-CTL

attack in web by modifying the code in leaky page. In specific,

we change the gadget from a branch bound check to a store-

load pair, which is shown in Listing 4.

In the train phase, we set spectreArgs[0] to zero and

set argsIdx[16 * 256] to a non-zero value so that the

store and load is non-aliasing. We perform numerous non-

aliasing store-load pairs to clear C3 of the relevant SSBP entry,

which ensures that SSBP predicts the store and load as non-

aliasing. In the subsequent attack phase, we assign the address

of the secret to spectreArgs[0] and set argsIdx[16

* 256] to zero. A misprediction occurs during the execution

of spectreCTL, and the secret is fetched in the transient

window. Our Spectre-CTL attack in the web browser has the

capability to achieve a data leakage rate of approximately 170

B/s, with the accuracy as 81.1%.

D. Side Channel Impact of SSBP

In addition to transient attacks, SSBP can also be exploited

to implement side-channel attacks in two ways. Firstly,

because SSBP is not flushed during context switches, the

control flow of the load instruction within one process, which

has the potential to leak certain secrets [16], can be disclosed

to another process via SSBP. Secondly, the hash function

contains information about the physical address and may

unintentionally leak address mapping from virtual to physical

addresses, which is inaccessible to a regular user process in

the user space. In this section, we use process fingerprinting

to demonstrate the first kind of side channel impact of SSBP.

vgg16 googlenet squeezenet

resnet18 seresnet18 xcep on

Fig. 11. Fingerprinting results of machine learning model using SSBP side
channels.

As the SSBP is selected by the load IPA, and the physical

address of the load is not controllable for an unprivileged

attacker, it is impossible to observe the execution of a specific

load. However, it is still effective to exploit SSBP to build

the fingerprinting of a process. To achieve it, we use the code

sliding to traverse the entire space of SSBP entries, which

amounts to a total of 4096 entries. During each probe round,

we collect the C3 values of each entry, ranging from 0 to 35.

Subsequently, we analyse the relative frequency of each data

value and aggregate them into a vector containing 35 elements.

Each element in the vector represents the relative frequency

of the corresponding value, ranging from 0 to 1, and the sum

of all elements in the vector totals to 1.

To demonstrate that the fingerprinting is practical and

useful, we collect the fingerprinting of different machine

learning models. The tested CNN models are running in a

victim process, and the attacker binds the probe process on the

same CPU. For each probe round, the attacker uses the sleep
function to yield the CPU. Fig 11 displays the fingerprinting

results for 6 distinct CNN models. Several noticeable features

can be observed directly from the figure. For instance, the

relative frequency of value 5 is distinguishable among vgg16

(0.16), googlenet (0.22), resnet18 (0.20), and sersnet18 (0.25).

To quantify these differences and differentiate among the

different models, we employ the support vector machine

(SVM) provided by the sklearn module to classify the

models based on their relative frequency vectors. This

classification approach yields an accuracy of over 95.5%,

indicating the effectiveness of our fingerprinting technique in

successfully distinguishing among the various CNN models.

VI. DEFENSE

A. Disable Speculation with SSBD and PSFD

AMD has provided a system register SPEC_CRTL to

control the speculative execution, including the speculative

memory access [7]. In specific, the 2nd bit of SPEC_CRTL,
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Fig. 12. Performance evaluation of SSBD on SPEC2017.

known as Speculative Store Bypass Disable (SSBD), deter-

mines whether the speculative store bypass is disabled. When

this bit is set, any load is serialized and must wait until the

preceding stores are fully resolved, which includes generating

and translating the data addresses.

We conducted experiments using specific stld sequences

to investigate whether SSBD can effectively defend against

the vulnerabilities mentioned in this paper. We observe that,

for all sequences, we have φ(n) = E and φ(a) = A. This

behavior aligns with the block state presented in TABLE I,

and thus we can conclude that SSBD fixes all of the SSBP

and PSFP entries on the block state. Since the SSBP entries

are at the block state, the attacker cannot detect timing

differences among stld sequences, and the side channels

among different processes are prevented. In addition, the stores

and loads are serialized, making it impossible to trigger an

exploitable transient window, which prevents both Spectre-

STL and Spectre-CTL attacks.

Unfortunately, enabling SSBD has considerable effects on

CPU performance, as it introduces stalls for non-aliasing

loads. As a result, SSBD is disabled by default in the

Linux kernel. To assess the performance overhead of SSBD,

we conduct an evaluation using SPEC2017 benchmarks. We

executed 10 benchmarks from SPECrate with SSBD disabled

or enabled for all CPUs on AMD Ryzen 9 5900X. The

execution results can be seen in Fig 12. The evaluation reveals

that, for most benchmarks, there is a significant performance

overhead when SSBD is enabled. In some cases, the overhead

exceeds 20%, as seen in benchmarks like perlbench and

exchange. In summary, despite the effectiveness of SSBD

in mitigating vulnerabilities related to PSFP and SSBP, the

notable performance degradation cannot be ignored.

Nevertheless, it is worth noting that Predictive Store

Forwarding Disable (PSFD) might not mitigate these attacks.

Specifically, AMD offers an additional control of predictive

store forwarding, i.e., the 7th bit of SPEC_CRTL known

as PSFD. However, in all experiment setups outlined in

TABLE III, we find that the predictors continue to function

even when PSFD is enabled, which suggests that the attacks

proposed in this paper cannot be effectively mitigated. We will

further investigate the implementation of PSFD and analyze

the reasons in our future work.

B. Other Potential Mitigations

Although disabling speculation is a straightforward mitiga-

tion, the significant performance loss will hinder their adoption

in production systems. We outline a few potential mitigation

strategies below.

Develop a secure timer. Developing a more secure timer by

introducing timing noise or reducing timing accuracy [18],

[38] can effectively render timing differences unobservable,

so that the predictor states cannot be probed.

Flush SSBP during context switch. Flushing SSBP during

context switches can mitigate cross-process attacks that exploit

SSBP, and the associated overhead can be controllable [16].

Randomize selection. Incorporating randomization into the

organization of SSBP and PSFP can mitigate most out-of-place

attacks because finding collisions between entries becomes

more challenging, as demonstrated in secure cache and branch

predictor designs [31], [35], [52].

VII. RELATED WORK

A. Transient Execution Attacks

Since 2018, the year of Spectre [29] and Meltdown [33],

a lot of transient execution attacks have been found

on Intel, AMD and ARM processors. The related study

mainly focuses on: (1) new ways to trigger the transient

window, such as ret2spec [37], machine clear [41] and a

series of MDS attacks [12], [14], [42], [44], [48], [49];

(2) new ways to recover data in the transient window,

such as SmotherSpectre [10], mwait [51] and Speculative

interference [9]. In this paper, our study covers both aspects

and extends the Spectre attack with two new variants,

including the out-of-place Spectre-STL attack and Spectre-

CTL attack.

B. Side Channel Attacks

Side channel attacks on CPU microarchitecture have been

widely studied. Vulnerabilities have been disclosed on a

lot of CPU predictors and buffers, including decode string

buffer [20], [43], branch predictor [22], [28], load store

unit [15], [34], execution port [1], [23], translation look-aside

buffer [24], [32] and cache [19], [36]. Due to the complexity

of SSBP, there is little study focusing on this predictor, and

our study first uncover the side channels that exploit SSBP.

C. Memory Disambiguation Units on Intel and ARM

Predictors used in speculative memory access are mentioned

in both patents from Intel [30] and AMD [40], but limited

information about the design and organization of these

predictors are provided. The first reverse engineering effort

on Intel’s memory disambiguation units (MDU) is reported in

a blog post [27], where well-designed microbenchmarks are

used to demonstrate the existence of these predictors on x86

processors. Another post [21] conducts a similar experiment

to reverse engineer the MDU design on Intel Skylake CPUs.

Based on these findings, Ragab et al. [41] systematically

analyses the design and organization of MDU on Intel CPUs.

The study also finds that MDU can be misused to trigger
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TABLE IV
CHARACTERIZATION OF MDU AND SSBP

Characterization Intel [41] ARM [34] AMD
(Our Work)

Feasible State
Machine Size 4 bit 1 bit

6 bit (C3) + 2
bit (C4)

Selection
Lowest 8 bits

of the load
IVA/IPA

Lowest 16
bits of the
load IVA

Hashed value
of the whole

load IPA

transient execution. However, it does not investigate whether

MDU is effectively isolated among different security domains.

MDUs are also available on ARM processors. Liu et

al. [34] uncovers the MDU design on ARM and utilizes MDU

to construct side-channel attacks across different security

domains. However, Liu et al. [34] did not discuss whether

MDU can be used to trigger transient execution.

Our paper significantly extends the prior studies in two

aspects. First, it investigates the SSBP design on AMD

processors. While SSBP on AMD is similar to MDU

on Intel and ARM, our work shows that the design of

SSBP is considerably more complicated. TABLE IV provides

characterizations of the SSB predictors on Intel, ARM and

AMD CPUs. The size of the state machine of SSBP is

larger than that of MDU, and the selection of SSBP depends

on a complex hash function that considers the entire load

IPA, rather than just a portion of the lowest bits of IVA.

Second, our work performs a comprehensive analysis on the

exploitability of SSBP in various attack settings. Specifically,

it examines the capability of SSBP in performing both cross-

domain attacks and transient execution attacks, which bridges

the gaps between prior studies.

VIII. CONCLUSION

In this paper, we present our investigation efforts and

research findings on the security of speculative memory access

on AMD processors. Our study has led to better understanding

of two predictors, namely PSFP and SSBP, in terms of both

their internal organization and their security properties. Our

study also presents novel out-of-place Spectre-STL attack and

the first Spectre-CTL attack on AMD processors.
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APPENDIX A

ARTIFACT APPENDIX

A. Abstract

The artifact comprises two Proof of Concepts (PoCs):

the out-of-place Spectre-STL attack detailed in Section V-B

andthe Spectre-CTL attack detailed in Section V-C. These

PoCs are implemented based on our reverse engineering anal-

ysis of SSBP and PSFP, including the state machine presented

in Section III-B and the selection mechanism outlined in

Section III-C. Building upon the reverse engineering and

security analysis, we propose the attacks following the process

illustrated in Fig 8. In the out-of-place Spectre-STL attack,

we mistrain PSFP to trigger the store-to-load forwarding

transient execution and use Flush+Reload cache side channel

to recover the secret bytes fetched in the transient window. In

the Spectre-CTL attack, we mistrain SSBP to trigger the store

bypass transient execution and use SSBP as the covert channel

(as shown in Fig 9) to recover the secret byte. The PoCs

are easy to build and execute, requiring no special software

environment. We validate the effectiveness of the PoCs in all

the environments listed in TABLE III.

B. Artifact check-list (meta-information)
• Algorithm: Code sliding (Section III-C and Section IV-B)

for collision finding, specific stld memory access sequences
(Section V) for predictors mistraining, and SSBP covert channel
(Section IV-D) for secret recovering

• Program: Out-of-place Spectre-STL attack and Spectre-CTL
attack PoCs

• Compilation: gcc

• Run-time environment: x86-64 Linux Kernel
• Hardware: AMD Zen3 CPUs
• Execution: Execute an executable file
• Output: Command line string
• Experiments: Leak secrets through out-of-place Spectre-STL

attack and Spectre-CTL attack
• Publicly available: Yes
• Code licenses (if publicly available): Apache-2.0 License
• Data licenses (if publicly available): None
• Archived: DOI 10.5281/zenodo.10199277

C. Description

1) How to access: The PoCs can be accessed from Zenodo:

https://zenodo.org/records/10199277 or from Github: https://

github.com/CPU-THU/Spectre-V4-ng.

2) Hardware dependencies: The PoCs depend on SSBP

and PSFP functionalities specific to AMD Zen 3 CPUs, and

CPUs with a design similar to that of SSBP and PSFP are

anticipated to execute the PoCs successfully. We have tested

the PoCs successfully on four CPUs listed in TABLE III.

3) Software dependencies: A C compiler is required. For

example, we use gcc 9.4.0 with make 4.2.1 to build

the PoCs. No specific kernel or package dependencies and

installations are required.

D. Installation

No specific installations are required. We recommend to use

the Makefile in the artifact to build the executable files.

E. Evaluation and expected results

The PoCs demonstrate the transient execution vulnerabilities

of PSFP and SSBP. In the out-of-place Spectre-STL attack,

the PoC demonstrates the step-by-step process of leaking

the victim’s secret string byte by byte by finding the

collision of PSFP, mistraining PSFP, and triggering transient

execution. In the Spectre-CTL attack, the PoC showcases the

process of leaking the victim’s secret string byte by byte by

finding the collision of SSBP, mistraining SSBP, triggering

transient execution, and recovering secrets using SSBP. For

more detailed information on the attack implementation and

expected results, please refer to the README files.
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