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Abstract—Non-volatile memories (NVMs) are expected to re-
place traditional DRAM and SRAM for both off-chip and on-
chip storage. It is therefore crucial to understand their security
vulnerabilities before they are deployed widely. This paper
shows that NVM caches are vulnerable to so-called “cold boot”
attacks, which involve physical access to the processor’s cache.
SRAM caches have generally been assumed invulnerable to cold
boot attacks, because SRAM data is only persistent for a few
milliseconds even at cold temperatures.

Our study explores cold boot attacks on NVM caches and
defenses against them. In particular, this paper demonstrates that
hard disk encryption keys can be extracted from the NVM cache
in multiple attack scenarios. We demonstrate a reproducible
attack with very high probability of success. This paper also
proposes an effective software-based countermeasure that can
completely eliminate the vulnerability of NVM caches to cold
boot attacks with a reasonable performance overhead.

I. INTRODUCTION

Non-volatile memory (NVM) such as Spin-Transfer Torque
Random Access Memory (STT-RAM), Phase Change Memory
(PCM), and Resistive Random Access Memory (ReRAM),
is a promising candidate for replacing traditional DRAM
and SRAM memories for both off-chip and on-chip storage
[1]. NVMs in general have several desirable characteristics
including non-volatility, high density, better scalability at small
feature sizes, and low leakage power [2]–[4]. Prior work has
examined the performance, energy, and reliability implications
of NVM register files, caches, and main memories [2]–[8].

The semiconductor industry is investing heavily in NVM
technologies and companies such as Everspin [9] and Crossbar
[10] are focused exclusively on NVM technologies and have
produced NVM chips that are being sold today. A joint effort
from Intel and Micron has yielded 3D XPoint [11], a new
generation of NVM devices with very low access latency and
high endurance, expected to come to the market this year.
Hewlett Packard Enterprise’s ongoing “The Machine” project
[12] is also set to release computers equipped with memristor
technology (also known as ReRAM) as part of enabling
highly scalable memory subsystems. The industry expects non-
volatile memory to replace DRAM off-chip storage in the near
future, and SRAM on-chip storage in the medium term.
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Despite all their expected benefits, non-volatile memories
will also introduce new security vulnerabilities as data stored
in these memories will persist even after being powered-off.
In particular, non-volatile memory is especially vulnerable
to “cold boot” attacks. Cold boot attacks, as first proposed
by Halderman et al. [13], use a cooling agent to lower the
temperature of DRAM chips before physically removing them
from the targeted system. Electrical characteristics of DRAM
capacitors at very low temperatures cause data to persist in the
chips for a few minutes even in the absence of power. This
allows the attacker to plug the chips into a different machine
and scan the memory image in an attempt to extract secret
information. When the memory is implemented using NVM,
the cold boot attacks become much simpler and more likely
to succeed, because data persists through power cycles.

To protect against cold boot attacks on main memory,
one approach is to encrypt sensitive data [14]–[21]. Another
approach is to keep secret keys stored in SRAM-based CPU
registers, caches, and other internal storage during system ex-
ecution [22]–[31]. The rationale behind this design philosophy
is that cold boot attacks against on-chip SRAM structures
are deemed to be extremely difficult. This is because SRAM
data persistence at cold temperatures is limited to a few
milliseconds [32].

The security implications of implementing the main mem-
ory and microprocessor caches with NVM have received little
attention. While memory encryption schemes are feasible,
cache encryption is not practical due to low access latency
requirements. Cold boot attacks on unencrypted NVM caches
will be a serious concern in practice, especially given the
ubiquity of smart mobile and Internet of Things (IoT) devices,
which are more exposed to physical tampering — a typical
setup for cold boot attacks.

This work examines the security vulnerabilities of micro-
processors with NVM caches. In particular, we show that
encryption keys can be retrieved from NVM caches if an
attacker gains physical access to the device. Since removing
the processor from a system no longer erases on-chip mem-
ory content, sensitive information can be leaked. This paper
demonstrates that AES disk encryption keys can be identified
in the NVM caches of a simulated ARM-based system running
the Ubuntu Linux OS.

We have examined multiple attack scenarios to evaluate the



probability of a successful attack depending on the system
activity, attack timing, and methodology. In order to search
for AES keys in cache images, we adopted the key search
algorithm presented in [13] for main memories, and made
the necessary modifications to target caches which cover non-
contiguous subsets of the memory space. We find that the
probability of identifying an intact AES key if the processor is
stopped at any random point during execution ranges between
5% and 100%, depending on the workload and cache size. We
also demonstrate a reproducible attack with 100% probability
of success for the system we study.

To counter such threats, this paper proposes an effective
software-based countermeasure. We patch the Linux kernel to
allocate sensitive information into designated memory pages
that we mark as uncacheable in their page table entries
(PTEs). This way secret information will never be loaded
into vulnerable NVM caches but only stored in main memory
and/or hard disk, which can be encrypted with a reasonable
performance cost. The performance overhead of this coun-
termeasure ranges between 2% and 45% depending on the
hardware configuration.

Overall, this paper makes the following main contributions:
• The first work to examine cold boot attacks on non-

volatile caches.
• Two types of cold boot attacks have been performed and

shown to be effective on non-volatile caches.
• A software-based countermeasure has been developed

and proven to be effective.
• An algorithm for identifying AES keys in cache images

has been implemented.
The rest of this paper is organized as follows: Section II

provides background information and discusses related work.
Section III explains the threat model. Section IV illustrates
our cache-based AES key search algorithm. Section V de-
scribes our experimental methodology. Section VI presents
and evaluates two types of cold boot attacks. Section VII
presents countermeasures and evaluates their effectiveness and
performance overhead. Finally, section VIII concludes.

II. BACKGROUND AND RELATED WORK

In this section we provide some background information
relevant to our study and discuss related work in the context
of cold boot attacks.

A. Advanced Encryption Standard (AES)

The Advanced Encryption Standard (AES) [33] is a sym-
metric block cipher that encrypts or decrypts a block of 16
bytes of data at a time. Both encryption and decryption use the
same secret key. The commonly used AES key size is either
128-bit (AES-128), 192-bit (AES-192), or 256-bit (AES-256).
Before performing any encryption/decryption operations, the
secret key must be expanded to a key schedule consisting
of individual subkeys that will be used for different internal
rounds of the AES (Rijndael) algorithm. The key expansion
process is shown in Figure 1. The key schedule starts with the
original secret key, which is treated as the initial subkey. The

Fig. 1: AES-128 key schedule with details on key expansion.

following subkeys (also known as round keys) are computed
from the previously generated subkeys using publicly known
functions such as Rot-Word, Sub-Word, Rcon, EK, and K
defined in the key expansion algorithm [34]. In each round
of the key generation, the same sequence of functions will be
executed. Each newly generated subkey will have the same
size, e.g. 16 bytes in AES-128. This process repeats a certain
number of rounds (e.g. 10 rounds in AES-128) until the
expanded key is completely generated. Each subkey from the
expanded key will then be used in separate rounds of AES
encryption or decryption algorithms.

B. ARM’s Cryptographic Acceleration

Many of today’s processors include vectorization support in
the form of Single Instruction Multiple Data (SIMD) engines.
In ARM processors, the SIMD engine, called NEON, consists
of 32 128-bit registers (v0 - v31). Each NEON register can
conveniently load a 128-bit AES key or a full round of the
AES key schedule into a single register obviating the need
for multiple accesses to the cache or the memory subsystem.
In addition, ARMv8 introduces cryptographic extensions that
include new instructions that can be used in conjunction with
NEON for AES, SHA1, and SHA2-256 algorithms. In the
case of AES, the available instructions are: AESD for single
round decryption, AESE for single round encryption, AESIMC
for inverse mix columns, and VMULL for polynomial multiply
long. In this paper, we explore the use of the NEON engine,
in addition to the ARMv8 cryptographic extensions.

C. Cold Boot Attacks and Defenses

The idea of cold boot attacks in modern systems was first
explored by Halderman et al. [13]. Their work consisted of
extracting disk encryption keys using information present in
main memory (DRAM) images preserved from a laptop. The
idea of this type of attack builds on the premise that under low
temperature conditions, DRAM chips preserve their content
for extended time durations. The attack also relies on the
fact that AES keys can be inferred by examining relationships
between subkeys that involve computing the hamming distance
information. The AES key search algorithm has been proposed
in [13] as well. Muller et al. [35] later expanded cold boot
attacks to mobile devices. When volatile memories such as
SRAM and DRAM are replaced by non-volatile ones (e.g.
STT-RAM, PCM, and ReRAM) in future computers, cold boot
attacks will become much easier to perform since data will
be indefinitely preserved after cutting off power supply for
several years without the need for any special techniques such
as cooling. Our work is the first work to study cold boot attacks
in the context of non-volatile caches.



Prior work has proposed encrypting memory data in order
to prevent attackers from easily extracting secret information
from main memory [14]–[21]. Although this approach is
effective for main memory, encryption techniques are chal-
lenging to apply to caches because of their large performance
overhead. Other researchers, proposed storing secret keys
away from main memory in CPU registers, caches, and other
internal storage during system execution [22]–[28], [30], [31].
However these proposed approaches have not considered the
vulnerability of data stored in CPU caches, especially since
keys stored in CPU registers and other internal storage can
still be fetched into caches during execution [23]–[25], [28],
[30].

III. THREAT MODEL

The threat model assumed in this study is consistent with
prior work on “cold boot” attacks. In particular, we assume
the attacker gains physical access to the target device (e.g. an
IoT device, a smartphone, a laptop, or a desktop computer).
Further, the attacker is assumed to have the ability to extract
the microprocessor or system motherboard from the device
and install them into a debugging platform, which allows
cache data to be accessed. In practice, such a platform is
not hard to obtain. Many microprocessor manufacturers offer
debugging and development platforms that allow a variety of
access functions, including functionality to retrieve the cache
content.

For example, for the ARM platform, the manufacturer
offers the DS-5 development software [36] and associated
hardware DSTREAM Debug and Trace unit [37]. These tools
enable debugging and introspection into ARM processor-based
hardware. The attacked microprocessor can be plugged into
a development board such as the Juno ARM Development
Platform [38] either directly or through the JTAG debugging
interface. In the DS-5 software, the Cache Data View can be
used to examine the contents of all levels of caches and TLBs.
Information such as cache tags, flags, and data associated with
each cache line, as well as the index of each cache set, can
be read and then exported to a file for further processing.

IV. CACHE-AWARE AES KEY SEARCH

In this paper, we study the security of NVM-based mi-
croprocessor caches specifically by demonstrating AES key
extraction attacks under the aforementioned threat model.

A. Technical Challenges

An algorithm for identifying AES keys in a main memory
image has been presented by Halderman et al. in their seminal
work on cold boot attacks [13]. Its application to caches,
however, is not straightforward. Particularly, the AES key
search algorithm in Halderman et al. [13] assumes that a com-
plete AES key schedule is stored in a physically-contiguous
memory region. This is a relatively safe assumption in their
case since the size of memory pages on modern computers are
at least 4KB and a complete AES key schedule is 176 bytes
(128-bit key/AES-128) to 240 bytes (256-bit key/AES-256).

Fig. 2: Cache view with (a) complete and (b, c) incomplete
AES key schedules stored in disjoint 64-byte lines.

The algorithm proposed by Halderman et al. can, therefore,
simply scan the entire memory image sequentially to search for
potential AES keys [13]. However, neither the completeness
of the key schedule nor the contiguity of the memory space
can be assumed in the case of caches.
Non-contiguous memory space. Caches only capture a small
non-contiguous subset of the memory space. Since cache
lines are typically only 32-128 bytes, data that was originally
stored in physically-contiguous memory is not necessarily
stored in contiguous cache regions. Therefore, the logically
sequential AES key schedules, typically 176 to 240 bytes, can
be separated into multiple physically disjoint cache lines as
shown in Figure 2(a).
Incomplete key schedules. Another relevant cache property
is that data stored in the cache is subject to frequent replace-
ments. Parts of a complete AES key schedule can be missing
from the cache, which makes our key search more difficult
to conduct. Examples of these situations are shown in Figure
2(b) and 2(c). Particularly, in Figure 2(b), the cache line that
holds the RK-2, RK-3, RK-4, and RK-5 has been evicted
from the cache.

B. Search Algorithm Design

To address these issues our algorithm will first reconstruct
the cache image by sorting cache lines by their physical
addresses that we extract from the cache tags and indexes,
and then feed the reconstructed cache image to the AES key
search function. In this way the logically contiguous data will
still be contiguous in our reconstructed cache image regardless
of the cache architecture.
QuickSearch. Our key search algorithm runs through each
key schedule candidate (all cache words) and first attempts to
validate the first round of the key expansion (16 bytes). If there
is a match between the first round expansion of the candidate
key and the data stored in the cache, the candidate key is
validated. As long as the key itself followed by one round (16
bytes) of the expanded key exists in the cache, our algorithm



can successfully detect the key as shown in Figure 2(b). We
call this variant of the key search algorithm, QuickSearch.
DeepSearch. The AES key schedule is stored on multiple
cache lines since it is larger (at least 176 bytes for AES-
128 mode) than the typical cache block (32-128 bytes). Cache
evictions can displace parts of the AES key schedule from the
cache, including the first round of the key expansion, which
our QuickSearch algorithm uses to validate the key. These
cases are rare since they require the memory alignment to be
such that the encryption key falls at the end of a cache line and
the first round of the key expansion is on a different line. To
deal with these cases we designed a more in-depth algorithm
(which we call DeepSearch) that considers multiple rounds
of the key expansion. In this implementation, as long as the
key itself is inside the cache and there exist two consecutive
rounds of expanded keys, our algorithm can find the key as
shown in Figure 2(c). The downsides of DeepSearch is that it
runs considerably slower than QuickSearch and the search has
some false positives.

C. Implementation-Specific Considerations

We demonstrate the AES key extraction attack against
dm-crypt, a cryptographic module that is used in main-
stream Linux kernels. As will be explained in Section V, the
specific target of our demonstrated attacks is the disk encryp-
tion/decryption application, LUKS (Linux Unified Key Setup),
of the Ubuntu OS, which by default invokes the dm-crypt
kernel module for disk encryption/decryption using AES-XTS
mode [39].

In the AES implementation of dm-crypt the decryption
key schedule is different from the encryption one. We illustrate
the key schedule for the decryption process in Figure 3(a). The
decryption key schedule is first reversed in rounds from the
encryption key schedule. An inverse mix column operation is
then applied to rounds 1 through 9 of the key schedule. As a
result, we need to perform searches for encryption keys and
decryption keys separately. Specifically, before searching for
decryption keys we first convert the candidate schedules back
to the encryption key schedule format.

Another artifact that affects our key search algorithm is
specific to little-endian machines, which store the least sig-
nificant byte in the lowest address. dm-crypt adopts an
implementation which stores the AES key schedules as an
array of words (e.g. 4 bytes) instead of bytes. This leads to a
mismatch in the representation on little-endian architectures,
as shown in the first line of Figure 3(b). Our search algorithm
takes into account this artifact and converts the little-endian
representation to big-endian before conducting the key search.

V. EXPERIMENTAL METHODOLOGY

We used a full system simulator to conduct our experiments
since microprocessors with NVM caches are not currently
available in commercial systems. Specifically, we modeled
an 8-core ARMv8-based processor using the gem5 simulator
[40]. Cold boot attacks have been demonstrated on both x86
and ARM architectures in the past. We used the ARMv8

Fig. 3: Details on AES implementation-dependent modifica-
tions to the key search algorithm.

Hardware Configuration
Cores 8 (out-of-order)
ISA ARMv8 (64-bit)
Frequency 3GHz
IL1/DL1 Size 32KB
IL1/DL1 Block Size 64B
IL1/DL1 Associativity 8-way
IL1/DL1 Latency 2 cycles
Coherence Protocol MESI
L2 Size 2, 4, 8 (default), and 128MB
L2 Block Size 64B
L2 Associativity 16-way
L2 Latency 20 cycles
Memory Type DDR3-1600 SDRAM
Memory Size 2GB
Memory Page Size 4KB
Memory Latency 300 cycles
Disk Type Solid-State Disk (SSD)
Disk Latency 150us

TABLE I: Summary of hardware configurations.

architecture for its broader adoption in mobile devices which
are particularly vulnerable to the physical access required by
cold boot attacks. Our results should be generally applicable
to other microprocessors.

We simulated a 2-level cache hierarchy with private L1
instruction and data caches for each core and a shared inclusive
L2 cache as the last level cache (LLC). Our cache configura-
tion parameters are in line with the ones used in many modern
computer systems. Since our key search algorithm focuses on
the LLC, we experimented with different LLC sizes from 2MB
to 128MB. We examine a wide range of LLC sizes from small
(2MB) to very large (128MB), with most experiments con-
ducted using an 8MB LLC. The main configuration parameters
of our simulated system are summarized in Table I.

The system is configured to run Ubuntu 14.04 Trusty 64-
bit operating system. We installed the cryptsetup application
- LUKS (Linux Unified Key Setup) in the Ubuntu OS and
used it with the dm-crypt module in Linux kernel to
encrypt a 4GB partition of a simulated hard drive. The disk
encryption/decryption algorithm we configured for LUKS was
AES-XTS [39] with 128-bit keys. The XTS format is currently
the standard form for Linux since ECB/CBC format has known



Mixed Benchmark Groups

mixC compute- calculix, dealII, gamess, gromacs,
bound h264ref, namd, perlbench, povray

mixM memory- astar, cactusADM, GemsFDTD, lbm,
bound mcf, milc, omnetpp, soplex

mixCM compute/ dealII, gamess, namd, perlbench,
memory astar, cactusADM, lbm, milc

TABLE II: Detailed makeup of the mixed benchmark groups.

security flaws [41]. One detail to note here is that AES-
XTS uses a dual encryption/decryption method which requires
two different AES keys to perform encryption/decryption
operations [33]. Our experiments take this into account and
only consider the key search a success when both keys are
found.

We ran the SPEC CPU2006 benchmark suite with both
binaries and data stored in the encrypted hard drive to
simulate applications that run on the target system. SPEC
CPU2006 includes integer and floating-point single-threaded
benchmarks, with a mix of computation-bound and memory-
bound applications [42].

To keep the simulation time reasonable, we use the check-
point functionality provided by gem5 [40] to bypass the OS
boot-up phase and ran each benchmark with up to 1 billion
instructions. For experiments which require periodically taking
LLC image snapshots we use a sampling interval of 1 million
instructions. To further test our attack scenario and coun-
termeasure approach in a multi-programmed/multi-threaded
environment, we also ran several groups of mixed benchmarks
from SPEC CPU2006 - mixC, mixM, and mixCM. As detailed
in Table II, mixC contains 8 computation-bound benchmarks,
mixM contains 8 memory-bound benchmarks, and mixCM
contains 4 benchmarks from mixC and another 4 benchmarks
from mixM.

VI. VULNERABILITY ANALYSIS

We examine the probability of successfully retrieving disk
encryption keys from a processor’s last level cache under two
attack scenarios.

A. Random Information Harvesting

We first investigate an attack scenario in which the attacker
gains access to the target machine and disconnects the pro-
cessor from the power supply at an arbitrary point during the
execution. We make no assumptions that the attacker has a way
to force a certain code sequence to execute. This is typical, for
instance, when a defective device that stores sensitive data is
discarded without proper security measures. Another example
is when an attacker steals a device and physically disconnects
its battery or power supply before removing the processor.

To study the probability of success for such an attack we
take periodic snapshots of the LLC, at 1 million instruction
intervals. We then run the QuickSearch key search algorithm
on each cache snapshot. Figure 4 shows the probability of
finding the AES keys in the 8MB last level cache for different
benchmarks. We examine systems with and without ARM’s

NVCool Experiments

NoNEON System without ARM’s cryptographic
acceleration support

NEON System with ARM’s cryptographic
acceleration support

STAvg Geometric mean of single-threaded
benchmarks from SPEC CPU2006

TABLE III: Experiment names and short description.

cryptographic acceleration (NEON) support. For easy refer-
ence, Table III summarizes the labels we use for different
experiments.

To better analyze results we classify the SPEC CPU2006
benchmarks into two categories — compute-intensive and
memory-intensive. We can see from the results in Figure 4
that when running compute-bound benchmarks the probability
of finding AES keys in the cache is higher than when running
memory bound benchmarks. On average, there is a 76%
probability of finding AES keys in the system without NEON
support when running compute-bound benchmarks and a 26%
probability when running memory-bound benchmarks.

When the system is configured with NEON support, the
probability of finding the key in the cache drops for both
classes of benchmarks to 41% and 14% respectively. This is
because the NEON technology stores encryption keys in vector
registers that are large enough to hold the entire key schedule.
These registers are also infrequently used for other functions
which means they don’t have to be spilled to memory (and
cache). As a result, in processors with NEON support the
encryption key is read from memory much less frequently,
leading to better resilience to this type of attack. A typical
case is seen in perlbench with 96% for NoNEON and 49% for
NEON. However there are also exceptions as seen in povray
(100% for both systems) and gobmk (97% for NoNEON and
4% for NEON). On average, the probability of finding the key
in this random attack is 40% for the system without NEON
support and 22% for the system with NEON support.

There are two principal factors that affect the probability the
encryption key is found in the cache at random points during
execution. The first is how recent the last disk transaction
was, since encrypted disk access requires the AES key to be
brought into the cache. The second factor is the cache miss
rate, since the higher the churn of the data stored in the cache
the sooner an unused key will be evicted. Computation bound
benchmarks in general have a smaller memory footprint so
their cache miss rates are lower, allowing keys to reside in the
cache for longer. Memory bound benchmarks, on the other
hand, have a larger memory footprint associated with a higher
cache miss rate, therefore evicting keys more frequently.

Figure 5 illustrates these effects for selected benchmarks
running on systems without NEON support, showing for each
cache snapshot over time whether the key was found or not (1
or 0). The figure also shows the cumulative miss rate of the
LLC over the same time interval.

Benchmark dealII shown in Figure 5a is a good illustration
of the behavior of a compute-bound application. The disk
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Fig. 4: Probability of finding AES keys in 8MB LLC with various types of benchmarks.
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(a) dealII
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(b) bzip2

Fig. 5: AES key search trace showing the outcome of the key
search and the cumulative LLC miss rate information for (a)
dealII and (b) bzip2 benchmarks running on systems without
ARM’s cryptographic acceleration support (NoNEON).

encryption key is brought into the cache early in the execution
as the application accesses the disk to read input data. The miss
rate is low throughout the execution of the application which
means the key is never evicted and the probability of finding
the key while running this application is 100%.

Figure 5b shows the behavior of a memory bound ap-
plication, bzip2. Keys are brought into the cache early in
the execution and remain in the cache for a period of time

while the miss rate is low. The miss rate, however, spikes
as the application begins processing large data blocks for
compression. This evicts the key from the cache. A disk
operation causes the key to be brought into the cache again,
but the consistently high miss rate causes the key to be evicted
shortly after that. Even though later in the execution the cache
miss rate drops, the lack of disk accesses keep the keys away
from the cache for the rest of this run. Note that for clarity
we only show a fraction of the total execution.

We also collect results for multi-program mixed workloads
to increase system and disk utilization and cache contention.
The results are included in Figure 4 as mixC, mixM, and
mixCM. The benchmark applications included in each mix
are listed in Table II. As expected, when the system is fully
utilized, with one application running on each core (for a total
of 8), the probability of finding the key increases. This is
because each application accesses the disk and those accesses
occur at different times, causing the encryption key to be
read more frequently. The compute bound mixC shows 100%
probability of finding the key for both systems (with and
without NEON support).

While a system with high utilization is clearly more vulner-
able, a mitigating factor is that cache contention is also higher
when many threads are running. As a result, cache miss rates
are also higher and the key may be evicted more frequently.
This is apparent when we examine the memory-bound mixM
workload which shows a 66% success rate without NEON
support and 76% with NEON support. Even with the higher
miss rate, the fully-loaded system is clearly more vulnerable
than lightly-loaded system, as seen in the single-threaded
experiments. When a mix of both compute and memory bound
applications is used (mixCM) the probability of finding the key
is 85% for NoNEON and 82% for NEON.

We also note that the NEON-accelerated system is almost
as vulnerable as the system without hardware acceleration
when the system is running the mix workloads. This is likely
caused by the more frequent spills of the vector registers
when context switching between the kernel thread running the
encryption/decryption process and the user threads. Spilling
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the vector registers holding the encryption key increases reads
and writes of the key to and from memory, exposing it to the
cache more frequently.

Figure 6 shows the overall probability of finding AES keys
in systems with different LLC sizes. As expected, larger caches
increase the system vulnerability to this type of attack. We
can see that as cache size increases the probability of success
also increases across all the benchmarks. With 2MB cache
the average probability of finding AES keys is from 4.6% to
85% depending on the system and application; for a 128MB
LLC the probability of a successful attack ranges from 70%
to 100%. Increasing the cache size reduces capacity misses
therefore increasing the fraction of time the key spends in the
cache.

B. Targeted Power-off Attack

The second attack scenario we consider is one in which
the attacker is able to trigger a graceful or forced power-
off sequence before physically removing the processor. In
this attack scenario, the attacker aims to use the power-off
sequence to ensure the disk encryption keys are brought to
the cache. Since the power-off sequence involves unmounting
the disk, this results in a series of encryption/decryption
transactions that will bring the encryption key into the cache.
During the system shutdown process, the attacker can stop
the execution at any time to search for secret keys or simply
wait until the device is completely powered off to examine
cache images for secret keys. The goal of this attack is to find
a reproducible and reliable way to obtain the encryption key
from a compromised system.

Figure 7 shows the sequence of operations executed after
running the poweroff command. There are two operations
in the power-off sequence (highlighted in green) that will bring
disk encryption keys to the cache. The first (operation 2) is the
operating system asking all remaining processes to terminate.
In this operation the process in charge of disk encryption will
be terminated. This will invoke the sync system call to flush
data from the page cache to the encrypted disk which requires
reading the AES keys. Before the system is actually powered
off, all filesystems must be unmounted as shown in step 5.

Mode Command Keys exist in cache after power-off?
2MB 4MB 8MB 128MB

Normal Power-off poweroff (-p) N N Y Y
Forced Power-off poweroff -f Y Y Y Y

TABLE IV: Summary of targeted power-off attack results.

root@aarch64-gem5:/# poweroff
Session terminated, terminating shell...exit
...terminated.

* Stopping rsync daemon rsync [ OK ]

// 1

* Asking all remaining processes to terminate... [ OK ]

// 2

* All processes ended within 1 seconds... [ OK ]

// 3

* Deactivating swap... [ OK ]

// 4

* Unmounting local filesystems... [ OK ]

// 5

* Stopping early crypto disks... [ OK ]

// 6

* Will now halt // 7
[ 604.955626] reboot: System halted

Fig. 7: The sequence of events triggered by the poweroff
command.

The encryption keys are used in unmounting the encrypted
disk drive and they will again appear in the cache.

We experimented with two power-off methods in the eval-
uation - normal and forced. We examine the probability of
successfully identifying the key under the two scenarios. Table
IV summarizes the results of our power-off attacks on various
LLC sizes.

We can see from the results that starting from an LLC size
of 8MB keys will remain in the cache no matter which power-
off method is used. For the smaller cache sizes like 2MB or
4MB, after keys are brought into the cache, other operations
which don’t involve encryption disk accesses, may evict the
AES keys. Therefore we won’t see the keys after the system is
powered off. However for larger caches with 8MB or 128MB
the keys will stay in the cache after system shutdown.

Forced power-off is different from normal power-off in that
it doesn’t power-off the system in a graceful way. This means
forced power-off will only perform the action of powering off
the system. However in order to power off the system the
local filesystems are still going to be unmounted to prevent
data loss. In this process the keys will be brought into the
cache and stay in the cache after system is powered off in all
cache sizes we examined in the experiments. Forced power-
off attacks virtually guarantee that the system we investigate,
in all configurations, will expose the secret keys in the NVM
cache. This shows that a potential attacker has a reliable and
reproducible mechanism to compromise disk encryption keys.

Figure 8 shows the presence of the disk encryption keys in
the cache throughout the normal power-off sequence for the
NoNEON and NEON systems, for different LLC sizes. We can
see that the encryption key appears in the cache at roughly the
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Fig. 8: AES key search sequence of normal power-off from
start to completion with various sizes of LLCs.

same time following operation no. 2 in the power-off sequence
(Figure 7). It is then quickly evicted in the 2MB LLC system,
but persists for increasingly longer time intervals as the size
of the LLC increases. For the 128MB cache, the key is never
evicted before the system halts. The key is again read into the
cache following operation no. 5 (unmounting the file system).
In the 2MB and 4MB cases the key is again evicted before
the system halts. Even for these systems an attacker could
force the key to remain in the cache in a predictable way. The
attacker would simply have to trigger the power-off sequence
and then disconnect the processor from the power supply after
a predetermined time period before the key is evicted. Since
the power-off sequence is fairly deterministic, this approach
has a high probability of success.

VII. COUNTERMEASURE

In order to mitigate threats of cold boot attacks against
NVM caches, we propose a simple and effective software-
based countermeasure. Our countermeasure is designed to
force secret keys to be stored only in encrypted main memory
and bypass the NVM cache throughout the execution. We
develop a software API for declaring memory blocks as
secrets to inform the system that their storage in the cache is
not allowed. While our countermeasure applies to any secret
information stored by the system, we use the disk encryption
example as a case study to illustrate the concept.

A. Countermeasure Design

The process of decrypting an encrypted storage device in a
system typically involves using the cryptsetup command-
line utility in user space which calls the dm-crypt kernel
module. This process is illustrated in Figure 9. The kernel
establishes within its internal cryptographic structures the key
to be used for accessing the encrypted device that has been
selected via the cryptsetup utility. Although the process
of establishing the key inside the kernel entails generating
multiple copies of the key, the relevant block cipher routines in
the crypto module dutifully use memset() to wipe the key

after a new copy is created. As such, we only focus on the final
memory location where the key is stored which is tracked by
the crypto_aes_ctx structure. In our solution, we devise a
countermeasure that is applicable to kernels that are configured
to utilize hardware acceleration, as well as default kernels
configured for environments where such acceleration support
is unavailable.
Systems with hardware cryptographic support. Mod-
ern systems usually make use of hardware acceleration
for cryptographic operations. We assume the kernel is
built with the AArch64 accelerated cryptographic algo-
rithms that make use of NEON and AES cryptographic
extensions defined in the ARMv8 instruction set. This is
done by including the CONFIG_CRYPTO_AES_ARM64_*,
CONFIG_ARM64_CRYPTO, and KERNEL_MODE_NEON ker-
nel parameters as part of the build. This translates to us-
ing architecture specific cryptographic libraries defined in
/arch/arm64/crypto of the Linux source. In order to
eliminate the presence of cryptographic keys in the cache,
our solution involves marking the page associated with the
address of the crypto_aes_ctx structure as uncacheable.
We implement the necessary changes for this approach within
xts_set_key() routine located in aes-glue.c where
we walk through the page table in search of the appropriate
page table entry that maps to the designed page. Once we
locate the correct PTE, we set the L_PTE_MT_UNCACHED
flag to label the page as uncacheable.
Systems without hardware cryptographic support. If the
kernel lacks support of accelerated cryptographic hardware, we
use the default cryptographic library defined in the /crypto
directory of the Linux source. This boils down to modify-
ing the crypto_aes_set_key() in aes_generic.c.
However, we use a similar approach to the one de-
scribed previously by marking the page which contains the
crypto_aes_ctx structure to be uncacheable. The primary
difference is that encryption and decryption that are used
in aes_encrypt() and aes_decrypt() respectively do
not make use of the 128-bit NEON registers. As such, the
performance impact with this approach is higher since multiple
fetches of the expanded key from memory are needed for each
round of encryption or decryption.

B. Countermeasure Effectiveness

Table V summarizes the effectiveness of our countermea-
sure. We can see that by marking the AES key structure
uncacheable our countermeasure completely eliminated the
security vulnerability of NVM caches. All attack scenarios we
examined are now unable to find the disk encryption keys in
the cache, regardless of the benchmarks running on the system.
The targeted power-off attacks also fail to identify any AES
keys in the cache once the countermeasure is deployed.

C. Performance Overhead

The effectiveness of our countermeasure comes with the
cost of some performance overhead. Figure 10 shows the per-
formance overhead for different types of benchmarks executed



Fig. 9: Countermeasure deployment in a system with encrypted storage.
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Fig. 10: Average countermeasure performance overhead of all sizes of LLCs with different benchmarks.

NoNEON NEON Countermeasure
Single-threaded 23 - 70% 5 - 77% 0%Benchmark
mixC 85 - 100% 80 - 100% 0%
mixM 26 - 100% 20 - 100% 0%
mixCM 38 - 100% 34 - 100% 0%
Normal Power-off 0 - 100% 0 - 100% 0%
Forced Power-off 100% 100% 0%

TABLE V: Probability of finding AES keys in systems with
and without the countermeasure.

in the context of our random attack. In general, the overhead
for the system with NEON support is very low, averaging 2%
for the single-threaded benchmarks. The overhead increases
substantially if the system has no NEON acceleration – up to
45% for single-threaded benchmarks. Performance overhead
of the countermeasure correlates directly with the number
of encryption/decryption transactions. Since the encryption
key is uncacheable, every access to the key will result in
a slow memory transaction. The NEON hardware support
helps alleviate this overhead substantially by storing the key in

vector registers and reducing the need for memory accesses.

The performance overheads are higher as expected for
multi-programmed workloads because they perform more en-
cryption/decryption transactions overall. Overheads for the
three workload mixes are 64% in NoNEON and 14% in NEON
for mixC, 55% in NoNEON and 3% in NEON for mixM, and
142% in NoNEON and 12% in NEON for mixCM.

Performance Optimization One observation we make is that
when the authenticated user is currently using the system, it
is unnecessary to keep the sensitive data uncacheable since
physical cold boot attacks are unlikely to be useful when the
user is logged in. The attacker can extract sensitive data in
more straightforward ways under those circumstances. One
possible performance optimization is to enable two modes
of handling secret information — cacheable and uncacheable.
When user is logged in, cacheable mode on secrets is enabled
so that user won’t experience any performance degradation of
the system. Only when the system is locked, secret information
inside caches will be erased and then uncacheable mode will
be turned on to protect from cold boot attacks.



VIII. CONCLUSION

This paper demonstrates that non-volatile caches are very
vulnerable to cold boot attacks. We successfully conducted two
attacks on disk encryption keys — random attacks and targeted
power-off attacks. Our study shows that the probability of
finding the secret AES keys in NVM caches ranges from 5%
to 100% with varying workloads and cache configurations in
random attacks and always reaches 100% in targeted power-
off attacks. To defend computer systems against these attacks
we developed a software-based countermeasure that allocates
sensitive information into uncacheable memory pages. Our
proposed countermeasure completely mitigates cold boot at-
tacks against NVM caches. We hope this work will serve as a
starting point for future studies on the security vulnerabilities
of NVM caches and their countermeasures.
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