
SoK: AI-Powered Security Analysis of
Smart Contract

Shuo Yang1,2, Jianyu Niu1, Yinqian Zhang1
1Southern University of Science and Technology 2Chinese University of Hong Kong

1155198056@link.cuhk.edu.hk, niujy@sustech.edu.cn, yinqianz@acm.org

Abstract—With the soaring popularity of decentralized appli-
cations (DApps), smart contract security has become increasingly
important. Recently, numerous studies have leveraged artificial
intelligence (AI) techniques to enhance efficiency and functional
diversity of smart contract security analysis. However, a com-
prehensive survey of these studies to guide future development
is still missing. To fill this gap, we present an innovative and
systematic review. First, we establish filtering criteria and define
Literature Attributes (LA) to identify 27 representative papers
in this field. We then trace their evolution from 2018 and
summarize four key research problems. Next, we compare three
AI-powered smart contract security analysis tools—DLVA, xFuzz,
and GURU—against traditional methods, demonstrating that AI
tools still have room for improvement in precision. Finally, we
discuss opportunities for improving AI-powered smart contract
security analysis.

Keywords—Blockchain, smart contract, artificial intelligence,
program analysis

I. INTRODUCTION

Blockchain technology has become a transformative force
in digital interaction. Smart contracts—autonomous and self-
executing programs deployed on blockchains—are crucial to
Decentralized Finance (DeFi) [1], supply chain [2], Web3
DApps [3], and Metacomputing [4]. However, the rapid evo-
lution of the smart contract has raised extensive security
concerns. Once a smart contract is deployed on blockchains,
its code becomes unalterable, thus precluding any post-
deployment revisions or withdrawals. Consequently, any in-
herent vulnerabilities within the smart contract can lead to
irreversible financial damages. For example, a notable security
breach in the Ethereum smart contract resulted in the theft
of approximately 3.6 million Ether [5]. Besides, Nicola
Atzei’s preliminary analysis of 19,366 Ethereum smart con-
tracts shows that a staggering 8,833 have vulnerabilities [6].

Due to its importance, security issues related to smart con-
tracts are gaining increasing attention. For example, extensive
studies using traditional analysis methods such as customized
pattern rules [7], symbolic execution [8], taint analysis [9], and
fuzz testing [10], [11] emerges. Beyond these, studies such as
TXSPECTOR [12] and DEFIER [13] also analyze on-chain
transaction information to detect malicious behaviors. More
importantly, AI technology has brought a new perspective to

Jianyu Niu and Yinqian Zhang are affiliated with the Research Institute
of Trustworthy Autonomous Systems and the Department of Computer
Science and Engineering of Southern University of Science and Technology
(SUSTech).

smart contract security analysis. Prominent examples include
SAFERSC [14], SMARTINV [15], and BlockGPT [16]. These
studies utilize Machine Learning (ML), Deep Learning (DL),
and other AI technology to automatically detect vulnerabilities
and identify malicious attacks. What is more, the emergence of
Large Language Models (LLMs) can provide new possibilities
for vulnerability identification and autonomous code audits
for their powerful text generation and reasoning capabilities.
Compared with traditional methods, AI technology brings both
new opportunities and challenges to this research direction.

Despite the fast development, AI-powered security analysis
of smart contracts is still in its infancy. There is no sys-
tematic study of research problems, technical methods, and
evaluation systems, that summarize the current state, identify
shortcomings, and highlight challenges for future research.
Besides, analyzing applicable scenarios and finding limitations
of AI technology can help promote further development of AI,
Web3, and Meta computing. All of these motivate us to fill
this review gap by providing a useful reference for research
on AI-powered smart contract security analysis technology in
the era of Web3.

In this paper, we conduct a systematic analysis of AI-
powered smart contract security studies from 2018 to 2024. We
select 27 representative studies and perform a thorough manual
review. After that, we identify four primary research directions
from the program analysis perspective: 1) smart contract
vulnerability detection, 2) anomalous smart contract detection,
3) smart contract security analysis enhancement, and 4) smart
contract reverse engineering. (See details of each category
in Sec. IV-B.) We also examine data collection and feature
engineering of different studies. Despite variations in research
objectives, we observe a high level of consistency in data
collection and feature engineering. However, this homogeneity
may limit the effectiveness of AI models in specific tasks.
Furthermore, we identify four directions that have garnered
widespread attention, reflecting the focus and development
trends in AI-powered smart contract security analysis.

We evaluate and compare the performance of three tools—
xFuzz [17], DLVA [18], and GURU [19]—-in detecting reen-
trancy vulnerabilities. We observe that existing AI-powered
analysis tools have better efficiency in vulnerability detection
due to the end-to-end classification, however, lower precision
compared to traditional analysis tools. This highlights the
potential of integrating traditional program analysis with AI

TABLE I
COMMON SMART CONTRACT VULNERABILITIES

Layer Vulnerability

Code

Reentrancy [25]–[27]
Access Control [28], [29]
Arithmetic Overflow/Underflow [30]
Unchecked External Calls [31]
Denial of Service (DoS) [32]

Execution environment Short Address Attack
Call Stack Overflow

Blockchain system Timestamp Dependency
Transaction Ordering

technology, leveraging the interpretability and accuracy of
traditional methods alongside the efficiency of AI technology.

Contributions. The main contributions are as follows:
• We filter 27 high-quality studies on AI-powered smart

contract security analysis, which are collected from 15 top
journals and conferences.
• We analyze and summarize the specific research content of

these studies, identifying four potential sub-research direc-
tions: 1) Smart Ponzi Scheme, 2) Vulnerability Detection, 3)
Code Comment Generation, and 4) Invariant Inference.
• We evaluate three open-source tools. Furthermore, we also

assess four existing tools and identify their limitations from
the user’s perspective.

II. BACKGROUND

A. Smart Contract

Smart contracts are programs running on blockchains. Once
deployed on blockchains, a smart contract refers to a collection
of code and data with a specific blockchain address [20].
Otherwise, it represents code files written in high-level pro-
gramming languages (e.g., Solidity [21] and Rust [22]). Smart
contracts have the following key features: 1) autonomy [23],
which means smart contracts operate independently without
intermediaries; 2) interoperability [24], by which they can
interact with each other, enabling the development of complex,
integrated operations; and 3) customizability, which means
smart contracts are programmed to suit various applications,
offering versatile solutions across various sectors.

Security Vulnerabilities. Adversaries can utilize smart con-
tract code to launch attacks or steal assets, resulting in security
vulnerabilities. These vulnerabilities are mainly caused by
three aspects: code layer, execution environment layer, and
blockchain system layer [33]. Table I shows some common
smart contract vulnerabilities. Due to space constraints, we
only introduce reentrancy vulnerability in detail.

The reentrancy vulnerability occurs when a function makes
external calls to untrusted contracts. Malicious adversaries can
exploit these calls to re-enter the original function, alter the
contract’s state, or withdraw funds before the initial execution
is completed. All of these lead to unauthorized state changes.

contract Victim {
���
function initial_balance() external payable {
�� modify the balance of users
}

function withdraw() {
check_Balance(msg.sender);
(bool success) = msg.sender.call{���}("");
change_Balance(msg.sender);
}
}

contract Attack {
Victim = 0x123���; �� address of Victim contract;

function launch_attack() {
Victim.initial_balance(���);
Victim.withdraw();
}

receive() external payable {
Victim.withdraw();
}
}

Fig. 1. An Example of Reentrancy Vulnerability

The most famous reentrancy attack on DAO has caused a loss
of $60 million [25].

Fig. 1 illustrates an example, in which the attacker deploys
a smart contract with malicious code (denoted by Cadv).
The contract Cadv first deposits some funds into the victim
contract (denoted by Cvic), and then requests to withdraw
their funds from Cvic. After Cvic sends funds to Cadv , Cadv

sends a new withdrawal request before it updates the attacker’s
balance according to the previous withdrawal request. Since
Cvic has not yet updated the balance, Cadv processes another
withdrawal. Furthermore, by carrying the above loop, the
attacker can repeatedly transfer funds from Cvic to Cadv until
Cvic’s funds are drained.

B. Smart Contract Vulnerabilities

Access Control. Access control vulnerability arises when
sensitive contract variables or functions are incorrectly ex-
posed as public. This oversight allows any user to modify the
contract’s state or invoke functions that should be restricted,
compromising the contract’s integrity and security.

Arithmetic Overflow/Underflow. Arithmetic overflow and
underflow happen when numerical operations exceed the limits
of the variable type assigned to store the result. This can cause
integers to wrap around and produce incorrect values, leading
to logical errors and potential exploitation. However, the
programming language Solidity v0.8.x prevents this problem
at the code level through an auto-recovery mechanism.

Unchecked External Calls. Unchecked external calls vul-
nerability refers to the failure of a contract to validate the
call address of external function calls properly. As a result, a
contract could continue execution even when calls to untrusted
contracts, potentially leading to unauthorized changes in the
contract state.

DoS. DoS in the smart contract can be caused by logical errors
or unhandled exceptions that disrupt the normal execution

2

Attacker Smart Contract

profit

launch attack

vulnerability

function vulnerable () {
 owner.transfer();
}

User Smart Contract

steal

call

 malicious code

function vulnerable () {
 msg.sender.transfer();
}

Fig. 2. Two Different Smart Contract Security Analysis Scenarios

flow. This can freeze the contract’s functions, making it unable
to process transactions or interact with users as intended.

C. Smart Contract Security Analysis

Smart contract security analysis targets vulnerabilities in
smart contracts before deployment and attacks on deployed
smart contracts. We categorize smart contract security analysis
into two scenarios: analyzing vulnerabilities of smart contracts
and malicious smart contracts, as shown in Fig. 2.

Analyzing Vulnerabilities in Smart Contracts. Attackers
exploit the vulnerable functions of smart contracts to illegally
transfer funds, posing significant financial risks once these
contracts are deployed. Thus, in this paper, we focus on
analyzing vulnerabilities before a contract is deployed.

Analyzing Malicious Smart Contracts. The analysis of
malicious smart contracts focuses on identifying harmful op-
erations. They may disguise themselves as normal contracts.
Once a user interacts with such a contract, malicious code can
trigger asset theft or other malicious activities. As an example,
Fig. 2 show that the smart contract contains malicious code
msg.sender.transfer(). When a user calls this function, their
funds can be transferred to the attacker. This kind of analysis
is mainly conducted on deployed smart contracts.

III. REVIEW METHODOLOGY

A. Research Questions

We define four research questions to systematically inves-
tigate prior studies on AI-powered smart contract security
analysis. Specifically, there are one general question (GQ) and
three research questions (RQ):
• GQ1: What are some representative studies of AI-powered
smart contract security analysis, and what is their content?
• RQ1: What research directions are included in the field of

AI-powered smart contract security analysis?
• RQ2: How do these studies collect and process the data
used for AI model training?
• RQ3: Do these studies share a common problem?

To clarify the main logical thread of smart contract security
analysis research, we correlate the three analytical stages:
research contents (GQ1), research directions (RQ1), and the
specific common research problems (RQ3). Here, GQ1 out-
lines the main areas of focus in current studies; RQ1 reveals

the specific implementation methods of these activities from
a more macroscopic perspective; RQ3 refines the hot issues
within the research content and direction.

B. Research Subjects

We first collect 204 relevant papers from 2018 to 2024 by
searching targeted keywords in top peer-reviewed scientific
databases (e.g., IEEE, ACM, and Elsevier). Next, we manually
review these papers, filtering them according to pre-established
criteria to exclude irrelevant and review-type papers. There-
after, we identify 15 target journals and conferences as bench-
marks and select high-quality research papers as well as their
relevant work. What is more, to ensure objectivity and fairness
in the paper selection, this review specified six criteria: 1) The
paper has a clear purpose of using AI; 2) AI technology is
used; 3) The paper targets smart contract security analysis;
4) Effectiveness of the technical methods is validated; 5) The
paper provides clear research conclusions. and 6) Research
results are summarized and future research directions are
proposed. With the criteria, we made an information extraction
template [34] to filter papers.

IV. REVIEW RESULT

A. GQ: Representative Studies

Table II provides a comprehensive summary of studies on
AI-powered smart contract security analysis. It categorizes the
studies by four key attributes: publication year, proposed tool,
research content, and the analysis level (high-level source code
or compiled bytecode). The publication year highlights recent
trends in the field. The research content is summarized in four
categories: 1) Vulnerability Detection, 2) Malicious Detection,
3) Code Synthesis, and 4) Comment Synthesis. The analysis
level indicates the specific focus of each research study.

It is noteworthy that the launch of the LLM in the series of
GPT, a revolutionary change in the field of AI, brought new
perspectives and methods to the AI-powered smart contract
security analysis. Thus, this review divides the associated
studies into two stages: Before GPT (from 2018 to 2022)
and After GPT (from 2022 to present). This division not only
helps to highlight the impact of the LLM on the field of AI-
powered smart contract security analysis but also allows us
to more clearly observe the influence of the development of
AI technology on the research direction and methodology of
smart contracts security analysis.

1) Before GPT: At this stage, AI-powered smart contract
security analysis is in its infancy, characterized by relatively
simplistic technologies and code features, and similar research
content. The primary content of these studies is to use code
features of smart contracts to predict vulnerabilities.

DPS [35] demonstrates the effectiveness of using the N-
gram language model, a traditional statistical model, for smart
contract representation. It combines bytecode and transaction
information as code features to detect Ponzi schemes in smart
contracts (smart Ponzi scheme). Similarly, S-gram [36] applies
the N-gram language model to predict smart contract vulnera-
bilities by modeling irregular token sequences in transactions.

3

TABLE II
REPRESENTATIVE RESEARCH ON SMART CONTRACT SECURITY

COMBINED WITH AI TECHNOLOGY

Year Tool Research Content Analysis Level

2018 DPS [35] Malicious Perception Source Code
2018 S-gram [36] Vulnerability Detection Source Code
2018 SAFERSC [14] Vulnerability Detection Source Code
2020 Contract-Ward [37] Vulnerability Detection Source Code, Bytecode
2020 Smartembed [38] Vulnerability Detection Source Code
2021 GSCVD [39] Vulnerability Detection Source Code
2021 GSCV [40] Vulnerability Detection Source Code
2021 SmarTest [41] Vulnerability Detection Source Code
2021 HVSC [42] Vulnerability Detection Bytecode
2021 EOSAFE [43] Vulnerability Detection Bytecode
2021 SmartDoc [44] Comment Synthesis -
2021 Al-SPSD [45] Malicious Perception Bytecode
2022 Cider [46] Vulnerability Detection Source Code
2022 Rlf [47] Vulnerability Detection -
2022 xFuzz [17] Vulnerability Detection Source Code
2022 GURU [19] Vulnerability Detection Source Code
2023 DLVA [18] Vulnerability Detection Bytecode
2023 Tx2txt [48] Comment Synthesis -
2023 MFSCV [49] Vulnerability Detection Source Code, Bytecode
2023 MulCas [50] Vulnerability Detection Source Code, Bytecode
2023 Vcd [51] Code Synthesis Source Code
2023 GPTLENS [52] Vulnerability Detection Bytecode
2023 GPTSCV [53] Vulnerability Detection Bytecode
2023 BlockGPT [16] Malicious Perception Transactions
2023 GPTscan [54] Vulnerability Detection Bytecode
2024 SMARTINV [15] Vulnerability Detection Source Code
2024 PonziGuard [55] Malicious Perception Source Code, Bytecode

To further extend the semantic context scale, SAFERSC [14]
explores the potential of encoding more extensive information
from code and transaction information using DL rather than
the N-gram model. These approaches exhibit limitations such
as strong specificity, limited analysis generalization capabili-
ties, and reliance on expert knowledge.

To further enhance the analysis generalization, some stud-
ies approach it similarly to more solvable tasks. Contract-
Ward [37] treats smart contract security analysis as a clas-
sification task, aiming to detect a wider range of common
vulnerabilities. Smartembed [38] addresses it as a similarity
detection task by converting smart contract source code into
numerical vectors using word embedding, detecting vulnera-
bilities by determining the similarity between smart contracts
thereby reducing the reliance on expert knowledge.

Since smart contracts are structured in a form that can be
represented graphically, several studies, including GSCV [40],
GSCVD [39], and HVSC [42], employ Graph Neural Net-
works (GNNs) to represent and model smart contract inputs in
a structured format. These approaches integrate various code
features into a unified representation, thereby enhancing the
analysis generalization.

Numerous studies provide further insights into the AI-
powered security analysis of smart contracts, focusing on a
variety of research questions and objectives. Al-SPSD [45]
addresses the data distribution imbalance issue caused by the
homogenization of smart contracts. EOSAFE [43] concen-
trates on identifying vulnerabilities in EOSIO smart contracts.
SmarTest [41] focuses on analyzing vulnerable transactions.
SmartDoc [44] introduces the task of automatically generating

code comments for smart contracts to enhance users’ under-
standing of their semantics.

2) After GPT: From 2022 to 2024, studies on AI-powered
smart contract security analysis evolve from relying on a single
technique to integrating multiple techniques, and also shift
from general-purpose research problems (e.g., the pursuit of
detecting more types of vulnerabilities) to a deeper focus on
specific research problems (e.g., invariant inference and code
comment generation). This research evolution is primarily
evident in the following aspects:

The powerful understanding and reasoning capabilities of
LLMs provide new opportunities for smart contract security
analysis. GPTSCV [53] and GPTscan [54] conduct preliminary
validations of using LLMs in smart contract vulnerability
detection, laying the groundwork for further studies. SMART-
INV [15] utilizes LLMs to infer invariants for symbolic execu-
tion. Vcd [51], and GPTLENS [52] directly detect vulnerable
smart contract code fragments based on LLMs.

Second, the capability of GNNs to capture the semantics of
smart contracts is continuously applied and developed. Studies
like GURU utilize GNNs to process heterogeneous graph rep-
resentations of smart contracts, including Control-flow Graphs
(CFG) and call graphs. Similarly, PonziGuard [55] employs
GNNs to model runtime behavior graphs. This methodology
enables precise modeling of contract semantics and accurate
localization of vulnerabilities.

Some studies also explore integrating AI technology with
traditional program analysis. For reinforcement learning (RL),
Cider [46] applies it to invariant inference; Rlf processes of
fuzzing smart contracts as a Markov decision process to apply
RL into fuzz testing. For ML, xFuzz uses a model trained by
word vectors and instructions to filter likely benign program
paths to guide fuzz testing.

In addition to combining AI technology with traditional
program analysis, there is a trend toward integrating multiple
AI technologies. DLVA and MFSCV [49] both introduce a
multimodal AI framework that effectively utilizes information
from different layers, such as source code, compilation data,
and bytecode, to extract joint multimodal feature representa-
tions. This approach significantly enhances the precision of
the analysis.

The research on smart contract security analysis from 2022
to 2024 shows a development trend of multi-technology inte-
gration and multi-perspective analysis. Introducing advanced
AI technologies such as LLM and GNN provides new ideas
and tools for smart contract security analysis.

Summary. The research from 2018 to 2022 mainly uses
preliminary AI technologies (e.g., N-gram language model)
and code features (e.g., source code patterns and bytecode
fragments) for smart contract security analysis. Since 2022,
LLM has marked a qualitative leap in AI-powered smart
contract security analysis. In addition, there is a growing
trend towards composite research incorporating various AI
technology and traditional program analysis.

4

B. RQ1: Research Directions in Smart Contract Security
Analysis

We analyze the 27 representative studies mentioned earlier
and categorize them into four research directions based on
traditional program analysis.

Smart Contract Vulnerability Detection. A significant body
of studies is dedicated to the automatic detection of various
smart contracts vulnerabilities. Notable examples of this re-
search in this direction include DPS, S-gram, Contract-Ward,
Smartembed, GSCV, GSCVD, HVSC, among others. These
studies focus on identifying issues such as reentrancy attacks,
transaction order dependencies, and other security threats.

Anomalous Smart Contract Detection. Studies such as
PonziGuard and MulCas aim to precisely detect smart Ponzi
schemes using pre-trained models and GNNs.

Smart Contract Security Analysis Enhancement. This type
of study focuses on using AI technology to handle certain
time-consuming or resource-intensive tasks in the process of
smart contract security analysis, such as invariant inference
during formal verification and path filtering during fuzz test-
ing, thereby improving the efficiency of smart contract security
analysis. Studies like Cider, Rlf, and xFuzz are dedicated to
advancing development in this direction.

Smart Contract Reverse Engineering. When only the byte-
code of a smart contract is available, recovering higher-level
semantic information from the bytecode provides richer in-
sights for smart contract security analysis. For instance, Smart-
Doc explores methods for automatically generating smart
contract code comments. Similarly, Tx2txt investigates this
direction, aiming to recover the high-level semantics of smart
contract bytecode fragment.

C. RQ2: Data Collection and Processing

Table III presents a comparative analysis of data collection
and processing methods used in nine selected pieces of re-
search. The analysis focuses on tagged objects, data sources,
tagging tools (tag makers), bias removal techniques, code
features, and baseline models.

Tagged objects. The research shares similar characteristics in
that they all collect real-world smart contracts from Ether-
scan. Some studies preprocess the collected smart contracts
to extract their abstract syntax trees (AST), functions, and
opcodes. However, the studies differ in data labeling and bias
removal processes. Only six studies describe their labeling
methods, with five using automated static analysis tools to
classify vulnerability labels. Additionally, only four studies
explicitly mention their bias removal strategies.

Feature engineering. Eight studies use opcodes as the primary
objects, while one extracts features from ASTs. The choice of
baseline models varies significantly across the studies, with
SPC and Contract-Ward using eXtreme Gradient Boosting
(XGBoost) and others employing a diverse range of models.

In summary, although data collection methods are consis-
tent, there is significant variation in labeling, bias removal,

feature engineering, and baseline model selection. These find-
ings highlight the need for more standardized and transparent
data processing practices to enhance the comparability and
reproducibility of results.

D. RQ3: Common Research Problems

1) Smart Ponzi Scheme: A smart Ponzi scheme is a type of
malicious smart contract in a financial sense. Corresponding
to IV-B, analyzing a smart Ponzi scheme belongs to a kind of
anomalous smart contract detection. Four studies [35], [45],
[50], [55] focus on this research problem. In the initial research
phase, DPS uses specific vulnerable bytecode patterns as the
code feature to train the classification model to predict the
smart Ponzi scheme. Recent research, such as PonziGuard,
further incorporates smart contract runtime information (a.k.a.,
Contract Runtime Behavior Graph) into code features and for-
mulates the problem as a graph classification task, improving
the detection performance with richer code features and a more
generalized modeling method.

2) Vulnerability Detection: This is one of the mainstream
research problems in the field of smart contracts. Initially, the
studies simply model the task of vulnerability detection as a
classification problem. As the ecosystem of smart contracts
continues to evolve, related studies have gradually improved
in terms of technical complexity (e.g., using multimodal
and LLMs), the depth of the issues (expanding from mere
vulnerability detection to a variety of related problems), and
the efficiency and accuracy of vulnerability detection. Ad-
ditionally, recent studies, such as DLVA, have also focused
on improvements in datasets and experimental methods, em-
phasizing the need for comprehensive evaluation of proposed
methods on real-world datasets.

3) Code Comment Generation: Tx2txt generates interme-
diate representations based on bytecode, providing a natural
language description of the smart contract’s operating logic,
which aids in security analysis. SmartDoc focuses on directly
generating user-readable function comments. Both employ
Seq2Seq models from Natural Language Processing (NLP)
and improve the design of encoding-decoding networks and
training paradigms.

Despite some encouraging progress, there is still a lack of
follow-up research to validate the practical benefits of such
code comments for smart contract security analysis.

4) Invariant Inference: In formal verification, inferring
smart contract invariants is crucial yet challenging. Cider trains
the agent to infer invariants based on RL, using the smart
contract verifier as the simulation environment of the agent
training process. SMARTINV, on the other hand, makes full
use of the inference capability of LLMs and realizes invariant
inference based on LLMs by encoding the expert knowledge
of the inference invariant into the prompt.

E. Summary of Answers for Questions

This review investigates research on AI-powered smart
contract security analysis and draws the following conclusions.

5

TABLE III
DATA PROCESSING METHODS AND BASELINE USED IN TRAINING MODELS FOR REPRESENTATIVE TOOLS. SC FOR SOURCE CODE, TX FOR

TRANSACTION, MI FOR MANUAL INSPECTION, TI FOR TOOL INSPECTION, CD FOR CODE DEDUPLICATION

Tool Data Collection Data Feature Baseline Algorithm/Model
Tagged Objects Data Source Tag Maker Bias Removal

SPC SC, TX Etherscan - - Opcode,Account XGBoost
Al-SPSD SC Etherscan, Datasets, DApp MI, TI CD Opcode Decision Tree
PonziGuard SC Etherscan, Datasets MI - runtime information GNN
SAFERSC Opcode Etherscan TI MI, CD Opcode Long Short-Term Memory (LSTM)
Contract-Ward SC Etherscan TI - Opcode XGBoost
SMARTMBED SC, AST Etherscan - - AST FastText
DLVA SC Etherscan - - CFG USE
xFuzz Function Etherscan TI MI Opcode EasyEnsembleClassifier (EEC)
SMARTINV SC Etherscan, DApp MI, TI MI, CD Opcode LLaMA

GQ1: Representative studies on AI-powered smart contract
security analysis are temporally distributed over seven years
from 2018 to the present. We find 27 high-quality studies, as
shown in Table II.

RQ1: There are four types of research directions in AI-
powered smart contract security analysis: 1) smart contract
vulnerability detection, 2) anomalous smart contract detection,
3) smart contract security analysis enhancement, and 4) smart
contract reverse engineering.

RQ2: Although there are significant differences in the data
processing methods used by different researchers during the
data collection period. For instance, SMARTINV employs
a dual method of manual inspection and tool inspection to
annotate data. Most studies collect smart contract source code
and bytecode through Etherscan and primarily extract code
features from the opcode.

RQ3: The common research problems of AI-powered smart
contract security analysis include: 1) smart Ponzi scheme, 2)
vulnerability detection, 3) code comment generation, and 4)
invariant inference.

V. EVALUATION

In this section, we select representative studies to illustrate
the impact of AI technology on smart contract security analysis
tools. We compare their vulnerability detection capabilities
with each other and with traditional smart contract security
analysis tools, using evaluation data for analysis. All experi-
ments are conducted on an Ubuntu 22.04 LTS computer with
an Intel i5 9300H 2.4GHz processor, 32GB of RAM, and a
1.5TB HDD.

A. Evaluation Object Selection

To assess the effectiveness of AI technology in smart
contract security analysis, we focus on three tools: xFuzz,
DLVA, and GURU. xFuzz integrates ML with fuzz testing
to optimize path filtering. DLVA showcases the power of
combining various AI models for in-depth analysis. At the
same time, GURU leverages GNN for vulnerability detection.
We use Oyente, Slither, sFuzz and Confuzzius integrated by
SmartBugs [56] as baselines to compare with these three tools.

B. Experimental Problems

We design experiments to assess the tools’ precision, recall,
and efficiency in vulnerability detection. These experiments
aim to answer the following questions:
• Recall and Precision. How accurate and comprehensive
are the AI-powered smart contract security analysis tools in
identifying vulnerabilities compared to traditional methods?
• Efficiency. Do AI technology approaches enhance the speed

of smart contract security analysis?
• Utility. What is the utility of AI-powered smart contract

security analysis tools?
By addressing these questions, we can gain valuable in-

sights into the effectiveness and practicality of integrating AI
technology into smart contract security analysis.

C. Metrics

To quantitatively assess the performance of the selected
tools, we employ several metrics:

1) Recall and Precision: We use the confusion matrix
parameters True Positive (TP), False Positive (FP), True
Negative (TN), and False Negative (FN) to calculate precision
(TP/(TP + FP)) and recall (TP/(TP + FN)). Precision
measures the proportion of TP vulnerabilities among all de-
tected vulnerabilities, while Recall represents the percentage
of actual vulnerabilities successfully identified by the tool.
Additionally, we introduce the Analysis Failure (AF) metric
to gauge the success rate of smart contract security analysis
by each tool. AF accounts for instances where the tool fails
to complete the analysis process.

2) Efficiency: To evaluate the efficiency of these three tools,
we introduce True Positive Time (TPT), which represents the
average amount of time taken for a tool to identify a TP case.
Thus, we have TPT = T/TP , where T is the total analysis
time, and TP is the number of true positives discovered. We
also calculate the mean analysis time (MAT) for each contract
as MAT = T/n, where T is the total analysis time, and n is
the number of analyzed contracts.

D. Vulnerability Selection

We focus on the tools’ performance in detecting reentrancy
vulnerabilities for two reasons. First, The types of supported

6

TABLE IV
PRECISION AND RECALL OF AI-POWERED SMART CONTRACT SECURITY ANALYSIS TOOLS COMPARING WITH SOTA IN TRADITIONAL TOOLS

Tool Dataset 1 (size = 41) Dataset 2 (size = 653)

AF TP TN FP FN Recall AF TP TN FP FN Recall Precison

GURU 11 30 0 0 0 100.00% - - - - - - -
DLVA 0 13 0 0 28 31.71% 22 13 229 361 28 31.71% 3.48%
xFuzz 8 18 0 0 15 54.55% 463 18 155 2 15 54.55% 90.00%
Slither 5 31 0 0 5 86.11% 39 31 494 84 5 86.11% 26.96%
Oyente 5 28 0 0 8 77.78% 39 28 575 3 8 77.78% 90.32%
sFuzz 5 18 0 0 18 50.00% 39 18 574 4 18 50.00% 81.82%
Confuzzius 5 22 0 0 14 61.11% 39 22 577 1 14 61.11% 95.65%

vulnerabilities vary among the tools, and reentrancy can be
used as a standardized metric for one of the most common
smart contract vulnerabilities. Second, reentrancy vulnerabili-
ties have proven their impact in the real world, whereas many
other vulnerabilities exist in theory.

E. Dataset Collection

There are two challenges in constructing evaluation datasets.
The first is caused by tool constraints. For example, GURU
only allows manual data entry via its Web GUI interface,
significantly restricting the number of evaluated smart con-
tracts. Furthermore, different tools have varying input for-
mat requirements, resulting in huge complexity in dataset
preparation. Second, our evaluation should reflect the tools’
performance in a production environment. Thus, we select 41
smart contract instances with reentrancy vulnerabilities from
the human-validated ReentrancyStudy-Data [57] repository.

We organize three Datasets. Dataset 1 includes all 41 TP
cases, specifically for testing GURU, which does not support
batch analysis. Dataset 2 comprises a broader selection of 653
contracts, including both TP and TN cases, allowing for a
large-scale evaluation with tools like DLVA and baselines1.
Dataset 3 consists of real-world smart contracts from 5
reentrancy events from 2022 to 2024 to evaluate the tools’
utility in real DeFi applications. By tailoring the dataset to
the capabilities of the analysis tools, we ensure a robust and
fair evaluation while maintaining high standards for evaluating
research objectives.

F. Recall and Precision

We compare three tools (i.e., GURU, DLVA and xFuzz) with
four traditional tools on dataset 1 and dataset 2 regarding
precision and recall metrics to evaluate their performance
comprehensively. The results are shown in Table IV.

Dataset 1 contains 41 contracts, GURU demonstrates the
best performance, with a recall of 100%, while the recall of
other tools ranges between 31.71% and 86.11%. This result
indicates that GURU has excellent vulnerability detection
capabilities on small datasets. However, we cannot assess its

1We download all the bytecodes of collected smart contracts through
Etherscan and classify smart contracts based on their bytecode size.

TABLE V
EFFICIENCY METRICS FOR SIX SECURITY ANALYSIS TOOLS IN THE CASE
OF DATASET 2. MCAT STANDS FOR MEAN CONTRACT ANALYSIS TIME,

I.E. THE AVERAGE TIME REQUIRED TO ANALYSE A SMART CONTRACT

Tool Dataset 2 (size=653)

Duration (sec) TP # of Contracts TPT (sec) MAT (sec)

DLVA 540 13 631 41.54 0.86
xFuzz 15210 18 190 845.00 80.05
Slither 3771 31 614 121.65 6.14
Oyente 44099 28 614 1,574.96 71.82
Confuzzius 197505 22 614 8,977.50 321.67
sFuzz 73619 18 614 4,089.94 119.90

performance on larger datasets due to the lack of data for
GURU on dataset 2.

Dataset 2 consists of 653 contracts, allowing for a more
comprehensive examination of the performance of each tool.
On this dataset, Confuzzius ranks first with a precision of
95.65%, closely followed by Oyente with a precision of
90.32%. Among the AI-powered tools, xFuzz performs best,
achieving a precision of 90.00%, only slightly lower than
Oyente. This suggests that xFuzz can control false positives
nearly as well as top traditional tools. In contrast, DLVA’s
precision was only 3.48%, significantly lagging behind the
other tools. xFuzz, while demonstrating precision comparable
to top traditional tools at 90.00%, had significant analysis
failures (463) on dataset 2 due to its requirement for a specific
smart contract compiler version, limiting its applicability. By
contrast, traditional tools like Confuzzius outperform in preci-
sion on dataset 2 at 95.65%, indicating strong FP control, with
Slither notes for high recall on dataset 1 but lower precision
on dataset 2. Oyente and sFuzz had balanced precision but
required recall improvements.

Overall, this assessment indicates that the existing AI-
based smart contract vulnerability detection tools have mixed
performance in terms of precision and recall and have yet to be
able to surpass traditional tools completely. However, xFuzz
has shown the potential of AI tools, with its precision already
approaching the level of top traditional tools.

G. Efficiency

Table V shows the efficiency results of these tools. DLVA,
performs poorly in the recall and precision experiment, how-

7

ever, demonstrates exceptional performance in execution ef-
ficiency. It has the lowest TPT of 41.54 seconds and MAT
of 0.86 seconds. These results indicate that DLVA is quick
and efficient in identifying real vulnerabilities. One reason for
DLVA’s high efficiency is its ML-based design philosophy of
directly identifying smart contract vulnerabilities.

Confuzzius performs the worst on both indicators, with a
TPT of 8,977.50 seconds and an MAT of 321.67 seconds,
far exceeding the other tools. One reason is that Confuzzius,
as a fuzz testing tool that combines symbolic execution,
involves complex or computationally intensive analysis over-
head. Oyente and sFuzz perform poorly on TPT, with 1,574.96
seconds and 4,089.94 seconds, respectively. The efficiency
issues are mainly caused by more in-depth data-flow analysis
when dealing with certain types of smart contracts, which
consumes more time when uncovering real vulnerabilities.

Slither displays a balanced efficiency with a moderate TPT
of 121.65 seconds and a lower MAT of 6.14 seconds. In
contrast, even though xFuzz performs poorly on the MAT with
80.05 seconds, its TPT of 845.00 seconds is much lower than
that of Confuzzius and sFuzz. This may benefit from the path
filtering algorithm that xFuzz integrates with AI technology,
reducing irrelevant path exploration during the analysis.

H. Utility
As shown in Table VI, both GURU and DLVA correctly

detect 3 vulnerabilities in the 5 DeFi applications, and the
detection results of these two tools only have 1 overlap case,
which suggests that the different AI-powered Tools may be
mutually beneficial.

However, xFuzz performs relatively poorly in this evaluation
and does not successfully detect any vulnerability. The CFG
module of xFuzz cannot handle the remaining 4 smart con-
tracts2 except for VOLTAGE, making the fuzz testing phase
impossible.

The result indicates that DLVA and GURU have greater
utility in detecting vulnerabilities in real DeFi applications
because they show ideal scalability. Although xFuzz shows
excellent performance on dataset 1 and dataset 2, its reliance
on richer code features limits its utility when dealing with
higher complexity real-world DeFi applications.

I. Limitation Identification
We identify some limitations and challenges of evolution,

reflecting the shortcomings of the smart contract’s current AI-
powered security analysis. We analyze these limitations into
four main types, as shown in Table VII.

The Special Input Form Requirements. DLVA requires users
to provide the blockchain address of the smart contract and
the corresponding bytecode as input, increasing analysts’ data
preparation workload and limiting the tool’s flexibility.

The Exception Handling Defects. Although DLVA can detect
and report exceptional inputs, it cannot effectively isolate

2Specifically, LENDF.ME’s analysis times out during the CFG construction
process. In contrast, the remaining 3 smart contracts seem to be due to an
exception within the CFG module.

exceptional data from the normal analysis process, interrupting
the entire batch analysis process once an exception occurs.
This will become a bottleneck when facing large-scale hetero-
geneous data.

The Limited Ability for Large-scale Analysis. GURU, as a
web GUI-based tool, currently lacks a command-line interface
for efficient batch process. As a result, it is difficult to apply
it to large-scale security analysis of smart contracts.

The Lack of Formatted Output Options. Although xFuzz
provides intuitive command-line output for users, unfortu-
nately, it does not offer formatted output options, which brings
certain difficulties to subsequent data statistics and analysis.

To sum up, the aforementioned limitations reflect that the
current AI-powered security analysis tools still have large
room for practicality, usability, and robustness improvement.
Analyzing these shortcomings can provide valuable guidance
for optimizing and improving subsequent tools.

J. Summary

The evaluation results of xFuzz, DLVA, and GURU reveal
the diverse strengths and weaknesses of AI-powered smart
contract security analysis. xFuzz showcases the promise of in-
tegrating AI technology with traditional smart contract security
analysis. It achieves a precision level comparable to top tradi-
tional tools. This suggests that AI technology can effectively
guide path exploration, leading to more accurate vulnerability
detection. However, xFuzz’s efficiency, particularly in MAT,
leaves much to be desired. Its reliance on a specific compiler
version limits flexibility and utility to diverse smart contract
environments and real-world DeFi applications.

DLVA, despite its poor precision and recall, exhibits re-
markable efficiency in both TPT and MAT. This indicates that
its end-to-end classification method, which directly identifies
vulnerabilities in the smart contract, has the potential to
streamline the analysis process significantly. GURU’s per-
formance on the small dataset suggests that its advanced
GNN architecture has the potential to capture intricate patterns
and dependencies in smart contract code, enabling effective
vulnerability detection.

VI. RESEARCH OPPORTUNITIES

The above investigation and evaluation indicate the oppor-
tunities for AI-powered smart contract security analysis to
promote analysis generalization and interpretability.

Generalization. Generalizing vulnerability detection models
across diverse and evolving smart contract ecosystems is a key
requirement mentioned by many prior research. The analysis
generalization enables users to extend and migrate a solution
for one security issue to another. To achieve this, there are two
directions for developing stable models:
• Expanding Training Datasets. Large and diverse smart con-

tract datasets are crucial for models to learn more patterns.
Thus, various information, such as source code, bytecode,
high-level semantic information, etc., has to be collected for
model training.

8

TABLE VI
UTILITY EVALUATION RESULTS FOR THREE TOOLS FOR 6 REENTRANCY EVENTS FROM 2021 TO 2024.

DeFi Application Attack Date Vulnerable Contract Address Platform Solc Version xFuzz GURU DLVA

LENDF.ME 2020-04 0x0eee3e3828a45f7601d5f54bf49... Ethereum 0.4.25 - - Ë
VOLTAGE 2022-03 0xa722c13135930332eb3d749b2f0... Fuse 0.4.24 - Ë -
SUSHIBAR 2022-10 0x2321537fd8ef4644bacdceec54e... Ethereum 0.8.16 - Ë Ë
XSURGE 2021-08 0xe1e1aa58983f6b8ee8e4ecd206c... Binance 0.8.5 - Ë -
NEBULA 2024-01 0x5499178919c79086fd580d6c5f3... Ethereum 0.8.18 - - Ë

TABLE VII
LIST OF TOOLS LIMITATION THAT APPEAR IN THE EVALUATION PROCESS

Limitation Type Tool

GURU DLVA xFuzz

Special input form requirements - Ë -
Exception handling defects - Ë -
Limited ability for large-scale analysis Ë - -
Lack of formatted output options - - Ë

• Improving Supervised Learning Techniques. To overcome
the problem of large discrepancies in data labeling between
different research in handling smart contract data, subsequent
research can focus on weakly supervised learning techniques.
Research into weakly supervised methods can provide ways
to leverage large amounts of unlabeled data, thereby enhanc-
ing the model’s ability to generalize from limited examples.

Interpretability. AI-powered smart contract security analysis
aims to help developers create safer smart contracts. Therefore,
creating developer-friendly tools with better interpretability is
important. In other words, AI-powered smart contract security
analysis should present detected security issues in a more
accessible way for developers.

VII. CONCLUSION

In this paper, we comprehensively study existing AI-
powered smart contract security analysis from 2018 to 2024.
We analyze 27 representative studies and conduct empirical
evaluations using three open-source tools. We find that these
tools still need improvement in precision, tool usability, and
practicality compared with traditional smart contract security
analysis tools. There are several directions to extend this work.
First, the scope of the literature search can be extended to
cover more databases, conference papers, and industry reports.
Second, text mining and knowledge graph technologies can
be utilized to automate the assessment of literature quality,
reducing bias caused by subjective judgment.

REFERENCES

[1] L. Zhou, X. Xiong, J. Ernstberger, S. Chaliasos, Z. Wang, Y. Wang,
K. Qin, R. Wattenhofer, D. Song, and A. Gervais, “SoK: Decentralized
Finance (DeFi) Attacks,” in the 44th IEEE Symposium on Security and
Privacy (SP), 2023, pp. 2444–2461.

[2] S. E. Chang, Y.-C. Chen, and M.-F. Lu, “Supply chain re-engineering
using blockchain technology: A case of smart contract based tracking
process,” Technological Forecasting and Social Change, vol. 144, pp.
1–11, 2019.

[3] D. Sheridan, J. Harris, F. Wear, J. Cowell Jr, E. Wong, and A. Yazdinejad,
“Web3 challenges and opportunities for the market,” arXiv preprint
arXiv:2209.02446, 2022.

[4] B. Sriman and S. G. Kumar, “Decentralized finance (DeFi): the future
of finance and DeFi application for Ethereum blockchain based finance
market,” in the 2nd International Conference on Advances in Computing,
Communication and Applied Informatics (ACCAI). IEEE, 2022, pp. 1–
9.

[5] W. W. Ding, X. Liang, J. Hou, G. Wang, Y. Yuan, J. Li, and F.-Y.
Wang, “Parallel governance for decentralized autonomous organizations
enabled by blockchain and smart contracts,” in the 1st IEEE Interna-
tional Conference on Digital Twins and Parallel Intelligence (DTPI).
IEEE, 2021, pp. 1–4.

[6] I. Nikolić, A. Kolluri, I. Sergey, P. Saxena, and A. Hobor, “Finding
the greedy, prodigal, and suicidal contracts at scale,” in Proceedings of
the 34th Annual Computer Security Applications Conference (ACSAC),
2018, pp. 653–663.

[7] J. Feist, G. Grieco, and A. Groce, “Slither: A static analysis framework
for smart contracts,” in the 2nd IEEE/ACM International Workshop on
Emerging Trends in Software Engineering for Blockchain (WETSEB).
IEEE, 2019, pp. 8–15.

[8] L. Luu, D.-H. Chu, H. Olickel, P. Saxena, and A. Hobor, “Making smart
contracts smarter,” in Proceedings of the 23rd ACM SIGSAC Conference
on Computer and Communications Security (CCS), 2016, pp. 254–269.

[9] C. F. Torres, J. Schütte, and R. State, “Osiris: Hunting for integer bugs in
Ethereum smart contracts,” in Proceedings of the 34th Annual Computer
Security Applications Conference (ACSAC), 2018, pp. 664–676.

[10] T. D. Nguyen, L. H. Pham, J. Sun, Y. Lin, and Q. T. Minh, “sFuzz: An
efficient adaptive fuzzer for solidity smart contracts,” in Proceedings of
the 42nd IEEE/ACM International Conference on Software Engineering
(ICSE), 2020, pp. 778–788.

[11] C. F. Torres, A. K. Iannillo, A. Gervais, and R. State, “Confuzzius: A
data dependency-aware hybrid fuzzer for smart contracts,” in the 42nd
IEEE Symposium on Security and Privacy (SP). IEEE, 2021, pp. 103–
119.

[12] M. Zhang, X. Zhang, Y. Zhang, and Z. Lin, “TXSPECTOR: Uncovering
attacks in Ethereum from transactions,” in the 29th USENIX Security
Symposium (USENIX Security), 2020, pp. 2775–2792.

[13] L. Su, X. Shen, X. Du, X. Liao, X. Wang, L. Xing, and B. Liu, “Evil
under the sun: Understanding and discovering attacks on Ethereum
decentralized applications,” in the 30th USENIX Security Symposium
(USENIX Security), 2021, pp. 1307–1324.

[14] W. J.-W. Tann, X. J. Han, S. S. Gupta, and Y.-S. Ong, “Towards safer
smart contracts: A sequence learning approach to detecting security
threats,” arXiv preprint arXiv:1811.06632, 2018.

[15] S. J. Wang, K. Pei, and J. Yang, “SMARTINV: Multimodal Learning
for Smart Contract Invariant Inference,” in the 45th IEEE Symposium on
Security and Privacy (SP). IEEE Computer Society, 2024, pp. 126–126.

[16] Y. Gai, L. Zhou, K. Qin, D. Song, and A. Gervais, “Blockchain Large
Language Models,” arXiv preprint arXiv:2304.12749, 2023.

[17] Y. Xue, J. Ye, W. Zhang, J. Sun, L. Ma, H. Wang, and J. Zhao, “xFuzz:
Machine learning guided cross-contract fuzzing,” IEEE Transactions on
Dependable and Secure Computing, 2022.

[18] T. Abdelaziz and A. Hobor, “Smart learning to find dumb contracts,”
in the 32nd USENIX Security Symposium (USENIX Security), 2023, pp.
1775–1792.

[19] H. H. Nguyen, N.-M. Nguyen, H.-P. Doan, Z. Ahmadi, T.-N. Doan, and
L. Jiang, “MANDO-GURU: Vulnerability Detection for Smart Contract
Source Code By Heterogeneous Graph Embeddings,” in Proceedings
of the 30th ACM Joint European Software Engineering Conference and

9

Symposium on the Foundations of Software Engineering, ser. ESEC/FSE
2022, New York, NY, USA, 11 2022, pp. 1736–1740.

[20] V. Buterin et al., “Ethereum white paper,” GitHub repository, vol. 1, pp.
22–23, 2013.

[21] S. Bragagnolo, H. Rocha, M. Denker, and S. Ducasse, “SmartInspect:
Solidity smart contract inspector,” in the 1st International workshop on
blockchain oriented software engineering (IWBOSE). IEEE, 2018, pp.
9–18.

[22] S. Cui, G. Zhao, Y. Gao, T. Tavu, and J. Huang, “Vrust: Automated
vulnerability detection for Solana smart contracts,” in the 2022 ACM
SIGSAC Conference on Computer and Communications Security, 2022,
pp. 639–652.

[23] J. Poon and V. Buterin, “Plasma: Scalable autonomous smart contracts,”
White paper, pp. 1–47, 2017.

[24] V. Buterin, “Chain interoperability,” R3 research paper, vol. 9, pp. 1–25,
2016.

[25] C. Liu, H. Liu, Z. Cao, Z. Chen, B. Chen, and B. Roscoe, “Reguard:
Finding reentrancy bugs in smart contracts,” in Proceedings of the 40th
IEEE/ACM International Conference on Software Engineering (ICSE):
Companion Proceeedings, 2018, pp. 65–68.

[26] Y. Xue, M. Ma, Y. Lin, Y. Sui, J. Ye, and T. Peng, “Cross-contract static
analysis for detecting practical reentrancy vulnerabilities in smart con-
tracts,” in Proceedings of the 35th IEEE/ACM International Conference
on Automated Software Engineering (ASE), 2020, pp. 1029–1040.

[27] Y. Chinen, N. Yanai, J. P. Cruz, and S. Okamura, “Ra: Hunting for Re-
entrancy attacks in Ethereum smart contracts via static analysis,” in the
3rd IEEE International Conference on Blockchain (Blockchain). IEEE,
2020, pp. 327–336.

[28] A. Ghaleb, J. Rubin, and K. Pattabiraman, “Achecker: Statically detect-
ing smart contract access control vulnerabilities,” in the 45th IEEE/ACM
International Conference on Software Engineering (ICSE). IEEE, 2023,
pp. 945–956.

[29] Y. Fang, D. Wu, X. Yi, S. Wang, Y. Chen, M. Chen, Y. Liu, and L. Jiang,
“Beyond “Protected” and “Private”: An Empirical Security Analysis of
Custom Function Modifiers in Smart Contracts,” in Proceedings of the
32nd ACM SIGSOFT International Symposium on Software Testing and
Analysis (ISSTA), 2023, pp. 1157–1168.

[30] D. Perez and B. Livshits, “Smart contract vulnerabilities: Vulnerable
does not imply exploited,” in the 30th USENIX Security Symposium
(USENIX Security), 2021, pp. 1325–1341.

[31] P. Praitheeshan, L. Pan, X. Zheng, A. Jolfaei, and R. Doss, “Solguard:
Preventing external call issues in smart contract-based multi-agent
robotic systems,” Information Sciences, vol. 579, pp. 150–166, 2021.

[32] N. F. Samreen and M. H. Alalfi, “Smartscan: an approach to detect
denial of service vulnerability in Ethereum smart contracts,” in the 4th
IEEE/ACM International Workshop on Emerging Trends in Software
Engineering for Blockchain (WETSEB). IEEE, 2021, pp. 17–26.

[33] P. Qian, Z. Liu, Q. He, B. Huang, D. Tian, and X. Wang, “Smart
contract vulnerability detection technique: A survey,” arXiv preprint
arXiv:2209.05872, 2022.

[34] T. Hu, Z. Li, B. Li, and Q. Bao, “Contractual security and privacy
security of smart contract: a system mapping study,” Chinese Journal
of Computers, vol. 44, no. 12, pp. 2485–2514, 2021.

[35] W. Chen, Z. Zheng, J. Cui, E. Ngai, P. Zheng, and Y. Zhou, “Detecting
Ponzi schemes on Ethereum: Towards healthier blockchain technology,”
in Proceedings of the 27th World Wide Web Conference (WWW), 2018,
pp. 1409–1418.

[36] H. Liu, C. Liu, W. Zhao, Y. Jiang, and J. Sun, “S-gram: towards
semantic-aware security auditing for Ethereum smart contracts,” in Pro-
ceedings of the 33rd IEEE/ACM International Conference on Automated
Software Engineering (ASE), 2018, pp. 814–819.

[37] W. Wang, J. Song, G. Xu, Y. Li, H. Wang, and C. Su, “Contractward: Au-
tomated vulnerability detection models for Ethereum smart contracts,”
IEEE Transactions on Network Science and Engineering, vol. 8, no. 2,
pp. 1133–1144, 2020.

[38] Z. Gao, L. Jiang, X. Xia, D. Lo, and J. Grundy, “Checking smart con-
tracts with structural code embedding,” IEEE Transactions on Software
Engineering, vol. 47, no. 12, pp. 2874–2891, 2020.

[39] Y. Zhuang, Z. Liu, P. Qian, Q. Liu, X. Wang, and Q. He, “Smart contract
vulnerability detection using graph neural networks,” in Proceedings of
the 29th International Conference on International Joint Conferences
on Artificial Intelligence (IJCAI), 2021, pp. 3283–3290.

[40] Z. Liu, P. Qian, X. Wang, Y. Zhuang, L. Qiu, and X. Wang, “Com-
bining graph neural networks with expert knowledge for smart contract

vulnerability detection,” IEEE Transactions on Knowledge and Data
Engineering, vol. 35, no. 2, pp. 1296–1310, 2021.

[41] S. So, S. Hong, and H. Oh, “SmarTest: Effectively hunting vulnerable
transaction sequences in smart contracts through language Model-
Guided symbolic execution,” in the 30th USENIX Security Symposium
(USENIX Security), 2021, pp. 1361–1378.

[42] J. Huang, S. Han, W. You, W. Shi, B. Liang, J. Wu, and Y. Wu, “Hunting
vulnerable smart contracts via graph embedding based bytecode match-
ing,” IEEE Transactions on Information Forensics and Security, vol. 16,
pp. 2144–2156, 2021.

[43] N. He, R. Zhang, H. Wang, L. Wu, X. Luo, Y. Guo, T. Yu, and X. Jiang,
“EOSAFE: Security analysis of EOSIO smart contracts,” in the 30th
USENIX Security Symposium (USENIX Security), 2021, pp. 1271–1288.

[44] X. Hu, Z. Gao, X. Xia, D. Lo, and X. Yang, “Automating user
notice generation for smart contract functions,” in the 36th IEEE/ACM
International Conference on Automated Software Engineering (ASE).
IEEE, 2021, pp. 5–17.

[45] S. Fan, S. Fu, H. Xu, and X. Cheng, “Al-SPSD: Anti-leakage smart
Ponzi schemes detection in blockchain,” Information Processing &
Management, vol. 58, no. 4, p. 102587, 2021.

[46] J. Liu, Y. Chen, B. Tan, I. Dillig, and Y. Feng, “Learning contract
invariants using reinforcement learning,” in Proceedings of the 37th
IEEE/ACM International Conference on Automated Software Engineer-
ing (ASE), 2022, pp. 1–11.

[47] J. Su, H.-N. Dai, L. Zhao, Z. Zheng, and X. Luo, “Effectively generating
vulnerable transaction sequences in smart contracts with reinforcement
learning-guided fuzzing,” in Proceedings of the 37th IEEE/ACM Inter-
national Conference on Automated Software Engineering (ASE), 2022,
pp. 1–12.

[48] Y. Pan, Z. Xu, L. T. Li, Y. Yang, and M. Zhang, “Automated generation
of security-centric descriptions for smart contract bytecode,” in Proceed-
ings of the 32nd ACM SIGSOFT International Symposium on Software
Testing and Analysis (ISSTA), 2023, pp. 1244–1256.

[49] W. Jie, Q. Chen, J. Wang, A. S. V. Koe, J. Li, P. Huang, Y. Wu,
and Y. Wang, “A novel extended multimodal ai framework towards
vulnerability detection in smart contracts,” Information Sciences, vol.
636, p. 118907, 2023.

[50] Z. Zheng, W. Chen, Z. Zhong, Z. Chen, and Y. Lu, “Securing the
Ethereum from smart Ponzi schemes: Identification using static fea-
tures,” ACM Transactions on Software Engineering and Methodology,
vol. 32, no. 5, pp. 1–28, 2023.

[51] A. Storhaug, J. Li, and T. Hu, “Efficient avoidance of vulnerabilities
in auto-completed smart contract code using vulnerability-constrained
decoding,” in the 34th IEEE International Symposium on Software
Reliability Engineering (ISSRE). IEEE, 2023, pp. 683–693.

[52] S. Hu, T. Huang, F. İlhan, S. F. Tekin, and L. Liu, “Large Language
Model-powered smart contract vulnerability detection: New perspec-
tives,” arXiv preprint arXiv:2310.01152, 2023.

[53] C. Chen, J. Su, J. Chen, Y. Wang, T. Bi, Y. Wang, X. Lin, T. Chen, and
Z. Zheng, “When ChatGPT meets smart contract vulnerability detection:
How far are we?” arXiv preprint arXiv:2309.05520, 2023.

[54] Y. Sun, D. Wu, Y. Xue, H. Liu, H. Wang, Z. Xu, X. Xie, and Y. Liu,
“When GPT meets program analysis: Towards intelligent detection
of smart contract logic vulnerabilities in GPTScan,” arXiv preprint
arXiv:2308.03314, 2023.

[55] R. Liang, J. Chen, K. He, Y. Wu, G. Deng, R. Du, and C. Wu,
“PonziGuard: Detecting Ponzi Schemes on Ethereum with Contract Run-
time Behavior Graph (CRBG),” in Proceedings of the 46th IEEE/ACM
International Conference on Software Engineering (ICSE), 2024, pp.
1–12.

[56] M. Di Angelo, T. Durieux, J. F. Ferreira, and G. Salzer, “Smartbugs
2.0: An execution framework for weakness detection in Ethereum
smart contracts,” in the 38th IEEE/ACM International Conference on
Automated Software Engineering (ASE). IEEE, 2023, pp. 2102–2105.

[57] Z. Zheng, N. Zhang, J. Su, Z. Zhong, M. Ye, and J. Chen, “Turn
the rudder: A beacon of reentrancy detection for smart contracts on
Ethereum,” in the 45th IEEE/ACM International Conference on Software
Engineering (ICSE). IEEE, 2023, pp. 295–306.

10

