
Cross-Chain Bridges: Attack Taxonomy, Defenses, and Open
Problems

Mengya Zhang
The Ohio State University

Columbus, OH, United States
zhang.9407@osu.edu

Xiaokuan Zhang
George Mason University
Fairfax, VA, United States

xiaokuan@gmu.edu

Yinqian Zhang∗
Southern University of Science and Technology

Shenzhen, China
yinqianz@acm.org

Zhiqiang Lin
The Ohio State University

Columbus, OH, United States
zlin@cse.ohio-state.edu

ABSTRACT
Cross-chain bridges play a pivotal role in enabling token and data
exchanges between disparate blockchains. Despite their growing
popularity, these bridges are still in their infancy and have been the
target of numerous attacks, leading to significant financial losses.
Current literature lacks a comprehensive examination of the se-
curity landscape surrounding cross-chain bridges, with existing
incident reports dispersed and unconsolidated. Addressing this gap,
this paper presents a systematic investigation into the security chal-
lenges facing cross-chain bridges. We begin by outlining the key
features of current cross-chain bridges, including their applications,
verification processes, communication models, and a novel three-
fold categorization. From this foundation, we identify 12 potential
attack vectors and develop a taxonomy of cross-chain bridge attacks
observed over the past three years, classifying them into 10 unique
categories. Each category is detailed with corresponding vulnerabil-
ities, illustrated through Solidity code examples. Furthermore, we
explore existing defense mechanisms, propose potential security so-
lutions, and highlight crucial open questions and avenues for future
research. This paper aims to illuminate the path towards more se-
cure cross-chain bridge designs and stimulate further investigation
into fortifying the cross-chain bridge ecosystem.

CCS CONCEPTS
• Security and privacy→ Distributed systems security.

KEYWORDS
Cross-chain Bridge, Attack Surface, Defense
ACM Reference Format:
Mengya Zhang, Xiaokuan Zhang, Yinqian Zhang, and Zhiqiang Lin. 2024.
Cross-Chain Bridges: Attack Taxonomy, Defenses, and Open Problems. In

∗Yinqian Zhang is affiliated with the Research Institute of Trustworthy Autonomous
Systems (RITAS) and the Department of Computer Science and Engineering at South-
ern University of Science and Technology.

Permission to make digital or hard copies of all or part of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full citation
on the first page. Copyrights for third-party components of this work must be honored.
For all other uses, contact the owner/author(s).
RAID 2024, September 30–October 02, 2024, Padua, Italy
© 2024 Copyright held by the owner/author(s).
ACM ISBN 979-8-4007-0959-3/24/09
https://doi.org/10.1145/3678890.3678894

The 27th International Symposium on Research in Attacks, Intrusions and
Defenses (RAID 2024), September 30–October 02, 2024, Padua, Italy. ACM,
New York, NY, USA, 19 pages. https://doi.org/10.1145/3678890.3678894

1 INTRODUCTION
In recent years, blockchain applications have surged in popularity,
enabling users not just token transfers but also leveraging smart
contracts for computations. Smart contracts are self-executing pro-
grams commonly found in blockchains like Ethereum [65] and
serve as backends for Decentralized Applications (DApps). Dap-
pRadar [56] reports that all DApps combined had 5.3 million daily
Unique Active Wallets (dUAW) as of Feb 2024. Despite the popu-
larity, blockchain applications are restricted to a single blockchain
domain; blockchains cannot communicate or share data since they
are isolated from each other. For instance, Ethereum’s native token,
ETH, restricted to Ethereum, often requires users to sell it for fiat
currency before trading it for tokens on other blockchains. These
steps are time-consuming, complex, and prone to risks.

To meet the increasing demand for conducting cross-chain trans-
actions, cross-chain bridges are created to facilitate communica-
tions between different blockchains. For example, AnySwap [17]
is a cross-chain bridging protocol that allows users to move assets
between various blockchains such as Solana [28] and Ethereum;
ChainBridge [38] supports bridging between EVM and Substrate-
based chains, where Substrate is a framework for creating custom
blockchains [128]. As of April 2024, there are around 80 cross-chain
bridges [71], which support various user demands.

Due to the growing popularity and Total Value Locked (TVL)
of cross-chain bridges, bridges increasingly attract the attention
of attackers. For instance, the first reported attack on bridges was
the ChainSwap attack [110] on Jul-10-2021, resulting in a loss of $8
million. For another instance, the attacker stole around $190 million
worth of tokens in the Nomad hack [83] that occurred on Aug-02-
2022. As of April 2024, cross-chain bridges have been compromised
for approximately $2.83 billion, accounting for nearly 36.42% of the
total blockchain value hacked, as reported by DefiLlama [60].

Despite the prosperity of cross-chain bridges and the severity of
attacks, research on the security of cross-chain bridges is still in the
early stage. Few recent works [4, 8, 147] focus on detecting existing
bridge attacks, while most existing works focus on measuring the
interoperability between blockchains [9, 25, 142], summarizing
current cross-chain protocols [145], or proposing new protocols [98,

298

https://doi.org/10.1145/3678890.3678894
https://doi.org/10.1145/3678890.3678894
http://crossmark.crossref.org/dialog/?doi=10.1145%2F3678890.3678894&domain=pdf&date_stamp=2024-09-30

RAID 2024, September 30–October 02, 2024, Padua, Italy Mengya Zhang, Xiaokuan Zhang, Yinqian Zhang, and Zhiqiang Lin

130, 135, 143]. Lee et al.[97] examine eight attack surfaces across
bridge components using eight attacks. Additionally, Belchior et
al.[8] define 45 cross-chain vulnerabilities and analyze 14 bridge
hacks. However, they did not provide a holistic view of the security
issues on cross-chain bridges, such as a systematic characterization
of cross-chain bridges, their vulnerabilities, and all reported attacks.

To clear the fog that surrounds the dark side of cross-chain
bridges, this paper conducts a systematic study to fill the knowledge
gap. First, we present the characteristics of bridges by introducing
four types of verification methods (external verification, local verifi-
cation, optimistic verification, and native verification), two types of
communication models (lock-and-mint; burn-and-release model and
liquidity-pool-based model), three categorization methodologies
(trust mechanism, layer connection, and functionalities), and usages
(tokens transfer, governance, lending and borrowing, and staking).
We also summarize 30 popular cross-chain bridges with describing
their characteristics. We find most bridges use the external verifi-
cation as their underlying protocol and deploy the lock-and-mint;
burn-and-release communication model. Moreover, based on these
characteristics, we examine the workflow of cross-chain bridges
and identify 12 potential pitfalls that attackers might exploit.

Next, we provide a taxonomy of existing bridge attacks by investi-
gating all 35 bridge attacks from April 2021 to April 2024 [35, 59, 87]
into 10 distinct types of vulnerabilities. The fundamental vulnera-
bilities that led to the attacks are categorized into four categories:
permission issue (PI), logic issue (LI), event issue (EI), and front-end
issues (FI). For each category of attacks, we give concrete examples
in Solidity code. Furthermore, we summarize existing defenses to
these attacks and give recommendations to bridge developers for
both on-chain backends (i.e., smart contracts) and off-chain servers1
to help them build more secure services. Finally, we discuss open
problems in the cross-chain bridge ecosystem, and propose poten-
tial directions for future research.
Contributions. In short, we make the following contributions:
• We give an overview of characteristics of cross-chain bridges,
including verification mechanisms, communication models, and
classifications based on different properties, including trust
mechanism, layer connection, and functionalities (Sec. 4);

• We identify 12 potential attack surfaces based on the character-
istics of cross-chain bridges (Sec. 5);

• We provide a taxonomy on all the reported cross-chain bridge
attacks (Sec. 6);

• We summarize the existing defenses of reported bridge attacks
and provide recommendations to developers (Sec. 7);

• We discuss open questions and future works on cross-chain
bridge research (Sec. 8).

Scope.Our primary focus lies in the study of bridges between public
blockchains, to 1) summarize the characteristics of existing cross-
chain bridges, 2) identify potential attack surfaces, 3) analyze all
existing bridge attacks happened in the wild, and 4) provide lessons
learned from these incidents. While we discuss defense mechanisms
in the paper, a systematic study on how to build mitigations or
detection tools is not the goal of this paper. A comprehensive study

1Cross-chain bridge server facilitates communication and coordination between dif-
ferent blockchains, ensuring that the assets are transferred securely and accurately.

of cross-chain protocols (e.g., [98, 130, 135, 143, 145]) is also out of
the scope.

2 BACKGROUND
Blockchain is a decentralized ledger built on top of a Peer-to-peer
(P2P) network [50] consisting of distributed peers. A blockchain
can be considered as a continuously growing list of blocks. Each
block contains transactions that either transfer tokens in Bitcoin-
like blockchains or perform more complex operations based on the
computation logic in Ethereum-like blockchains.
Smart contracts were first invented in Ethereum. They are pro-
grams that are stored and automatically executed according to the
agreements between different parties [64], such as users and de-
velopers. Once smart contracts are deployed to blockchains, they
become immutable. Thus, bugs in smart contracts are hard to fix
due to their immutability. While smart contracts can suffer from
attacks, they have been the foundations of the Decentralized Fi-
nance ecosystem, and have been adopted to many widely used
blockchains, such as BNB [14] and Fantom [72].
Transactions are data structures recording cryptocurrency in-
formation in the blockchains, which are either calls to the smart
contracts or simple token transfers to the blockchain users [93].
Once transactions are mined to blockchains, the changes to the
blockchain will be permanent and cannot be reverted. Moreover,
a transaction normally needs gas fee to pay for its computation
cost. For example, Ethereum needs users to pay the transaction fee
using the native token ETH [63]. In particular, the fee consists of
gas used, i.e., the total units of the cost and gas price, i.e., the value
users would like to pay for every unit. Furthermore, the higher the
gas price is, the quicker a transaction usually is mined since miners
are motivated to maximize their profits.
Tokens are digital assets and a form of smart contracts that reside
on blockchains. Tokens have their own addresses; however, ETH,
the native cryptocurrency of Ethereum, is not considered a token.
Moreover, every user can create his/her own token by implement-
ing the smart contract standards required by blockchains, such as
ERC20 [62] and ERC721 [122] in Ethereum. Tokens can be mainly
classified into three categories:
• Fungible tokens are not unique, divisible, and interchangeable
tokens that represent some values (similar to fiat currency such
as USD). ERC20 tokens are one popular type of fungible tokens.

• Non-fungible tokens (NFTs) are non-divisible assets that are
unique to each other. ERC721 tokens are one type of NFTs.

• Wrapped tokens represent cryptocurrencies pegged to the
value of the related original tokens [46], including both fungible
and non-fungible tokens. For example,WETH is the wrapped
version of ETH.

DApps are decentralized applications relying on blockchains [12].
Compared with traditional applications (e.g., websites or mobile
apps), there is no difference in the frontends, but the backends
of DApps are usually composed of multiple smart contracts in
blockchains. In particular, cross-chain bridges are an increasingly
popular type of DApps.

299

Cross-Chain Bridges: Attack Taxonomy, Defenses, and Open Problems RAID 2024, September 30–October 02, 2024, Padua, Italy

Paper Research #Attack #Real-world #Vul Code Open
Focus Surface Attack Type Example? Problems?

Lee et al. [97] Bridge Component 8 8 8 No No
Augusto et al. [4] Interoperability 45 14 45 No No
This Paper Communication Model 11 31 10 Yes Yes

Table 1: Summary of comparison with related works.

Liquidity pools are the places that lock the tokens in smart con-
tracts [5]. Liquidity pools are designed to encourage users to provide
liquidity by depositing tokens to the pools. Such users are called liq-
uidity providers. Moreover, liquidity pools will distribute rewards
to liquidity providers in terms of crypto tokens, based on the liq-
uidity they have supplied. While liquidity pools facilitate token
exchanges, liquidity providers are exposed to impermanent losses
caused by the token price decrease.

3 RELATEDWORKS
In this section, we discuss related works that study bridge attacks.
Additional related works are discussed in Appendix A, including
blockchain interoperability, cross-chain protocols, atomic swaps,
and side chains. Different from all the existing works, our work
provides a systematization of attacks on cross-chain bridges, and
further discusses open problems and future directions.
Bridge attack systemization. As shown in Table 1, Lee et al. [97]
conducted an analysis of bridge attacks from four components,
including custodians, debt issuers, communicators, and token inter-
faces. They only summarized eight possible attack surfaces based
on eight real-world examples and discussed potential mitigation
strategies. Moreover, Augusto et al. [4] analyze 14 notable bridge
hacks. McCorry et al. [101] review bridge literature, detailing roles
and components, especially validating bridge contracts, but their
threat models are theoretical without real-world attacks. In contrast,
our research takes a different approach.We systematically proposed
12 potential attack surfaces, drawing from two widely used bridge
communication models. Our work offers a comprehensive taxon-
omy that encompasses reported 35 real-world cross-chain bridge
attacks from April 2021 to April 2024, which are classified into
10 vulnerability types. For each vulnerability, we provide source
code examples, an explanation of related real-world attacks, and
potential solutions. We also discuss open problems.
Bridge attack detection. Zhang et al. [147] introduce a tool to
uncover bridge attacks originating from transactions, and assess its
effectiveness across four cross-chain bridges. Notably, the tool iden-
tifies vulnerabilities in cross-chain bridges, encompassing issues
such as unrestricted deposit emissions, inconsistent event parsing,
and unauthorized unlocking—elements integral to our condensed
attack surface analysis. Belchior et al. [8] propose a cross-chain
model generator, aiding in the detection of outliers and malicious
behaviors. Our work primarily centers on categorizing real-world
attacks and their associated attack surfaces, as opposed to pre-
senting a methodology for their detection; we consider detection
mechanisms as potential avenues for future research.

4 CHARACTERIZING CROSS-CHAIN BRIDGES
In this section, we first examine the bridge usages. Second, we illus-
trate four types of verification mechanisms. Third, we introduce the

two prominent communication models in cross-chain bridges: lock-
and-mint; burn-and-release model and liquidity-pool-based model.
Furthermore, we categorize the bridges based on their trust mecha-
nism, layer connection, and functionalities. We also summarize 30
popular bridges with describing their characteristics in Table 2.

4.1 Bridge Usages
Bridges exchange data between multiple blockchains, including
messages and tokens. We observe that bridges primarily facilitate
cross-chain token transfers. We also describe other potential us-
ages, including governance, lending and borrowing, and staking
(see Appendix B for details).
Cross-chain token transfer. As shown in Fig. 1, A𝑆 can submit a
transaction TxLock in Ethereum to transfer 10.0 ETH to the bridge
account, and then the bridge submits the transaction TxMint to
transfer wrapped tokens (10.0WETH) to A𝐷 in BNB.

4.2 Verification Mechanisms
Each bridge utilizes a unique protocol for monitoring blockchains,
achieving consensus, and relaying messages. Cross-chain bridge
verification methods fall into four categories: external, optimistic,
local, and native verification [48].

4.2.1 External Verification. External Verification (EV) relies on a
single or set of external validators, who are responsible for veri-
fying the validity of cross-chain transactions. Bridges operating
under this categorization assume that most validators are honest,
and typically adopt multi-signature or multi-party computation
(MPC). With the multi-signature mechanism, a threshold is set for
the number of validators required to sign the transaction, and each
validator has a complete private key. In contrast, MPC requires the
validators to jointly generate a private key. Despite being simple to
implement and widely used, this mechanism is exposed to consider-
able risks if the external validators are not trusted or are hacked. For
instance, if the private keys of these validators are compromised,
the bridges may be taken over by attackers. We illustrate two pro-
tocols, including Chainlink’s cross-chain interoperability protocol
(CCIP) and an omnichain interoperability protocol (LayerZero) in
Appendix C.1.

4.2.2 Optimistic Verification. Optimistic Verification (OV) operates
on the assumption that a transaction is valid and initiates a chal-
lenge period to verify its accuracy. If the transaction is found to be
invalid during the challenge period, the transaction will be reversed,
and malicious actors will be penalized. However, bridges under this
categorization often have a longer latency due to the challenge
period. Moreover, such bridges require at least one honest watcher
to verify updates and detect fraudulent activity. We illustrate an
optimistic inter-chain communication protocol in Appendix C.2.

4.2.3 Local Verification. Local Verification (LV) requires only the
parties involved in the transaction to verify it, making it a two-
party verification mechanism that maintains the security of the
underlying blockchain. This mechanism inherits the security of
the underlying blockchain and is popularly used for atomic swaps,
which ensure transaction atomicity using Hash Time Lock Con-
tracts (HTLC). HTLC uses hashlock and timelock to lock assets

300

RAID 2024, September 30–October 02, 2024, Padua, Italy Mengya Zhang, Xiaokuan Zhang, Yinqian Zhang, and Zhiqiang Lin

Bridge Verification Comm. Model Classifications BlockchainsTrust Mechanism Layer Functionalities

Polygon Bridge External Lock-and-Mint Semi-Trustless L1 - L2 Chain-Specific Ethereum, Polygon
Arbitrum Bridge External Lock-and-Mint Trusted L1 - L2 Chain-Specific Ethereum, Arbitrum
Optimism Bridge External Lock-and-Mint Trusted L1 - L2 Chain-Specific Ethereum, Optimism

Portal Token Bridge External Lock-and-Mint Trusted L1 - L2 Chain-Specific 30 blockchains [22]
Orbit Bridge External Lock-and-Mint Trusted L1 - L2 Generalized 21 blockchains [20]

Rainbow Bridge Native Lock-and-Mint Trustless L1 - L1 Chain-Specific Ethereum, Near
xDAI Bridgex External Lock-and-Mint Trusted L1 - L2 Asset-Specific Ethereum, Gnosis

Satellite by Axelar Native Lock-and-Mint Trustless L1 - L2 Generalized 14 blockchains [26]
Synapse Protocol External Lock-and-Mint Semi-Trustless L1 - L2 Application-Specific 19 blockchains [136]

Hop.Exchange Local Lock-and-Mint Trustless L1 - L2 Application-Specific 7 blockchains [92]
Across Protocol Optimistic Liquidity-Pool-Based Trustless L1 - L2 Application-Specific 5 blockchains [123]
Voltage Bridge Local Liquidity-Pool-Based Trustless L1 - L2 Chain-Specific Ethereum, Fuse, Bnb

Hot Cross Multi-Chain Bridge External Lock-and-Mint Trusted L1 - L2 Application-Specific Ethereum, Avalanche, Bnb
BoringDAO Bridge External Lock-and-Mint Trusted L1 - L2 Application-Specific 14 blockhains [15]

Multichain External Lock-and-Mint Trusted L1 - L2 Application-Specific 26 blockhains [107]
ioTube Bridge External Lock-and-Mint Trusted L1 - L2 Chain-Specific Ethereum, IoTeX, Bnb, Polygon

ChainPort Bridge External Lock-and-Mint Trusted L1 - L2 Application-Specific 17 blockchains [41]
Wrap Protocol External Lock-and-Mint Trusted L1 - L1 Chain-Specific Ethereum, Tezzo

Avalanche Bridge External Lock-and-Mint Trusted L1 - L1 Chain-Specific Ethereum, Avalanche
ThunderCore Bridge External Lock-and-Mint Trusted L1 - L2 Chain-Specific 4 blockchains [139]

RenBridge External Lock-and-Mint Trusted L1 - L1 Application-Specific Ethereum, Bitcoin
Cross-Chain Bridge External Liquidity-Pool-Based Trusted L1 - L2 Application-Specific 5 blockchains [18]

Sovryn Bridge External Liquidity-Pool-Based Trusted L1 - L2 Chain-Specific Ethereum, RSK, Bnb
Hyphen Bridge External Liquidity-Pool-Based Trusted L1 - L2 Application-Specific 7 blockchains [19]
Celer cBridge Native Lock-and-Mint Trustless L1 - L2 Application-Specific 34 blockchains [29]

RSK Token Bridge External Lock-and-Mint Trusted L1 - L2 Chain-Specific Ethereum, RSK
Celo Optics Bridge Optimistic Lock-and-Mint Trustless L1 - L2 Generalized Ethereum, Polygon, Celo

Nomad Optimistic Lock-and-Mint Trustless L1 - L2 Application-Specific 4 blockchains [114]
Allbridge External Lock-and-Mint Trusted L1 - L2 Application-Specific 21 blockchains [3]

SOY Bridge External Lock-and-Mint Trusted L1 - L2 Application-Specific 5 blockchains [42]

Table 2: Summary of 30 popular cross-chain bridges. Lock-and-Mint represents the Lock-and-Mint; Burn-and-Release communication model.

TransferTxLock
Emit Event

Executing Lock transaction

ℂ𝑆

Executing Mint transaction

ℂ𝐷

Verify

Mint

Deposit

Verify Event Sign TransactionFetch Event Send Transaction

TxMint TxBurn

Emit Event

Executing Burn transaction

ℂ𝐷 Burn

Executing Release transaction

ℂ𝑆

Verify

Release

BRIDGE OFF-CHAIN SERVER

Submitting Mint transaction Submitting Release transaction

TxRelease

Executing Withdraw transaction

VerifyTxWithdraw

Withdraw

ℂ𝑆

𝕋𝑆

Burn 𝕋𝐷

𝕋𝐷

𝕋𝑆

𝔸𝑆

𝔸𝐷

𝔸𝑆

Create Transaction

Server

SOURCE BLOCKCHAIN

DESTINATION BLOCKCHAIN

𝕋𝑆

𝔹𝐷

𝔹𝑆

Executing Src transaction

Transfer

Emit Event

Deposit

𝕋𝑆

ℂ𝑆

TxSrc

Submitting Dest transaction

Verify

Transfer𝕋𝐷 ℂ𝐷

TxDest

Executing Dest transaction

Liquidity-pool-based model : Cross-chain WithdrawLiquidity-pool-based model: Cross-chain Transfer

Executing Dest’ transaction

ℂ𝐷

TxDest’Transfer𝕋𝐷
Emit Event

Deposit

Submitting Src’ transaction

TxSrc’

ℂ𝑆

Verify

Transfer 𝕋𝑆

Executing Src’ transaction

Monitor

LMBR model: Cross-chain Transfer LMBR model: Cross-chain Withdraw

𝔸𝐷 - Destination Blockchain User

ℂ𝑆 - Source Blockchain Contract ℂ𝐷 - Destination Blockchain Contract

𝔸𝑆 - Source Blockchain User

𝕋𝑆 - Source Blockchain Token 𝕋𝐷 - Destination Blockchain Token

Symbols

𝔹𝐷 - Destination Blockchain Bridge Account𝔹𝑆 - Source Blockchain Bridge Account

Figure 1: The workflows of two cross-chain bridge communication models. Lock-and-Mint; Burn-and-Release (LMBR) model consists of ❶ - ❼,
and Liquidity-pool-based model consists of ① - ⑥.

within a time window and requires consensus from both parties
to complete the payment. The receiver of the payment can either
accept it before it expires or forfeit it. However, LV has limitations

and cannot be easily extended to other applications in addition to
token transfers. We illustrate Connext’s NXTP in Appendix C.3.

301

Cross-Chain Bridges: Attack Taxonomy, Defenses, and Open Problems RAID 2024, September 30–October 02, 2024, Padua, Italy

4.2.4 Native verification. Native verification (NV) requires the des-
tination blockchain to run a light client of the source blockchain to
verify the related events or states. Light clients store the minimum
information required to verify the status change of blockchains in
a self-verifiable manner. They keep block headers to confirm cross-
chain messages and stay updated with any changes in blockchains
to verify the relayed cross-chain transactions based on stored state
information. Although this mechanism is the most secure, as it has
the same security assumptions as the public chain, it is expensive to
maintain the light clients for all supported blockchains for bridges.
Moreover, we illustrate one MAP Protocol in Appendix C.4.

Note in Table 2, the majority of bridges employ external verifi-
cation (22), while a small number opt for optimistic verification (3),
native verification (3), or local verification (2).

4.3 Communication Models
There are two models commonly used by the cross-chain bridges,
which are (1) lock-and-mint; burn-and-release model and (2)
liquidity-pool-based model, respectively. Specifically, model (1)
will mint new wrapped tokens (e.g., wBTC) in the destination
chain, which will be burnt to release tokens locked in the source
blockchain, while model (2) only includes native assets (e.g., BTC).
To make it clear, we illustrate the workflow of these two models
with common usages: cross-chain transfer and withdraw in Fig. 1.

4.3.1 Lock-and-Mint; Burn-and-Release Model. In Fig. 1, Step ❶ to
❸ are the cross-chain transfer and Step ❹ to ❼ are the cross-chain
withdraw, which is the reverse operation to the cross-chain transfer.
Cross-chain transfer. Assume user A𝑆 wants to send money from
one chain to his/her own account A𝐷 in another chain, which is
usually implemented via the cross-chain transfer :
❶ Executing Lock transaction. The first step is to submit a transac-
tion TxLock from A𝑆 to C𝑆 , performing a token transfer from A𝑆
to the bridge account. Meanwhile, the Deposit event is emitted for
Server to listen and record.
❷ Submitting Mint transaction. In step two, the Deposit event con-
taining detailed information (e.g., token amount) is verified by
Server. If the event is parsed and verified to be correct (e.g., emitted
from the C𝑆), the related transaction TxMint will be created, signed
by validators, and then sent to call C𝐷 .
❸ ExecutingMint transaction. In step three, TxMint is sent fromB𝐷 .
During execution, the signatures from validators are verified. After
verification, related tokens T𝐷 (wrapped tokens of T𝑆) are minted.
In particular, tokens are transferred from the bridge account or zero
address [68] to A𝐷 , which is appointed by A𝑆 in TxLock.
Cross-chain withdraw.When user A𝑆 needs to take his/her tokens
that are locked in the source blockchain back, A𝑆 conducts a cross-
chain withdraw. The cross-chain withdraw can only be used after
the cross-chain transfer.
❹ Executing Burn transaction. In step four, A𝐷 should submit a
transaction TxBurn calling C𝐷 , to burn tokens T𝐷 , by sending the
tokens to the bridge account or the zero address. Meanwhile, the
Burn event is emitted from C𝐷 for Server to monitor.
❺ Submitting Release transaction. This step is similar to step ❷. If
the Burn event is verified, the transaction TxRelease will be created
and signed by enough validators.

❻ Executing Release transaction. In step six, Release is sent from
B𝑆 , signatures from bridge validators are verified in C𝑆 , and tokens
locked before will be released, after verification. However, tokens
are not sent directly back to A𝑆 yet. Instead, a proof showing that
the tokens are available to withdraw is sent to A𝑆 .
❼ Executing Withdraw transaction. In step seven, A𝑆 submits the
transaction TxWithdraw to C𝑆 with the proof, to withdraw tokens.
If the proof is valid, the bridge will transfer tokens back to A𝑆 .

4.3.2 Liquidity-Pool-Based Model. For the liquidity-pool-based
model in Fig. 1, Step ① to ③ are the cross-chain transfer and Step ④

to ⑥ are the cross-chain withdraw.
Cross-chain transfer. Assume user A𝑆 wants to send money from
one chain to his/her own account A𝐷 in another chain, which is
usually implemented via the cross-chain transfer :
① Executing Src transaction. To begin with, the bridge creates the
liquidity pool that only contains token T𝑆 . Different from normal
liquidity pools, cross-chain bridge liquidity pools only have sin-
gle type of tokens, to prevent impermanent losses for liquidity
providers. Then, the liquidity providers add liquidity to the pool
by depositing tokens T𝑆 . Accordingly, the first step is to execute a
transaction TxSrc from A𝑆 to C𝑆 , performing a token transfer and
emitting the Deposit event for Server to listen and record.
② Submitting Dest transaction. This step is similar to the step ❷ in
Lock-and-Mint; Burn-and-Release model.
③ Executing Dest transaction. Before step three, the liquidity pools
in the destination blockchain should be prepared as well. Similarly,
the pool only containing tokens T𝐷 is created by the bridge and the
liquidity providers add liquidity to the pool. In particular, tokens
T𝑆 and T𝐷 represent the same tokens in different blockchains.
Meanwhile, the transaction Dest sent from B𝐷 to C𝐷 will perform
the verification and then transfer the tokens T𝐷 from the liquidity
pool to A𝐷 .
Cross-chain withdraw. Cross-chain withdraw is similar to Cross-chain
transfer, except that the direction (from destination to source) is
opposite from the direction of Cross-chain transfer (from source to
destination).
④ Executing Dest’ transaction. To withdraw the tokens deposited
in the source blockchain, user A𝐷 initializes a transaction TxDest’
that sends the tokens T𝐷 back to the bridge C𝐷 .
⑤ Submitting Src’ transaction. This step is also similar to the step
❷ in Lock-and-Mint; Burn-and-Release model.
⑥ Executing Src’ transaction. Transaction TxSrc’ is sent to C𝑆 , veri-
fying the data (e.g., proof) and transferring tokens T𝑆 back to A𝑆
then.

Note in Table 2, 25 bridges use lock-and-mint; burn-and-release
communication model and 5 bridges use Liquidity-Pool-Based com-
munication model.

4.4 Categorization
We classify the cross-chain bridges based on different standards,
including 1) trust mechanisms, 2) layer connections, and 3) func-
tionalities.

302

RAID 2024, September 30–October 02, 2024, Padua, Italy Mengya Zhang, Xiaokuan Zhang, Yinqian Zhang, and Zhiqiang Lin

4.4.1 Trust Mechanism Classification. Considering the trust mech-
anisms, we classify the bridges into three categories: trusted, semi-
trustless, and trustless.
Trusted bridges typically have to trust a single or several valida-
tors, to perform related operations (e.g., signing and submitting
transactions). The security relies on the reputations of these val-
idators since they do not deposit collateral as penalty. For instance,
the bridge Muiltichain [17] is powered by Fusion’s DCRM technol-
ogy [74] to ensure the security.
Semi-trustless bridges require the validators to deposit assets for
punishment if anything goes wrong. Such bridges may suffer hacks
from the inappropriate operations from validators. For instance, if
the private keys of enough validators are compromised, the bridge
will be under attack. Moreover, the deposited assets from validators
are required. Taking Synapse [23] as an example, it is secured by
cross-chain multi-party computation (MPC). In particular, if two-
thirds of all validators sign the transactions, the consensus will be
achieved and the further related transactions will be submitted to
blockchains.
Trustless bridges have the highest security, equivalent to the un-
derlying blockchains, in which anyone can become a validator.
These bridges usually perform operations using smart contracts or
algorithms. For example, Celer cBridge [31] depends on the decen-
tralized State Guardian Network (SGN) [30] to monitor transactions
and faithfully perform operations, such as passing the information
and storing the locked tokens. In partciular, SGN is based on the
Proof-of-Stake (PoS) consensus mechanism, which requires valida-
tors to stake some tokens to participate in the network.

According to Table 2, among the top 30 bridges, 20 are trusted, 2
are semi-trustless, and 8 are trustless.

4.4.2 Layer Connection Classification. Blockchains can be divided
into layer 1 (L1) and layer 2 (L2). L1 is the base blockchain protocol,
such as Ethereum. L2 represents a third-party solution integrated
with L1, allowing for better scalability, such as Polygon [118]. Con-
sidering the connections of different blockchains, bridges can also
be classified into two categories: L1 - L1 and L1 - L2.
L1 - L1 bridges connect different L1 blockchains. For example, Near
Rainbow Bridge [109] connects Ethereum and Near.
L1 - L2 bridges establish a connection between L1 and various L2
blockchains, while L2 blockchains are also interconnectedwith each
other. Anyswap [17], for instance, facilitates connectivity between
35 blockchains, including Ethereum, Polygon, and others.

Note in Table 2, among the top 30 bridges, only 4 bridges are L1
- L1 and 26 bridges are L1 - L2.

4.4.3 Bridge Functionality Classification. Based on functionality,
bridges can be classified into asset-specific, chain-specific, application-
specific, and generalized bridges.
Asset-specific bridges only allow a specific asset transfer. For exam-
ple, xDAI bridge [144] supports DAI and xDAI transfer between
Ethereum and Gnosis.
Chain-specific bridges are dedicated to certain blockchains. These
bridges are usually developed by major blockchains, such as Poly-
gon Bridge [117], which allows users to transfer assets between
Ethereum and Polygon.

Application-specific bridges have limited functionality and are de-
signed to handle only specific applications, particularly asset ex-
changes. For example, AnySwap [17] does not support transmitting
state data or validation information.
Generalized bridges enable the transfer of various information types,
such as assets, contract calls, proofs, and states. They are not re-
stricted to particular blockchains or applications, and can instead
facilitate communication between a diverse set of disconnected net-
works. For example, Chainlink [39] supports cross-chain services,
including the Programmable Token Bridge, other bridge implemen-
tations, and even cross-chain DApps.

Note in Table 2, among the top 30 bridges, 1 is asset-specific, 12
are chain-specific, 14 are application-specific, and 3 are generalized.

5 BRIDGE ATTACK SURFACES
In this section, we illustrate 12 possible attack surfaces of cross-
chain bridges, according to the two bridge models (M1: lock-and-
mint; burn-and-releasemodel andM2: liquidity-pool-based) in Sec. 4.3,
as shown in Table 3. Initially, we outline the shared attack surfaces
that exist in both communication models, followed by an introduc-
tion to the distinctive attack surfaces.

Models Attack Surface Step/Target Example

Both A1 (Front-end phishing) Server deceiving users
A2 (Inaccurate deposit) ❶; ①, or ④ incorrect bridge account
A3 (Mishandling events) ❷ or ❺; ② or ⑤ incorrect Deposit event
A4 (Mismatched transactions) ❷ or ❺; ② or ⑤ TxMint not sent
A5 (Single points of failures) Server private key leakage
A6 (Rugpull) Bridge bridge running away
A7 (Vulnerable Contracts) C𝑆 or C𝐷 reentrancy

M1 A8 (Problematic mint) ❸ invalid mint permission
A9 (Fake burn) ❹ invalid burn approval
A10 (Incorrect release) ❺ invalid verification
A11 (Replayed withdraw) ❻ problematic proof

M2 A12 (Inconsistent transfer) ③ or ⑥ incorrect transfer amount

Table 3: Summary of 12 possible attack surfaces according to two
bridge communication models (Sec. 4.3).

5.1 Common Attack Surfaces
A1-A7 can be applied to both the lock-and-mint; burn-and-release
model and liquidity-pool-based model.
A1: Front-end phishing. Regardless of the communication model
used, this type of attack is possible in Server. If an attacker gains
access to the front-end of bridges, they can deceive users into trans-
ferring their funds, resulting in the theft of user funds.
A2: Inaccurate deposit. This attack can happen in step ❶, ①, or ④

in Fig. 1. Users need to deposit tokens to the bridge account. If the
bridge account address is set incorrectly, the deposited tokens will
be lost. Moreover, if the related events (e.g., Deposit) are constructed
and emitted incorrectly, users will not receive the tokens in the
destination blockchain.
A3: Mishandling events. This attack can occur in step ❷, ❺,
②, or ⑤ in Fig. 1. Server will fetch and parse the events from the
transactions. If these events are handled incorrectly, bridges might
perform inappropriate actions, such as sending more money to
users than desired. For example, if a Deposit event recording a 10

303

Cross-Chain Bridges: Attack Taxonomy, Defenses, and Open Problems RAID 2024, September 30–October 02, 2024, Padua, Italy

ETH transfer in the source blockchain is mistakenly treated as a
100 ETH transfer, bridges will send 100 wrapped ETH to the user
in the destination blockchain.
A4: Mismatched transactions. This attack can occur in step ❷, ❺,
②, or ⑤ in Fig. 1. Cross-chain bridges are heavily relying on the off-
chain bridge server (Server), for monitoring, parsing information,
and submitting transactions. If the related transactions (e.g., TxMint
to mint wrapped tokens for users) are not sent at all, user will not
receive their tokens. Moreover, if the transactions are constructed
incorrectly (e.g., the receiver address is given with a wrong value),
attacks can also happen.
A5: Single points of failures. This attack can occur in Server
in Fig. 1. Some bridges rely on external validators that can be com-
promised or engage in malicious behaviors, as follows.
• Compromised bridge validators. If the private keys of enough
validators are compromised, attackers can take over the bridges
to drain all the assets or mint tokens without limitations.

• Malicious validators. Validators might be dishonest if the values
in the bridges are far more than the values validators stake, as
punishments for behaving maliciously.

A6: Rugpull. This attack can occur if the bridge itself is the attacker.
Rugpulls are scams in which the token founders suddenly vanish
and drain all the assets. For example, users of Luna Yield, a farming
project on the Solana blockchain, suffered from the rugpull attack
on Aug-19-2021, in which the creators suddenly deleted the website
and disappeared [47]. Additionally, the investors of an NFT game
DApp, BlockVerse, withdrew all the money and disappeared on Jan-
25-2022 [75]. Users should watch out for the possibility of rugpulls
in cross-chain bridges, especially on newly created bridge projects.
A7: Vulnerable bridge smart contracts. This attack can happen
in C𝑆 or C𝐷 in Fig. 1. Common vulnerabilities in smart contracts
(e.g., access control) are possible in bridge smart contracts. We
illustrate some potential attacks, taking the liquidity pool smart
contract code as an example (see Appendix D), including incorrect
initialization, inappropriate function permission, unchecked bal-
ance, miscalculated token price, and inconsistent event. Existing
vulnerabilities in DeFi can also exist in cross-chain bridges. Current
cross-chain bridges only support simple financial services, which
are mainly token transfers. However, we believe the attacking sur-
face is much larger than the existing bridge attacks.
• Price manipulation attack. If the bridge relies on unstable price
oracles that could be maliciously manipulated by attackers, the
bridges will suffer from price manipulation attacks.

• Reentrancy attack. Reentrancy attack happens when the victim
contract calls a malicious contract who calls back to the original
function in the victim contract, to steal money. In both functions
addLiquidity and removeLiquidity, the reentrancy attacks occur.

5.2 Unique Attack Surfaces
5.2.1 Lock-and-Mint; Burn-and-Release Model. A8-A11 are only
applicable to the lock-and-mint; burn-and-release model.
A8: Problematic mint. This attack can happen in step ❸ in Fig. 1.
Once the tokens are locked in the source blockchain, the bridges
will mint wrapped tokens in the destination blockchain. However,

if the proof is not validated appropriately, attackers can mint more
tokens than desired.
A9: Fake burn. This attack can happen in step ❹ in Fig. 1. To get
the tokens back in the source blockchain, users should burn the
wrapped tokens in the destination blockchain. If there are some
permission check issues that allow users to pass the burn, attacks
can happen due to fake burns in which attackers burn nothing but
get burn proofs. Moreover, if the Burn event is not emitted correctly,
there will be problems.
A10: Incorrect release. This attack can occur in step ❻ in Fig. 1.
The related data need to be verified before creating the release proof.
If the verification process is not handled correctly, the release proofs
might be forged by attackers.
A11: Replayed/Unlimited withdraw. This attack can happen in
step ❼ in Fig. 1. The release proof needs validation before allowing
users towithdraw tokens. However, if the proof can be usedmultiple
times or forged, users can steal tokens until the assets are drained.

5.2.2 Liquidity-Pool-Based Model. A12 is only applicable to the
liquidity-pool-based model.
A12: Inconsistent cross-chain transfer. This attack can occur in
step ③ or ⑥ in Fig. 1. Assume that a user A𝑆 transfers ETH tokens
from Ethereum (source blockchain) to BNB (destination blockchain).
It is possible to suffer from the inconsistencies of cross-chain token
transfer, in which the amount of transferred token in TxDest or
TxDest’ is incorrect (e.g., less than expected).

6 A TAXONOMY OF CROSS-CHAIN BRIDGE
ATTACKS AND VULNERABILITIES

In this section, we systematically categorize reported cross-chain
bridge attacks and vulnerabilities into four categories, including
Permission Issue (PI), Logic Issue (LI), Event Issue (EI), and Front-
end Issue (FI), and summarize them in Table 4. We also introduce
the attacks caused by front-end phishing and replay attacks. In par-
ticular, we summarize the knowledge of cross-chain bridge attacks
from reliable resources, including official bridge documentations
(e.g., Wormhole [24]), attack reports from blockchain companies
(e.g., Certik [35]), and blogs or posts about cross-chain bridges from
technical organizations (e.g., HALBORN [87]).

6.1 Permission Issue
Permission issues are quite common in both regular smart contracts
and cross-chain bridges; 20 out of the total 35 attacks fall into
this category. We divide this category into five types, including
unchecked intermediary permission, misused proof permission,
problematic approval permission, invalid signature permission, and
leaked key permission.

6.1.1 V1. Unchecked Intermediary Permission. This type of attacks
can happen in either C𝑆 or C𝐷 , as shown in Fig. 1. A smart contract
can be assigned a set of managers for permission check when some
fundamental changes are made, such as owner modification or
money transfer. If the functions in the smart contract are restricted
with these permission checks, they can only be called when the
caller belongs to one of the managers. However, if the caller utilizes
the manager as the intermediate contract to call the permissioned

304

RAID 2024, September 30–October 02, 2024, Padua, Italy Mengya Zhang, Xiaokuan Zhang, Yinqian Zhang, and Zhiqiang Lin

Type Sub-type Attack Surface Victim Bridge Attack Date Loss ($million) Victim Blockchains Defense

PI V1. Unchecked intermediary permission A7(C𝑆 or C𝐷) Poly Network Aug-10-2021 600 Ethereum Au, BB

V2. Misused proof permission A11(C𝑆) Plasma Oct-05-2021 850 Polygon BB
A10(C𝑆 or C𝐷) Binance Bridge Oct-06-2022 566 Bnb BB, HF

V3. Problematic approval permission A7(C𝑆 or C𝐷) Multichain Jan-18-2022 3 Ethereum UVC, RIA
LI.FI May-20-2022 0.6 Ethereum UVC
Rubic Dec-25-2022 1.4 Ethereum UVC, Au
Socket Protocol Jan-16-2024 3.3 Ethereum UVC, Au

V4. Invalid signature permission A8(C𝐷) ChainSwap Jul-10-2021 8 Ethereum Au, BB
Wormhole Feb-02-2022 320 Solana, Ethereum BB
Multichain Feb-15-2023 0.1 Ethereum UVC

V5. Leaked key permission A5(Server) Ronin Network Mar-29-2022 625 Ethereum Au, IVD
WonderHero Apr-07-2022 0.3 Bnb Au, UVC, BB
Horizon Bridge Jun-24-2022 100 Ethereum, Bnb Au
QAN Platform Bridge Oct-11-2022 2 Ethereum, Bnb Au
Rubic Nov-02-2022 1.2 Ethereum Au
pNetwork Nov-04-2022 108 Bnb UVC
Poly Network Jul-01-2023 10.2 Ethereum UVC
Multichain Jul-06-2023 126 Ethereum et al. N/A
Heco Bridge Nov-22-2023 86.28 Ethereum N/A
Orbit Bridge Dec-31-2023 82 Ethereum N/A

LI V6. Incorrect balance logic A7(C𝑆 or C𝐷) Polkabridge Nov-22-2021 0.6 Ethereum UVC
Poolz Finance Mar-15-2023 0.6 Ethereum, Bnb, Polygon Au

V7. Inaccurate initialization logic A7(C𝑆 or C𝐷) Nomad Aug-02-2022 190 Ethereum, Moonbeam BB
Allbridge Apr-01-2023 0.57 Bnb UVC
Hypr OP Stack Bridge Dec-13-2023 0.22 Ethereum N/A

EI V8. Incorrect event emission A2(C𝑆) Qubit Jan-27-2022 80 Ethereum, Bnb BB
Meter.io Feb-05-2022 4.2 Ethereum, Bnb, Moonriver BB
Omni Sep-16-2022 4.2 Ethereum PoW BB

V9. Fake event emission A2(C𝑆) and A3(Server) THORChain Jun-29-2021 0.35 THORChain Au
THORChain Jul-16-2021 8 THORChain Au
THORChain Jul-23-2021 8 THORChain Au
pNetwork Sep-19-2021 13 Bnb UVC, BB
Cennznet May-08-2022 0.4 Ethereum UVC, EOS

FI V10. Front-end phishing A1(Server) EVODeFi Mar-22-2022 0.3 Bnb BB
Celer cBridge Aug-17-2022 0.2 Ethereum BB

Table 4: A taxonomy of cross-chain bridge attacks and vulnerabilities. Type: PI: Permission Issue; LI: Logic Issue; EI: Event Issue; OI: Other
Issue; FI: Front-end Issue. Attack Surface:𝐴𝑖 is the index of possible attacks defined in Sec. 5; C𝑆 , C𝐷 , and Server are involved identities in Fig. 1.
Defense (presented in Sec. 7): Au: Auditing; BB: Bug Bounty; HF: Hard Fork of Blockchain; UVC: Upgrading Vulnerable Contract; RIA: Revoking
Infinite Approval; IVD: Increasing Validator Decentralization; EOS: Examining Off-chain Server.

functions, the permission check will be bypassed and the attack
will happen. Moreover, we illustrate this type with 1 example of
Solidity code here and 1 real-world attack in Appendix E.1.1.
Example. We illustrate the pattern of this type via the example
in Fig. 2, in which the contract B is the manager of contract A. We
explain some primitives needed in this example, as follows.
• address is a type within Solidity smart contracts, representing
an Ethereum account.

• bytes4 and bytes are both arrays of bytes, and bytes4 is a fixed-
length array of four bytes.

• modifier restricts the behaviors of the functions, and can be
considered as a compile-time code roll-up.

• function is a combination of lines of code. In particular, there are
four types of functions: external, internal, public, and private.
External functions can be called from outside smart contracts
and internal functions can only be called internally within the

1 contract A {

2 address owner;

3 address manager;

4
5 modifier onlyManager {

6 require(msg.sender == manager);

7 }

8
9 function changeOwner(address account) public

onlyManager {

10 owner = account;

11 }

12 }

13
14 contract B {

15 function call(address callee , bytes4 funcSig , bytes
parameters) public {

16 callee.call(funcSig , parameters);

17 }

18 }

Figure 2: Unchecked intermediary permission.

305

Cross-Chain Bridges: Attack Taxonomy, Defenses, and Open Problems RAID 2024, September 30–October 02, 2024, Padua, Italy

current contract. Moreover, public functions can be called with-
out restrictions and private functions are only visible in the
contract they are defined.

• function signature represents the unique identifier for a specific
function within a smart contract. It is generated by hashing the
function’s name and parameter types.

• call is a default low-level function for interacting with public
and external smart contract functions.
In this example, the function changeOwner() is to modify the

owner of the smart contract A to be the parameter account. How-
ever, not anyone is allowed to call this function, unless the caller
msg.sender is the manager of the contract, as defined by the modifier
onlyManager. In smart contract B, the function call() interacts with
any callable function in smart contract callee, as long as the correct
function signature funcSig, parameters parameters, and the contract
address callee are provided. If the data of function call() in contract
B is constructed correctly, anyone can bypass the permission check
in contract A, to call changeOwner() and transfer the ownership to
its account, since contract B is the manager of contract A.

6.1.2 V2. Misused Proof Permission. This attack type can occur in
step ❼ inside C𝑆 or C𝐷 , as shown in Fig. 1. In cross-chain bridges,
unique proofs should be provided to prove the deposit or burn
actions from users, for futureminting or releasing the related tokens
to users. If the smart contract is not designed carefully to deal with
proofs, the previous valid proof could be replayedmultiple times. As
a result, the money will be stolen. We also illustrate this type with
1 code example here and 2 real-world attacks in Appendix E.1.2.

1 contract A {

2 function verifyProof(bytes data) external {

3 if isValid(data) return throw;
4 receiver , tokenAddr , tokenAmount = decode(data);
5 tokenAddr.transfer(receiver , tokenAmount);

6 }

7 }

Figure 3: Misused proof permission.

Example. We illustrate this type with one example in Fig. 3. In
particular, if the proof data is verified to be valid via the function
isValid(), the money will be sent back to the user according to
the decoded parameters via the function decode(). However, the
data could be constructed maliciously multiple times from one
valid proof related data, if the function isValid() does not check the
uniqueness of the value data correctly.

6.1.3 V3. Problematic Approval Permission. This type of attacks
can happen in C𝑆 or C𝐷 , as shown in Fig. 1. To save on transaction
gas fees, users must give their permissions to DApps in advance,
allowing bridges to transfer their tokens. Such behaviors are usually
implemented by the standard ERC20 function approval(), which is
insecure when the DApp smart contract cannot handle the permis-
sion check correctly. Moreover, we illustrate this type with 1 code
example here and 4 real-world attacks in Appendix E.1.3.
Example.We illustrate this type with the example from Fig. 4, in
which the function transferWithPermit() is not handled correctly.
Here, we assume some users have given infinite approvals to the

1 contract A {

2 function transferWithPermit(address from , address to

, address token , uint amount , uint deadline ,

uint8 v, bytes32 r, bytes32 s) external {

3 address _underlying = DERC20(token).underlying ();

4 IERC20(_underlying).permit(from , address(this),
amount , deadline , v, r, s);

5 _underlying.call(abi.encodeWithSelector (0x23b872dd
, from , token , amount));

6 }

7 }

Figure 4: Problematic approval permission.

DApp in advance. The vulnerability can be exploited via the follow-
ing steps. (1) Calling to an unverified smart contract. In line 3, the
attacker can set the address token to a malicious contract, which is
usually unknown and unverified. Then the attacker can control the
returned value, which is not checked by contract A. (2) Entering a
fallback function. In line 4, the function permit() intends to ensure
the ability of the current contract with the supplied transaction
(v,r,s), which allows transferring users’ tokens. However, permit()
does not exist in the attacker-controlled malicious contract, and
the fallback function will be called. If the fallback function is empty
and the transaction continues to execute, permit checking will be
bypassed. (3) Stealing money. Tokens will be transferred from the
victim user to the attacker in this step. In line 5, the transfer is made
via the low-level call function by constructing the appropriate mali-
cious data, specifying the standard function signature (0x23b872dd)
and parameters of transferFrom().

6.1.4 V4. Invalid Signature Permission. This type of attack can
occur at step ❸ inside C𝐷 , as shown in Fig. 1. In cross-chain bridges,
signatures of validators are required to sign transactions, in order to
transfer tokens back to users. In particular, the signatures should be
checked. If signature verification is not properly processed, attacks
can occur. Moreover, we illustrate this type with 1 code example
here and 3 real-world attacks in Appendix E.1.4.

1 contract A {

2 function mintToken(bytes [] signatures , address to,

address token , uint amount) public {

3 bool ret = verify_signatures(signatures);

4 require(ret , "Signatures are not valid!");

5 mint(to, token , amount);

6 }

7 }

Figure 5: Invalid signature permission.

Example. From the example in Fig. 5, verify_signatures() function
in line 3 incorrectly checks signatures, and the permission check
is bypassed by the attacker. Then, the attacker can mint tokens
without any cost since he/she has the permission due to the forged
but passed signatures.

6.1.5 V5. Leaked Key Permission. This type of attack can occur in
Server, as shown in Fig. 1. Attackers usually compromise the private
key of admin bridge accounts or enough private keys of bridge

306

RAID 2024, September 30–October 02, 2024, Padua, Italy Mengya Zhang, Xiaokuan Zhang, Yinqian Zhang, and Zhiqiang Lin

validators. We demonstrate 1 real-world attack resulting from this
vulnerability, while the remaining 9 are detailed in Appendix E.1.5.
Ronin Network attack. Ronin Network [111] suffered from the at-
tack on Mar-29-2022, which was caused by the compromised pri-
vate keys [84]. In particular, the attacker accessed four validators
controlled by Sky Mavis [100] and the fifth validator from Axie
DAO [54]. Due to the 5-of-9 multi-signature mechanism, the attack
succeeded and caused a $625 million loss.

6.2 Logic Issue
Logic issues are caused by the logical mistakes in smart contracts.
We classify this type into incorrect balance logic and inaccurate
initialization logic; 5 of the total 35 attacks belong to this category.

6.2.1 V6. Incorrect Balance Logic. This type of attack can occur in
either C𝑆 or C𝐷 , as shown in Fig. 1. A liquidity pool is a collection
of locked tokens. Assume there are two types of tokens in a liquidity
pool, the quantities of those assets are called reserves. Generally,
𝑥 × 𝑦 = 𝑐 (𝑥 and 𝑦 are the reserves of the two types of tokens; c is
a constant number). However, the value paid by the user should
be slightly higher than the expected amount every time the tokens
are deposited or withdrawn to pay the fee. Thus, to ensure the
correctness of such mechanisms, the balances of these two tokens
should be no less than the initial constant. Otherwise, any user can
steal money from the pool. Moreover, we illustrate this type with 1
code example here and 2 real-world attacks in Appendix E.2.1.

1 contract A {

2 function balanceCheck () public {

3 _reserve0 , _reserve1 = getReserves ();

4 uint balance0Adjusted = balance0.mul (1000).sub(

amount0In.mul(3));

5 uint balance1Adjusted = balance1.mul (1000).sub(

amount1In.mul(3));

6 require(balance0Adjusted.mul(balance1Adjusted) >=

uint(_reserve0).mul(_reserve1).mul (1000**2) ,
'Balance check failed!');

7 }

8 }

Figure 6: Incorrect balance logic.

Example. An example is shown in Fig. 6, which is the represen-
tative source code of the balance check for a liquidity pool. The
vulnerability exists if line 6 is removed.

6.2.2 V7. Inaccurate Initialization Logic. This type of attack can
occur in C𝑆 or C𝐷 , as shown in Fig. 1. The initialization process
sets some privileged addresses as managers or owners of the smart
contracts. Similarly, some non-trivial variables (e.g., verification
variable) will be assigned with initial values. If these fundamental
variables are not defined appropriately, bridges will be attacked.
Moreover, we illustrate this type with 1 code example here and 3
real-world attacks in Appendix E.2.2.
Example. Fig. 7 gives an example in which line 11 sets the owner
of the contract as an incorrect address, or line 13 defines the key
variable with incorrect value.

1 contract A {

2 address initializer_addr;

3 address owner;

4 bool canTransfer;

5
6 modifier initializer {

7 msg.sender = initializer_addr;

8 }

9
10 function initialize () public initializer {

11 owner = 0x;

12 // or

13 canTransfer = true;
14 }

15 }

Figure 7: Inaccurate initialization logic.

6.3 Event Issue
To gather the necessary information from the transactions, bridges
usually retreive emitted events from smart contracts and interpret
these events to perform future steps. For example, if some tokens
are sent from users to bridges, the related Deposit events will be
emitted, serving as the deposit proof. However, events can be prob-
lematic and money will be stolen from bridges. In particular, this
type includes incorrect event emission and fake event emission.
Moreover, 8 of the total 35 attacks belong to this category.

6.3.1 V8. Incorrect Event Emission. This type of attacks can happen
in step❶ insideC𝑆 , as shown in Fig. 1. These two functions deposit()
and depositETH() emit the same Deposit event, representing that
users deposit ETH tokens to the bridge. Then, BOS will process
the events, minting ETH tokens to users no matter what tokens
are deposited. Attackers could utilize this vulnerability to deposit
less valuable tokens (e.g., USDT [90]) and earn ETH tokens back.
Moreover, we illustrate this type with 1 code example here and 3
real-world attacks in Appendix E.3.1.

1 contract A {

2 function deposit(address from , address to, address
token , uint amount) external payable {

3 token.transferFrom(from , to, amount)

4 emit Deposit(from , to, amount);

5 }

6
7 function depositETH () external payable {

8 transferETH(msg.sender ,address(this),msg.value);
9 emit Deposit(msg.sender ,address(this),msg.value);
10 }

11 }

Figure 8: Incorrect event emission.

Example. In the example shown in Fig. 8, the attacker transferred
some less valuable tokens (e.g., USDT [90]) via the deposit() function.
The attacker can get wrapped ETH tokens. Moreover, the attacker
can even construct malicious data to transfer nothing, but obtain a
Deposit event. For instance, the token address can be some invalid
addresses and the transaction will not fail, since the return value of
function transferFrom() is not checked. Then, the attacker can use
the event to steal tokens.

307

Cross-Chain Bridges: Attack Taxonomy, Defenses, and Open Problems RAID 2024, September 30–October 02, 2024, Padua, Italy

6.3.2 V9. Fake Event Emission. This type of attack can only occur
when both C𝑆 and Server have bugs in the first two steps (❶ and
❷), as shown in Fig. 1. In particular, the Deposit event is being
emitted from the attacker controlled smart contract, not from the
bridge-related contract. However, the bridge off-chain server is not
aware of the problem and mistakenly accepts fake events. Thus,
the attackers can deposit nothing, fake the event, and steal tokens.
Moreover, we illustrate this type with 1 code example here and 5
real-world attacks in Appendix E.3.2.

1 contract Bridge {

2 function withdraw(address recipient , uint256 amount)

external payable {

3 bool sent , _ = recipient.call{value:amount }("");
4 require(sent , "Sent failed!");

5 }

6 }

7
8 contract Attacker {

9 function () external payable {

10 emit Deposit(msg.sender ,address(this),msg.value);
11 }

12 }

Figure 9: Fake event emission.

Example. An example is shown in Fig. 9. If the attacker withdraws
money from the contract Bridge, the fallback function in the ap-
pointed smart contract recipient will be called. Then the attacker can
fake the Deposit event in the fallback function within the Attacker
contract, to steal tokens.

6.4 Front-end Issue
Some bridges suffer from front-end hijackings, in which websites
or smart contracts are redirected to fake websites or malicious con-
tracts. Specifically, 2 of the total 35 attacks belong to this category.

6.4.1 V10. Front-end Phishing. Front-end phishing refers to a type
of cyberattack where the attacker manipulates the user interface or
the frontend of the bridge to deceive users into revealing sensitive
information or taking malicious actions unwittingly. We demon-
strate 1 real-world attack resulting from this vulnerability, while
the remaining 1 is detailed in Appendix E.4.1.
EVODeFi attack. On Mar-22-2022, an attacker gained unautho-
rized access to the EVODeFi domain by exploiting a bug in Vercel,
which hosts the bridge’s front-end [7]. The attacker was able to
bypass the domain transfer confirmation process, which should
have been required from the legitimate owner, EVODeFi. As a result
of the security breach, the attacker was able to steal $320,000.

7 DEFENSES AND RECOMMENDATIONS
7.1 Existing Defenses
We summarize the existing defenses from real-world attacks, cate-
gorize the defenses into four types: general defenses and defenses
of three types of attacks, including PI, LI, EI, FI (defined in Sec. 6),
and illustrate the defenses with examples.

7.1.1 General Defenses. The general defenses include auditing, bug
bounty, and upgrading vulnerable contracts, which can be applied
to any attack.
Auditing (Au). DApps typically are audited by trusted third parties
(e.g., Certik [35]) before being deployed. The more comprehensively
a DApp is audited, the more secure the project will be.
Bug Bounty (BB). Bug bounty programs can not only motivate white
hats to disclose vulnerabilities before being attacked, but also serve
as rewards for attackers to send the stolen funds back. For example,
Wormhole offered a $10m bug bounty reward in exchange for lost
funds from attackers [61].
Hard Fork (HF). To mitigate severe attacks (e.g., DAO attack on
Ethereum), the blockchain can be upgraded by a hard fork that
requires all nodes and users to update.
Upgrading Vulnerable Contracts (UVC).DApps can fix smart contract
bugs by upgrading contracts. For example, Multichain removed
the vulnerabilities in the token liquidity pool and upgraded new
contracts [106].

7.1.2 Defenses of PI Attacks. Permission issue (PI) attacks are
caused by incorrect permission checks or problematic protocols
(e.g., multiple signatures).
Revoking Infinite Approval (RIA). Developers should avoid asking
for unlimited user approvals, as it can be dangerous. Instead, they
should request only the necessary approvals. For example, Multi-
chain advised its users to revoke approvals on the same day of the
attack (Jan-18-2022) [137].
Increasing Validator Decentralization (IVD). To mitigate the vulner-
ability of key permissions that have leaked, bridges can improve
their security by increasing the number of validators or improving
their decentralization. For example, Ronin Network increased the
number of validators to 21 after being attacked [121].

7.1.3 Defenses of LI Attacks. Smart contract vulnerabilities stem-
ming from logical errors can lead to logic issue attacks. For example,
PolkaBridge [116] attack happened due to the incorrect calculation
of the token price. Bridges typically employ standard defensive
measures to combat such attacks.

7.1.4 Defenses of EI Attacks. Bridges off-chain server monitors on-
chain activities by recording events and performing related actions.
If such events are incorrect, event issue (EI) attacks can occur.
Examining Off-chain Server (EOS). Bridges extract information from
on-chain transactions, store them in off-chain datasets, and perform
operations such as submitting transactions to transfer tokens back
to users. It is common to have vulnerabilities on the off-chain server
since they are not public and may not be audited by others. Thus,
it is non-trivial to examine the implementation of off-chain server
closely and cooperate with the trusted third parities for auditing,
to avoid risks.

7.1.5 Defenses of FI Attacks. Front-end issue (FI) attacks usually
arise when malevolent websites redirect user transfers to attackers.
Bridges employ standard defensive strategies, such as bug bounties,
to prevent or mitigate such attacks.

308

RAID 2024, September 30–October 02, 2024, Padua, Italy Mengya Zhang, Xiaokuan Zhang, Yinqian Zhang, and Zhiqiang Lin

7.2 Recommendations to Developers
Based on our study, this section offers recommendations for de-
velopers building on-chain backends comprising smart contracts
(for blockchain transactions) and off-chain servers (for off-chain
operations).

7.2.1 On-chain Backend. For on-chain backend security, develop-
ers should pay particular attention to smart contracts.
Ensuring proper permission handling code. Developers must thor-
oughly review all possible execution paths regarding permission
checks. Additionally, they can use tools such as Slither [70] to assess
the correctness of the code.
Avoiding unverified smart contract calls. To prevent attacks where
attackers deploy malicious smart contracts and hijack the control
flow to their code, developers should avoid calling unverified smart
contracts, particularly user-specified contracts, unless absolutely
necessary.
Checking return values of external calls. Developers must be mindful
of return values of functions, especially external function calls, as
attackers can leverage inconsistencies caused by unchecked return
values to launch exploits.
Avoiding directly copying code. While copying smart contract code
from popular projects may save time, it can also result in code
with bugs or vulnerabilities. Therefore, developers should closely
examine the code and understand its logic.
Setting longer withdraw latency. Increasing the latency on token
withdrawal can provide developers with additional time to miti-
gate risks. However, it may also affect bridge performance, and
developers must weigh the trade-off between security and speed.
Providing insurance. Bridges can establish insurance for assets to
compensate users in case of an attack, similar to real-world financial
services. While precautions can reduce attack risks, insurance can
mitigate users’ financial losses in the event of an attack.

7.2.2 Off-chain Server. For off-chain server security, developers
can monitor bridge server activities.
Money monitoring. DApps must vigilantly monitor their transac-
tions to prevent losses from copycat or 1-day attacks. For instance,
Ronin [84] was aware of the attack several days after it occurred,
avoiding further attacks. DApps must keep a close eye on transac-
tions with unusual behaviors, such as large transfers of tokens. It
is recommended to receive early alerts for such transactions.

8 OPEN PROBLEMS AND FUTURE
DIRECTIONS

8.1 Security Property Concerns
Q1: Future of bridges: will it be multi-chain? With so many
severe attacks on bridges, it raises doubts on the security of cross-
chain bridges. There are suggestions of replacing existing cross-
chain bridges with the multi-chain solutions, which are blockchains
of blockchains (e.g., Cosmos). According to Vitalik Buterin, the
founder of Ethereum, multi-chain is likely to dominate the future
considering it is more secure [138]. To this end, a systematic study
measuring and comparing the cross-chain bridges and multi-chain
protocols should be performed.

Q2: Trust models: what is the real security level of existing
bridges? According to bridge documentations with trusted or semi-
trustless models (e.g., Horizon Bridge [89]), bridges are always
secured with the guardian from trusted third parties. It is unclear
what the true security level of these bridges is. For example, bridges
with individual validators are more secure than bridges with valida-
tors controlled by a single party. Moreover, trustless bridges claim
to have the same security as the underlying public blockchain. We
should be aware of the true security level. To answer this question,
systematic work studying the security of real-world cross-chain
bridges with different trust levels is needed.

8.2 Bridge Related Issues
Q3: Bridge usages: any financial crime issues? Cross-chain
bridges are now often used for cross-chain transfers and swaps. It
is not clear whether these bridges are used for any illegal purposes,
such asmoney laundering. To avoid being traced and deanonymized,
attackers usually mix their stolen assets; the assets will be ex-
changed between different users, making it difficult to trace their
original accounts. In particular, many attacks move the stolen funds
to bridges in the end. For example, attackers in Hamster rugpull
profited 1,730 BNB tokens along with the Cheese rugpull [44], in
which 900 BNB tokens were sent to the Wormhole bridge. After
cross-chain transfer via bridges, the behaviors of attackers are hard
to analyze and the assets are difficult to trace. With the recent
sanction of Tornado Cash, which is a popular token mixer [45], we
believe that the use of bridges as cash mixers will become more
and more popular. Thus, work to develop systematic frameworks
to analyze illegal activities is definitely in need.
Q4: Inconsistencies: are the bridges as efficient and conve-
nient as they claim to be? Except for the security property, bridges
describe their costs (including both fee and time cost) in their official
documentations. Are these really the same as what they claim to be?
For example, if the bridges claim that the cross-chain transactions
take no more than 20 minutes, can all transactions be completed
within that timeframe? There might be some inconsistencies be-
tween the real-world situations and the ones bridges officially claim.
To understand the bridges deeper and identify those inconsistencies,
bridge-related transactions should be studied.

8.3 Attack Detection and Prevention
Q5: Attack detection: How to detect attacks? Many works [73,
77, 78, 94, 129, 141, 148] focus on detecting blockchain attacks from
the perspectives of smart contracts and transactions. However, it is
yet unclear how these bridge-related attacks can be detected. So far,
there has been only one work [147] detecting cross-chain bridge
attacks; Zhang et al. propose a tool to discover security violations,
detect bridge attacks from transactions, and evaluate the tool on
four cross-chain bridges. However, only three attacks presented
in Sec. 6 can be detected by the proposed tool. With so many se-
vere attacks, we believe that there are urgent needs to propose
a framework that can detect bridge attacks from transactions or
smart contracts.
Q6: Attack prevention: how to prevent attacks? Most of exist-
ing bridge attacks are due to contract bugs, and there will be more

309

Cross-Chain Bridges: Attack Taxonomy, Defenses, and Open Problems RAID 2024, September 30–October 02, 2024, Padua, Italy

attacks in the future. Detecting these attacks in a post-mortem man-
ner is not enough, since it cannot prevent attacks from happening.
Solutions to prevent attacks or principled methods to reduce attack
surfaces are also important to protect the cross-chain bridges.

9 CONCLUSION
In this paper, we provide the first systematic study to understand the
security issues of cross-chain bridges. We first present the models of
existing cross-chain bridges, then identify potential attack surfaces.
We further analyze all the 35 bridge attacks over the period of April
2021 to April 2024, study the fundamental vulnerabilities that lead
to the attacks, and classify them into three categories based on the
vulnerabilities exploited by the attacker. We summarize existing
defenses and provide recommendations for developers to build
a secure bridge ecosystem. We also discuss open problems and
future research directions. Our work provides a holistic view of
security issues of cross-chain bridges, and the insights are valuable
for facilitating future research in the field.

ACKNOWLEDGMENTS
We thank the anonymous reviewers for their insightful suggestions
and comments. This research was partly supported by an Ethereum
Foundation Academic Grant and a gift from Forta Network. Yinqian
Zhang was also supported in part by the Shenzhen Science and
Technology Program under Grants JSGG202208310956030.

REFERENCES
[1] Aave. 2023. Aave Document Hub. https://docs.aave.com/hub/.
[2] Aave. 2023. Aave Governance Cross-Chain Bridges. https://github.com/aave/

governance-crosschain-bridges.
[3] Allbridge. 2023. Allbridge Docs. https://docs.allbridge.io/allbridge-overview/n

etworks-and-tokens.
[4] André Augusto, Rafael Belchior, Miguel Correia, André Vasconcelos, Luyao

Zhang, and Thomas Hardjono. 2023. Sok: Security and privacy of blockchain
interoperability. Authorea Preprints (2023).

[5] B2Broker. 2022. How Do Liquidity Pools Work in Crypto? https://b2broker.c
om/news/how-do-liquidity-pools-work-in-crypto/.

[6] Adam Back, Matt Corallo, Luke Dashjr, Mark Friedenbach, Gregory Maxwell,
AndrewMiller, Andrew Poelstra, Jorge Timón, and Pieter Wuille. 2014. Enabling
blockchain innovations with pegged sidechains. URL: http://www. opensciencere-
view. com/papers/123/enablingblockchain-innovations-with-pegged-sidechains 72
(2014), 201–224.

[7] BanklessTimes. 2022. Crypto platform EVODeFi loses $320K in hack. https:
//www.banklesstimes.com/news/2022/03/22/crypto-platform-evodefi-loses-
dollar320k-in-hack/.

[8] Rafael Belchior, Peter Somogyvari, Jonas Pfannschmidt, André Vasconcelos,
and Miguel Correia. 2023. Hephaestus: Modeling, Analysis, and Performance
Evaluation of Cross-Chain Transactions. IEEE Transactions on Reliability (2023).

[9] Rafael Belchior, André Vasconcelos, Sérgio Guerreiro, and Miguel Correia. 2021.
A survey on blockchain interoperability: Past, present, and future trends. ACM
Computing Surveys (CSUR) 54, 8 (2021), 1–41.

[10] Bitcoin.com. 2022. Binance-Backed Blockchain Completes Hard Fork to Mitigate
Future Cross-Chain Bridge Hacks. https://news.bitcoin.com/binance-backed-bl
ockchain-completes-hard-fork-to-mitigate-future-cross-chain-bridge-hacks/.

[11] The Block. 2022. Hacker drains $2 million from QAN platform bridge, token
slumps 94%. https://www.theblock.co/post/176118/hacker-drains-1-million-
from-qanplatform-bridge-token-slumps-94.

[12] Blockchainhub. 2023. Decentralized Applications – dApps. https://blockchain
hub.net/decentralized-applications-dapps/.

[13] LI.FI Blog. 2022. LI.FI Smart Contract Vulnerability Post Mortem. https://blog.li.
fi/20th-march-the-exploit-e9e1c5c03eb9.

[14] BNB. 2023. Binance Smart Chain. https://github.com/bnb-chain/whitepaper/b
lob/master/WHITEPAPER.md.

[15] BoringDao. 2023. BoringDao Docs. https://docs.boringdao.com/.

[16] Michael Borkowski, Daniel McDonald, Christoph Ritzer, and Stefan Schulte.
2018. Towards atomic cross-chain token transfers: State of the art and open
questions within tast. Distributed Systems Group TU Wien (Technische Universit
at Wien), Report 8 (2018).

[17] Anyswap Bridge. 2023. Anyswap DEX User Guide. https://anyswap-faq.readth
edocs.io/en/latest/index.html.

[18] Cross-Chain Bridge. 2023. Cross-Chain Bridge Docs - Conneted Networks.
https://docs.crosschainbridge.org/connected-networks.

[19] Hyphen Bridge. 2023. Hyphen Bridge. https://hyphen.biconomy.io/bridge.
[20] Orbit Bridge. 2023. Orbit Bridge FAQs. https://bridge.orbitchain.io/questions.
[21] Plasma Bridge. 2023. Plasma Bridge. https://docs.polygon.technology/docs/dev

elop/ethereum-polygon/plasma/getting-started/.
[22] Portal Token Bridge. 2023. Portal Token Bridge - Introduction. https://docs.wor

mhole.com/wormhole/.
[23] Synapse Bridge. 2023. Welcome to Synapse. https://docs.synapseprotocol.com.
[24] Wormhole Bridge. 2023. Wormhole Bridge. https://wormholebridge.com/.
[25] Vitalik Buterin. 2016. Chain interoperability. R3 Research Paper 9 (2016).
[26] Satellite by Alexar. 2023. Satellite by Alexar Docs. https://docs.axelar.dev/reso

urces/mainnet.
[27] Horizon by Harmony. 2023. Harmony ONE-ETH Bridge. https://bridge.harmo

ny.one/busd.
[28] Solana Cashio. 2023. Solana Cashio. https://www.solanacash.io.
[29] Celer cBridge. 2023. Celer cBridge. https://cbridge.celer.network/1/56/USDC.
[30] Celer cBridge. 2023. State Guardian Network. https://cbridge-docs.celer.netwo

rk/introduction/state-guardian-network.
[31] Celer cBridge. 2023. Welcome to cBridge. https://cbridge-docs.celer.network.
[32] Cennznet. 2023. BLOCKCHAIN FOR THE OPEN METAVERSE. https://cennz.

net.
[33] CertiK. 2021. PolyNetwork Attack Analysis. https://certik.medium.com/polyne

twork-hack-analysis-a86513f2a730.
[34] CertiK. 2022. Nomad Bridge Exploit Incident Analysis. https://www.certik

.com/resources/blog/28fMavD63CpZJOKOjb9DX3-nomad-bridge-exploit-
incident-analysis.

[35] Certik. 2023. CertiK Blockchain Security Leaderboard. https://www.certik.com/.
[36] Cross chain Loans. 2022. Cross-chain Loans - Decentralized lending marketplace

across blockchains. https://crosschain.loans/.
[37] Chainalysis. 2022. Lessons from the Wormhole Exploit: Smart Contract Vul-

nerabilities Introduce Risk; Blockchains’ Transparency Makes It Hard for Bad
Actors to Cash Out. https://blog.chainalysis.com/reports/wormhole-hack-
february-2022/.

[38] ChainBridge. 2023. ChainBridge Overview. https://chainbridge.chainsafe.io.
[39] Chainlink. 2023. Chainlink: Blockchain Oracles for Hybrid Smart Contracts.

https://chain.link.
[40] Chainlink. 2023. Chainlink: Blockchain Oracles for Hybrid Smart Contracts.

https://chain.link/cross-chain.
[41] ChainPort. 2023. ChainPort Docs. https://docs.chainport.io/chainport/chainpor

t-features.
[42] Chainspot. 2023. Soy Bridge. https://chainspot.io/bridge/soy-bridge.
[43] ChainSwap. 2023. The cross-chain hub for all ecosystems. https://chainswap.co

m.
[44] CoinCodeCap. 2022. Hamster Coin Rugged: Reportedly 1,730 BNB Lost. https:

//coincodecap.com/hamster-coin-rugged-reportedly-1730-bnb-lost.
[45] Coindesk. 2022. US Treasury’s Tornado Cash Sanctions Are ‘Unprecedented,’

Warns Congressman. https://www.coindesk.com/policy/2022/08/18/treasury-
tornado-cash-sanctions-are-unprecedented-warns-us-congressman/.

[46] Coindesk. 2023. What Are Wrapped Tokens? https://www.coindesk.com/learn
/what-are-wrapped-tokens/.

[47] CoinGeek. 2021. Solana sees first rug pull: Luna Yield disappears with $6.7M in
digital currency. https://coingeek.com/solana-sees-first-rug-pull-luna-yield-
disappears-with-6-7m-in-digital-currency/.

[48] CoinYuppie. 2022. In-depth analysis of four types of cross-chain bridges and
their risks. https://coinyuppie.com/in-depth-analysis-of-four-types-of-cross-
chain-bridges-and-their-risks/.

[49] Connext. 2021. nxtp: A simpler xchain protocol. https://blog.connext.network
/nxtp-a-simpler-xchain-protocol-88760697ea04.

[50] Blockchain Council. 2023. Blockchain & Role of P2P Network. https://www.bl
ockchain-council.org/blockchain/blockchain-role-of-p2p-network/.

[51] CryptoBriefing. 2022. BNB Chain’s $566M Hack: Binance Network’s Major
Bridge Attack Unpacked. https://cryptobriefing.com/bnb-chain-566m-hack-
binance-networks-major-bridge-attack-unpacked/.

[52] Cryptonomist. 2022. Rubic DEX loses $1 million in crypto to hacker attack.
https://en.cryptonomist.ch/2022/11/03/dex-rubic-loses-1-million-crypto/.

[53] Coin Culture. 2021. White Hat Saves Polygon from $850 Million Hack. https:
//coinculture.com/au/tech/white-hat-saves-polygon-from-850million-hack/.

[54] Axie DAO. 2023. We are the Axie DAO. https://axiedao.org/.
[55] DappRadar. 2022. Staking - RADAR Token - DappRadar. https://dappradar.co

m/token/staking.

310

https://docs.aave.com/hub/
https://github.com/aave/governance-crosschain-bridges
https://github.com/aave/governance-crosschain-bridges
https://docs.allbridge.io/allbridge-overview/networks-and-tokens
https://docs.allbridge.io/allbridge-overview/networks-and-tokens
https://b2broker.com/news/how-do-liquidity-pools-work-in-crypto/
https://b2broker.com/news/how-do-liquidity-pools-work-in-crypto/
https://www.banklesstimes.com/news/2022/03/22/crypto-platform-evodefi-loses-dollar320k-in-hack/
https://www.banklesstimes.com/news/2022/03/22/crypto-platform-evodefi-loses-dollar320k-in-hack/
https://www.banklesstimes.com/news/2022/03/22/crypto-platform-evodefi-loses-dollar320k-in-hack/
https://news.bitcoin.com/binance-backed-blockchain-completes-hard-fork-to-mitigate-future-cross-chain-bridge-hacks/
https://news.bitcoin.com/binance-backed-blockchain-completes-hard-fork-to-mitigate-future-cross-chain-bridge-hacks/
https://www.theblock.co/post/176118/hacker-drains-1-million-from-qanplatform-bridge-token-slumps-94
https://www.theblock.co/post/176118/hacker-drains-1-million-from-qanplatform-bridge-token-slumps-94
https://blockchainhub.net/decentralized-applications-dapps/
https://blockchainhub.net/decentralized-applications-dapps/
https://blog.li.fi/20th-march-the-exploit-e9e1c5c03eb9
https://blog.li.fi/20th-march-the-exploit-e9e1c5c03eb9
https://github.com/bnb-chain/whitepaper/blob/master/WHITEPAPER.md
https://github.com/bnb-chain/whitepaper/blob/master/WHITEPAPER.md
https://docs.boringdao.com/
https://anyswap-faq.readthedocs.io/en/latest/index.html
https://anyswap-faq.readthedocs.io/en/latest/index.html
https://docs.crosschainbridge.org/connected-networks
https://hyphen.biconomy.io/bridge
https://bridge.orbitchain.io/questions
https://docs.polygon.technology/docs/develop/ethereum-polygon/plasma/getting-started/
https://docs.polygon.technology/docs/develop/ethereum-polygon/plasma/getting-started/
https://docs.wormhole.com/wormhole/
https://docs.wormhole.com/wormhole/
https://docs.synapseprotocol.com
https://wormholebridge.com/
https://docs.axelar.dev/resources/mainnet
https://docs.axelar.dev/resources/mainnet
https://bridge.harmony.one/busd
https://bridge.harmony.one/busd
https://www.solanacash.io
https://cbridge.celer.network/1/56/USDC
https://cbridge-docs.celer.network/introduction/state-guardian-network
https://cbridge-docs.celer.network/introduction/state-guardian-network
https://cbridge-docs.celer.network
https://cennz.net
https://cennz.net
https://certik.medium.com/polynetwork-hack-analysis-a86513f2a730
https://certik.medium.com/polynetwork-hack-analysis-a86513f2a730
https://www.certik.com/resources/blog/28fMavD63CpZJOKOjb9DX3-nomad-bridge-exploit-incident-analysis
https://www.certik.com/resources/blog/28fMavD63CpZJOKOjb9DX3-nomad-bridge-exploit-incident-analysis
https://www.certik.com/resources/blog/28fMavD63CpZJOKOjb9DX3-nomad-bridge-exploit-incident-analysis
https://www.certik.com/
https://crosschain.loans/
https://blog.chainalysis.com/reports/wormhole-hack-february-2022/
https://blog.chainalysis.com/reports/wormhole-hack-february-2022/
https://chainbridge.chainsafe.io
https://chain.link
https://chain.link/cross-chain
https://docs.chainport.io/chainport/chainport-features
https://docs.chainport.io/chainport/chainport-features
https://chainspot.io/bridge/soy-bridge
https://chainswap.com
https://chainswap.com
https://coincodecap.com/hamster-coin-rugged-reportedly-1730-bnb-lost
https://coincodecap.com/hamster-coin-rugged-reportedly-1730-bnb-lost
https://www.coindesk.com/policy/2022/08/18/treasury-tornado-cash-sanctions-are-unprecedented-warns-us-congressman/
https://www.coindesk.com/policy/2022/08/18/treasury-tornado-cash-sanctions-are-unprecedented-warns-us-congressman/
https://www.coindesk.com/learn/what-are-wrapped-tokens/
https://www.coindesk.com/learn/what-are-wrapped-tokens/
https://coingeek.com/solana-sees-first-rug-pull-luna-yield-disappears-with-6-7m-in-digital-currency/
https://coingeek.com/solana-sees-first-rug-pull-luna-yield-disappears-with-6-7m-in-digital-currency/
https://coinyuppie.com/in-depth-analysis-of-four-types-of-cross-chain-bridges-and-their-risks/
https://coinyuppie.com/in-depth-analysis-of-four-types-of-cross-chain-bridges-and-their-risks/
https://blog.connext.network/nxtp-a-simpler-xchain-protocol-88760697ea04
https://blog.connext.network/nxtp-a-simpler-xchain-protocol-88760697ea04
https://www.blockchain-council.org/blockchain/blockchain-role-of-p2p-network/
https://www.blockchain-council.org/blockchain/blockchain-role-of-p2p-network/
https://cryptobriefing.com/bnb-chain-566m-hack-binance-networks-major-bridge-attack-unpacked/
https://cryptobriefing.com/bnb-chain-566m-hack-binance-networks-major-bridge-attack-unpacked/
https://en.cryptonomist.ch/2022/11/03/dex-rubic-loses-1-million-crypto/
https://coinculture.com/au/tech/white-hat-saves-polygon-from-850million-hack/
https://coinculture.com/au/tech/white-hat-saves-polygon-from-850million-hack/
https://axiedao.org/
https://dappradar.com/token/staking
https://dappradar.com/token/staking

RAID 2024, September 30–October 02, 2024, Padua, Italy Mengya Zhang, Xiaokuan Zhang, Yinqian Zhang, and Zhiqiang Lin

[56] DappRadar. 2024. Dapp Industry Hits Record 5.3 Million dUAW. https://dappra
dar.com/blog/dapp-industry-hits-record-5-3-million-duaw/.

[57] Rekt Database. 2023. Bridge Attacks. https://de.fi/rekt-database.
[58] REKT Database. 2023. Multichain Attack. https://de.fi/rekt-database/multichai

n.
[59] Rekt Database. 2024. Biggest Crypto Hacks & Scams - DeFi REKT Database.

https://de.fi/rekt-database.
[60] DefiLlama. 2024. DefiLlama - Hacks. https://defillama.com/hacks.
[61] DEFIYIELD.App. 2022. Wormhole exploit: the second-largest DeFi hack ever.

https://blog.defiyield.app/wormhole-exploit-the-second-largest-defi-hack-
ever-237ed5c81670.

[62] Ethereum. 2023. ERC-20 TOKEN STANDARD. https://ethereum.org/en/develo
pers/docs/standards/tokens/erc-20/.

[63] Ethereum. 2023. GAS AND FEES. https://ethereum.org/en/developers/docs/ga
s/.

[64] Ethereum. 2023. INTRODUCTION TO SMART CONTRACTS. https://ethereum
.org/en/developers/docs/smart-contracts/.

[65] Ethereum. 2023. Welcome to Ethereum. https://ethereum.org/en/.
[66] Etherscan. 2022. Ethereum Transaction Hash (Txhash) Details. https://ethersca

n.io/tx/0xa5fe9d044e4f3e5aa5bc4c0709333cd2190cba0f4e7f16bcf73f49f83e4a
5460.

[67] Etherscan. 2023. Address. https://etherscan.io/address/0xa8c83b1b30291a3a1a1
18058b5445cc83041cd9d.

[68] Etherscan. 2023. Null Address. https://etherscan.io/address/0x000000000000000
0000000000000000000000000.

[69] Binance Feed. 2022. Rubic Lost More Than $1.4 Million Due To The Hack.
https://www.binance.com/en/feed/post/134659.

[70] Josselin Feist, Gustavo Grieco, and Alex Groce. 2019. Slither: A Static Analysis
Framework for Smart Contracts. In 2019 IEEE/ACM 2nd International Workshop
on Emerging Trends in Software Engineering for Blockchain (WETSEB). IEEE.
https://doi.org/10.1109/wetseb.2019.00008

[71] Dezentralized Finance. 2024. Cross Chain Bridges. https://dezentralizedfinance
.com/cross-chain-bridges/.

[72] Fantom Foundation. 2023. Intro to Fantom. https://fantom.foundation/intro-to-
fantom/.

[73] Joel Frank, Cornelius Aschermann, and Thorsten Holz. 2020. {ETHBMC}: A
Bounded Model Checker for Smart Contracts. In 29th USENIX Security Sympo-
sium (USENIX Security 20). 2757–2774.

[74] Fusion. 2023. Distributed Control Rights Management. https://www.fusion.org
/tech/dcrm.

[75] United Gamers. 2022. RUG PULL OR FUD? BLOCKVERSE DISAPPEARS, REAP-
PEARS, CONFUSES US ALL. https://www.unitedgamers.gg/news/blockverse-
rupull-fud/.

[76] Peter Gaži, Aggelos Kiayias, and Dionysis Zindros. 2019. Proof-of-stake
sidechains. In 2019 IEEE Symposium on Security and Privacy (SP). IEEE, 139–156.

[77] Gustavo Grieco, Will Song, Artur Cygan, Josselin Feist, and Alex Groce. 2020.
Echidna: effective, usable, and fast fuzzing for smart contracts. In Proceedings
of the 29th ACM SIGSOFT International Symposium on Software Testing and
Analysis.

[78] Shelly Grossman, Ittai Abraham, Guy Golan-Gueta, Yan Michalevsky, Noam
Rinetzky, Mooly Sagiv, and Yoni Zohar. 2017. Online detection of effectively
callback free objects with applications to smart contracts. Proceedings of the
ACM on Programming Languages (2017).

[79] Joël Gugger. 2020. Bitcoin-monero cross-chain atomic swap. Cryptology ePrint
Archive (2020).

[80] Hacken. 2023. Heco Bridge Hack Explained. https://hacken.io/insights/heco-
bridge-hack-explained/.

[81] Halborn. 2021. EXPLAINED: THE MULTICHAIN HACK (JANUARY 2022).
https://halborn.com/explained-the-multichain-hack-january-2022/.

[82] Halborn. 2021. EXPLAINED: THE PNETWORK HACK (SEPTEMBER 2021).
https://halborn.com/explained-the-pnetwork-hack-september-2021/.

[83] HALBORN. 2022. EXPLAINED: THE NOMAD HACK (AUGUST 2022). https:
//halborn.com/explained-the-nomad-hack-august-2022/.

[84] HALBORN. 2022. EXPLAINED: THE RONIN HACK (MARCH 2022). https:
//halborn.com/explained-the-ronin-hack-march-2022/.

[85] HALBORN. 2022. Harmony’s Horizon Bridge Attack: How $100Mwas Siphoned
Off By a Hacker. https://hackernoon.com/harmonys-horizon-bridge-attack-
how-dollar100m-was-siphoned-by-a-hacker.

[86] Halborn. 2023. EXPLAINED: THE ORBIT BRIDGE HACK (DECEMBER 2023).
https://www.halborn.com/blog/post/explained- the-orbit-bridge-hack-
december-2023.

[87] Halborn. 2023. Halborn Blockchain Security Firm: Ethical Hackers, Infosec.
https://halborn.com/.

[88] Halborn. 2024. EXPLAINED: THE SOCKET PROTOCOL HACK (JANUARY
2024). https://www.halborn.com/blog/post/explained-the-socket-protocol-
hack-january-2024.

[89] Harmony. 2023. Horizon Bridge - Harmony. https://docs.harmony.one/home/
general/bridges.

[90] Coinbase Help. 2023. Tether (USDT) - Coinbase Help. https://help.coinbase.co
m/en/coinbase/getting-started/crypto-education/usdt.

[91] Maurice Herlihy. 2018. Atomic cross-chain swaps. In Proceedings of the 2018
ACM symposium on principles of distributed computing. 245–254.

[92] Hop. 2023. Hop Exchange. https://bridge.connext.network/.
[93] IBM. 2023. What is blockchain technology? https://www.ibm.com/topics/what-

is-blockchain.
[94] Bo Jiang, Ye Liu, and WK Chan. 2018. Contractfuzzer: Fuzzing smart contracts

for vulnerability detection. In 2018 33rd IEEE/ACM International Conference on
Automated Software Engineering (ASE). IEEE, 259–269.

[95] Aggelos Kiayias and Dionysis Zindros. 2020. Proof-of-work sidechains. In
Financial Cryptography and Data Security: FC 2019 International Workshops,
VOTING and WTSC, St. Kitts, St. Kitts and Nevis, February 18–22, 2019, Revised
Selected Papers 23. Springer, 21–34.

[96] Numen Cyber Labs. 2023. Poolz Finance Attacked for $665,000. https://medium
.com/@numencyberlabs/poolz-finance-attacked-for-665-000-56084cacae53.

[97] Sung-Shine Lee, Alexandr Murashkin, Martin Derka, and Jan Gorzny. 2023. Sok:
Not quite water under the bridge: Review of cross-chain bridge hacks. In 2023
IEEE International Conference on Blockchain and Cryptocurrency (ICBC). IEEE.

[98] Xiubo Liang, Yu Zhao, Junhan Wu, and Keting Yin. 2022. A Privacy Protection
Scheme for Cross-Chain Transactions Based on Group Signature and Relay
Chain. International Journal of Digital Crime and Forensics (IJDCF) 14, 2 (2022),
1–20.

[99] LI.FI. 2023. Advanced Bridge & DEX Aggregation. https://li.f i.
[100] Sky Mavis. 2023. Blockchain: Gamified. https://www.skymavis.com/.
[101] Patrick McCorry, Chris Buckland, Bennet Yee, and Dawn Song. 2021. Sok:

Validating bridges as a scaling solution for blockchains. Cryptology ePrint
Archive (2021).

[102] Meter. 2023. THE FUTURE IS MULTI-CHAIN. https://meter.io.
[103] Meter.io. 2022. Community, unfortunately Meter Passport was hacked a few

hours ago. https://twitter.com/Meter_IO/status/1490045486606139392.
[104] Mahdi H Miraz and David C Donald. 2019. Atomic cross-chain swaps: devel-

opment, trajectory and potential of non-monetary digital token swap facilities.
arXiv preprint arXiv:1902.04471 (2019).

[105] Moonscan. 2022. Moonbeam Transaction Hash (Txhash) Details. https://moon
scan.io/tx/0xcca9299c739a1b538150af007a34aba516b6dade1965e80198be021e3
166fe4c.

[106] Multichain. 2022. Multichain Contract Vulnerability Post Mortem. https:
//medium.com/multichainorg/multichain-contract-vulnerability-post-
mortem-d37bfab237c8.

[107] Multichain. 2023. Multichain Supported Chains. https://docs.multichain.org/ge
tting-started/introduction/supported-chains.

[108] Neptune Mutual. 2022. Decoding Omni Bridge’s Call Data Replay Exploit.
https://medium.com/neptune-mutual/decoding-omni-bridges-call-data-
replay-exploit-f1c7e339a7e8.

[109] Near. 2023. ETH <> NEAR Rainbow Bridge - NEAR Protocol. https://near.org/b
ridge/.

[110] Razor Network. 2021. ChainSwap Exploit Post-Mortem. https://medium.com/r
azor-network/chainswap-exploit-post-mortem-d73f5d15ce3c.

[111] Ronin Network. 2023. Ronin Network. https://bridge.roninchain.com/.
[112] Crypto News. 2022. pNetwork Clears the Air After Rumored Over $1B Breach

on Their Platform. https://crypto.news/pnetwork-clears- the-air-af ter-
rumored-over-1b-breach-on-their-platform/.

[113] Nomad. 2023. Nomad | Bridge. https://app.nomad.xyz/.
[114] Nomad. 2023. Nomad Docs. https://docs.nomad.xyz/token-bridge/how-to-

bridge.
[115] Optics. 2023. Bridges By Optics v2. https://optics.app/.
[116] PolkaBridge. 2023. First Cross-Chain & MultiChain AMM. https://polkabridge.

org.
[117] Polygon. 2023. Getting started with Polygon Proof of Stake chain. https:

//wallet.polygon.technology.
[118] Polygon. 2023. Polygon - Ethereum’s Internet of Blockchains. https://polygon.

technology/lightpaper-polygon.pdf.
[119] PolyNetwork. 2023. Enhancing connections between ledgers by providing

interoperability in Web 3.0. https://poly.network/.
[120] Metaverse Post. 2022. WonderHero Token Collapses After Hack. https://mpost.

io/wonderhero-token-collapses-after-hack/.
[121] Crypto Potato. 2022. Ronin Network Announces Bridge Restart Date Three

Months After $625M Hack. https://cryptopotato.com/ronin-network-
announces-bridge-restart-date-three-months-after-625m-hack/.

[122] Ethereum Improvement Proposals. 2023. EIP-721: Non-Fungible Token Standard.
https://eips.ethereum.org/EIPS/eip-721.

[123] Across Protocol. 2023. Across Protocol. https://across.to/bridge.
[124] Map Protocol. 2023. Map Protocol.: Secure Omnichain Layer for Web3 & dApps.

https://www.mapprotocol.io.
[125] Qubit. 2023. Driving growth with personalization. Make ecommerce More

personal. https://www.qubit.com.

311

https://dappradar.com/blog/dapp-industry-hits-record-5-3-million-duaw/
https://dappradar.com/blog/dapp-industry-hits-record-5-3-million-duaw/
https://de.fi/rekt-database
https://de.fi/rekt-database/multichain
https://de.fi/rekt-database/multichain
https://de.fi/rekt-database
https://defillama.com/hacks
https://blog.defiyield.app/wormhole-exploit-the-second-largest-defi-hack-ever-237ed5c81670
https://blog.defiyield.app/wormhole-exploit-the-second-largest-defi-hack-ever-237ed5c81670
https://ethereum.org/en/developers/docs/standards/tokens/erc-20/
https://ethereum.org/en/developers/docs/standards/tokens/erc-20/
https://ethereum.org/en/developers/docs/gas/
https://ethereum.org/en/developers/docs/gas/
https://ethereum.org/en/developers/docs/smart-contracts/
https://ethereum.org/en/developers/docs/smart-contracts/
https://ethereum.org/en/
 https://etherscan.io/tx/0xa5fe9d044e4f3e5aa5bc4c0709333cd2190cba0f4e7f16bcf73f49f83e4a5460
 https://etherscan.io/tx/0xa5fe9d044e4f3e5aa5bc4c0709333cd2190cba0f4e7f16bcf73f49f83e4a5460
 https://etherscan.io/tx/0xa5fe9d044e4f3e5aa5bc4c0709333cd2190cba0f4e7f16bcf73f49f83e4a5460
 https://etherscan.io/address/0xa8c83b1b30291a3a1a118058b5445cc83041cd9d
 https://etherscan.io/address/0xa8c83b1b30291a3a1a118058b5445cc83041cd9d
 https://etherscan.io/address/0x00
 https://etherscan.io/address/0x00
https://www.binance.com/en/feed/post/134659
https://doi.org/10.1109/wetseb.2019.00008
https://dezentralizedfinance.com/cross-chain-bridges/
https://dezentralizedfinance.com/cross-chain-bridges/
https://fantom.foundation/intro-to-fantom/
https://fantom.foundation/intro-to-fantom/
https://www.fusion.org/tech/dcrm
https://www.fusion.org/tech/dcrm
https://www.unitedgamers.gg/news/blockverse-rupull-fud/
https://www.unitedgamers.gg/news/blockverse-rupull-fud/
https://hacken.io/insights/heco-bridge-hack-explained/
https://hacken.io/insights/heco-bridge-hack-explained/
https://halborn.com/explained-the-multichain-hack-january-2022/
https://halborn.com/explained-the-pnetwork-hack-september-2021/
https://halborn.com/explained-the-nomad-hack-august-2022/
https://halborn.com/explained-the-nomad-hack-august-2022/
https://halborn.com/explained-the-ronin-hack-march-2022/
https://halborn.com/explained-the-ronin-hack-march-2022/
https://hackernoon.com/harmonys-horizon-bridge-attack-how-dollar100m-was-siphoned-by-a-hacker
https://hackernoon.com/harmonys-horizon-bridge-attack-how-dollar100m-was-siphoned-by-a-hacker
https://www.halborn.com/blog/post/explained-the-orbit-bridge-hack-december-2023
https://www.halborn.com/blog/post/explained-the-orbit-bridge-hack-december-2023
https://halborn.com/
https://www.halborn.com/blog/post/explained-the-socket-protocol-hack-january-2024
https://www.halborn.com/blog/post/explained-the-socket-protocol-hack-january-2024
https://docs.harmony.one/home/general/bridges
https://docs.harmony.one/home/general/bridges
https://help.coinbase.com/en/coinbase/getting-started/crypto-education/usdt
https://help.coinbase.com/en/coinbase/getting-started/crypto-education/usdt
https://bridge.connext.network/
https://www.ibm.com/topics/what-is-blockchain
https://www.ibm.com/topics/what-is-blockchain
https://medium.com/@numencyberlabs/poolz-finance-attacked-for-665-000-56084cacae53
https://medium.com/@numencyberlabs/poolz-finance-attacked-for-665-000-56084cacae53
https://li.fi
https://www.skymavis.com/
https://meter.io
https://twitter.com/Meter_IO/status/1490045486606139392
 https://moonscan.io/tx/0xcca9299c739a1b538150af007a34aba516b6dade1965e80198be021e3166fe4c
 https://moonscan.io/tx/0xcca9299c739a1b538150af007a34aba516b6dade1965e80198be021e3166fe4c
 https://moonscan.io/tx/0xcca9299c739a1b538150af007a34aba516b6dade1965e80198be021e3166fe4c
https://medium.com/multichainorg/multichain-contract-vulnerability-post-mortem-d37bfab237c8
https://medium.com/multichainorg/multichain-contract-vulnerability-post-mortem-d37bfab237c8
https://medium.com/multichainorg/multichain-contract-vulnerability-post-mortem-d37bfab237c8
https://docs.multichain.org/getting-started/introduction/supported-chains
https://docs.multichain.org/getting-started/introduction/supported-chains
https://medium.com/neptune-mutual/decoding-omni-bridges-call-data-replay-exploit-f1c7e339a7e8
https://medium.com/neptune-mutual/decoding-omni-bridges-call-data-replay-exploit-f1c7e339a7e8
https://near.org/bridge/
https://near.org/bridge/
https://medium.com/razor-network/chainswap-exploit-post-mortem-d73f5d15ce3c
https://medium.com/razor-network/chainswap-exploit-post-mortem-d73f5d15ce3c
https://bridge.roninchain.com/
https://crypto.news/pnetwork-clears-the-air-after-rumored-over-1b-breach-on-their-platform/
https://crypto.news/pnetwork-clears-the-air-after-rumored-over-1b-breach-on-their-platform/
https://app.nomad.xyz/
https://docs.nomad.xyz/token-bridge/how-to-bridge
https://docs.nomad.xyz/token-bridge/how-to-bridge
https://optics.app/
https://polkabridge.org
https://polkabridge.org
https://wallet.polygon.technology
https://wallet.polygon.technology
https://polygon.technology/lightpaper-polygon.pdf
https://polygon.technology/lightpaper-polygon.pdf
https://poly.network/
https://mpost.io/wonderhero-token-collapses-after-hack/
https://mpost.io/wonderhero-token-collapses-after-hack/
https://cryptopotato.com/ronin-network-announces-bridge-restart-date-three-months-after-625m-hack/
https://cryptopotato.com/ronin-network-announces-bridge-restart-date-three-months-after-625m-hack/
https://eips.ethereum.org/EIPS/eip-721
https://across.to/bridge
https://www.mapprotocol.io
https://www.qubit.com

Cross-Chain Bridges: Attack Taxonomy, Defenses, and Open Problems RAID 2024, September 30–October 02, 2024, Padua, Italy

[126] RazorNetwork. 2023. Truly decentralized oracle network for decentralized.
https://razor.network.

[127] REKT. 2023. HYPR NETWORK - REKT. https://rekt.news/hypr-network-rekt/.
[128] Log Rocket. 2021. Substrate blockchain development: Core concepts. https:

//blog.logrocket.com/substrate-blockchain-framework-core-concepts/.
[129] Michael Rodler, Wenting Li, Ghassan Karame, and Lucas Davi. 2019. Sereum:

Protecting Existing Smart Contracts Against Re-EntrancyAttacks. In Proceedings
of the 26th Network and Distributed System Security Symposium.

[130] Narges Shadab, Farzin Houshmand, andMohsen Lesani. 2020. Cross-chain trans-
actions. In 2020 IEEE International Conference on Blockchain and Cryptocurrency
(ICBC). IEEE, 1–9.

[131] Amritraj Singh, Kelly Click, Reza M Parizi, Qi Zhang, Ali Dehghantanha, and
Kim-Kwang Raymond Choo. 2020. Sidechain technologies in blockchain net-
works: An examination and state-of-the-art review. Journal of Network and
Computer Applications 149 (2020), 102471.

[132] SlowMist. 2021. SlowMist: Analysis of Three Consecutive Attacks on THOR-
Chain (Released in 2021). https://slowmist.medium.com/slowmist-analysis-of-
three-consecutive-attacks-on-thorchain-6223f1c691be.

[133] SlowMist. 2022. Truth Behind the Celer Network cBridge cross-chain bridge
incident: BGP hijacking. https://medium.com/coinmonks/truth-behind-the-cele
r-network-cbridge-cross-chain-bridge-incident-bgp-hijacking-52556227e940.

[134] Stargate. 2023. Welcome to the omnichain future. https://stargate.finance.
[135] Hong Su, Bing Guo, Jun Yu Lu, and Xinhua Suo. 2022. Cross-chain exchange by

transaction dependence with conditional transaction method. Soft Computing
26, 3 (2022), 961–976.

[136] Synapse. 2023. Synapse. https://synapseprotocol.com/.
[137] Coin Telegraph. 2022. Multichain asks users to revoke approvals amid ‘critical

vulnerability’. https://cointelegraph.com/news/multichain-asks-users-to-
revoke-approvals-amid-critical-vulnerability.

[138] Coin Telegraph. 2022. Vitalik Buterin gives thumbs down to cross-chain appli-
cations. https://cointelegraph.com/news/vitalik-buterin-gives-thumbs-down-
to-cross-chain-applications.

[139] ThunderCore. 2023. ThunderCore Docs. https://docs.developers.thundercore.
com/product-protocol/bridges/interact-with-thundercore-bridge.

[140] Sri AravindaKrishnan Thyagarajan, Giulio Malavolta, and Pedro Moreno-
Sanchez. 2022. Universal atomic swaps: Secure exchange of coins across all
blockchains. In 2022 IEEE Symposium on Security and Privacy (SP). IEEE, 1299–
1316.

[141] Christof Ferreira Torres, Julian Schütte, and Radu State. 2018. Osiris: Hunting
for integer bugs in ethereum smart contracts. In Proceedings of the 34th Annual
Computer Security Applications Conference. 664–676.

[142] Gang Wang. 2021. Sok: Exploring blockchains interoperability. Cryptology
ePrint Archive (2021).

[143] Wenqi Wang, Zhiwei Zhang, Guoren Wang, and Ye Yuan. 2022. Efficient Cross-
Chain Transaction Processing on Blockchains. Applied Sciences (2022).

[144] xDAI Bridge. 2023. xDAI Bridge - Gnosis Chain. https://bridge.gnosischain.com.
[145] Alexei Zamyatin, Mustafa Al-Bassam, Dionysis Zindros, Eleftherios Kokoris-

Kogias, Pedro Moreno-Sanchez, Aggelos Kiayias, and William J Knottenbelt.
2021. Sok: Communication across distributed ledgers. In International Conference
on Financial Cryptography and Data Security. Springer, 3–36.

[146] Ryan Zarick, Bryan Pellegrino, and Caleb Banister. 2021. Layerzero: Trustless
omnichain interoperability protocol. arXiv preprint arXiv:2110.13871 (2021).

[147] Jiashuo Zhang, Jianbo Gao, Yue Li, Ziming Chen, Zhi Guan, and Zhong Chen.
2022. Xscope: Hunting for Cross-Chain Bridge Attacks. arXiv preprint
arXiv:2208.07119 (2022).

[148] Mengya Zhang, Xiaokuan Zhang, Yinqian Zhang, and Zhiqiang Lin. 2020.
TXSPECTOR: Uncovering Attacks in Ethereum from Transactions. In USENIX
Security Symposium.

A RELATEDWORKS
In Sec. 3, we have covered related studies on cross-chain bridge at-
tacks. Here, we delve into topics such as blockchain interoperability,
cross-chain protocols, atomic swaps, and side chains.
Blockchain interoperability.The capability of different blockchains
to communicate with each other is known as blockchain inter-
operability. According to Buterin [25], there are three primary
types of blockchain interoperability, which are centralized or multi-
signature notary schemes, side chains or relays, and hash-locking.
Belchior et al. [9] conduct a literature review on blockchain interop-
erability and classify the studies into three categories: public connec-
tors, blockchain of blockchains, and hybrid connectors.Wang [142]

performs a systematic study on blockchain interoperability and
classifies it into three types (chain-based, bridge-based, and DApp-
based) based on current research. Augusto et al. [4] systematically
categorizes 56 interoperability solutions. These works focus on
measuring the current state of blockchain interoperability, while
our work explores the applications of blockchain interoperability
on cross-chain bridges.
Cross-chain protocols. Cross-chain protocols enable data sharing
among multiple blockchains, similar to blockchain interoperability.
Zamyatin et al. [145] measure current cross-chain communication
protocols and classify them into two categories: exchange protocols
for token exchange and migration protocols for asset transfer be-
tween blockchains. Shadab et al. [130] propose a uniform 3-phase
protocol for general cross-chain transactions that complies with
uniformity requirements and adds a third end-to-end constraint.
Wang et al. [143] design and implement a new cross-chain model
based on cross-chain scheduling, while Su et al. [135] propose an
asynchronous cross-chain model that ensures cross-chain atomic-
ity based on transaction dependence. Liang et al. [98] propose a
cross-chain privacy protection scheme to address identity privacy
leakage. These works measure or propose cross-chain protocols,
while our work summarizes the cross-chain protocols used in cur-
rent cross-chain bridges, such as CCIP from Chainlink.
Atomic swaps. Atomic swap can facilitate local verification, which
is one type of four cross-chain bridge verification mechanisms
(see Sec. 4.2). They do not require any intermediary party to enable
the exchange. In 2018, Herlihy [91] introduced the atomic swap
protocol, which guarantees that the exchange is successfully com-
pleted or not executed at all. Thyagarajan et al. [140] proposes a
universal protocol for swapping tokens across blockchains, utilizing
adaptor signatures and time-lock puzzles. Gugger [79] describes a
protocol for atomic swaps between Monero and Bitcoin, which can
be generalized to similar blockchains. Miraz et al. [104] discusses
atomic swaps, including their workflow, current state, future trends,
and possible applications. Borkowski et al. [16] presents an overview
of the current state-of-the-art in cross-chain atomic swaps, as well
as prominent blockchains and relevant ongoing and operational
projects. Our work briefly mentions atomic swaps as a potential
cross-chain bridge underlying protocol and classify them to the
local verification categorization.
Side chains. Side chains can increase the main network’s scala-
bility by processing and batching large amounts of transactions
before submission on the main blockchain. Pegged side chains were
first introduced by Back et al. [6] in 2014, allowing for the transfer
of assets between different blockchains, such as Bitcoin. Singh et
al. [131] provide a comprehensive review of various state-of-the-art
side chains and platforms, analyzing their impact and identifying
their limitations. Kiayias et al. [95] propose the side chain con-
struction that facilitates communication between Proof-of-Work
blockchains without trusted intermediaries, while Gaži et al. [76]
developed a side chain construction suitable for Proof-of-Stake sys-
tems. These works focus on side chains primarily for scalability
concerns, while our work concentrates on cross-chain bridges that
enhance blockchain interoperability.

312

https://razor.network
https://rekt.news/hypr-network-rekt/
https://blog.logrocket.com/substrate-blockchain-framework-core-concepts/
https://blog.logrocket.com/substrate-blockchain-framework-core-concepts/
https://slowmist.medium.com/slowmist-analysis-of-three-consecutive-attacks-on-thorchain-6223f1c691be
https://slowmist.medium.com/slowmist-analysis-of-three-consecutive-attacks-on-thorchain-6223f1c691be
https://medium.com/coinmonks/truth-behind-the-celer-network-cbridge-cross-chain-bridge-incident-bgp-hijacking-52556227e940
https://medium.com/coinmonks/truth-behind-the-celer-network-cbridge-cross-chain-bridge-incident-bgp-hijacking-52556227e940
https://stargate.finance
https://synapseprotocol.com/
https://cointelegraph.com/news/multichain-asks-users-to-revoke-approvals-amid-critical-vulnerability
https://cointelegraph.com/news/multichain-asks-users-to-revoke-approvals-amid-critical-vulnerability
https://cointelegraph.com/news/vitalik-buterin-gives-thumbs-down-to-cross-chain-applications
https://cointelegraph.com/news/vitalik-buterin-gives-thumbs-down-to-cross-chain-applications
https://docs.developers.thundercore.com/product-protocol/bridges/interact-with-thundercore-bridge
https://docs.developers.thundercore.com/product-protocol/bridges/interact-with-thundercore-bridge
https://bridge.gnosischain.com

RAID 2024, September 30–October 02, 2024, Padua, Italy Mengya Zhang, Xiaokuan Zhang, Yinqian Zhang, and Zhiqiang Lin

Classification Usages Example

Token transfer token transfer Anyswap
Token withdraw native token withdraw Anyswap
Token swap token exchanges Anyswap
Governance extend governance Aave
Lending and borrowing borrow and deposit Cross-chain Loans
Staking stake and claim rewards RADAR

Table 5: Summary of potential bridge usages.

B BRIDGE USAGES
We have discussed the most popular usage, cross-chain token trans-
fer, in Sec. 4.1. Table 5 presents these usages.
Cross-chain token withdraw. Continuing with the above ex-
ample, A𝐷 submits a transaction TxBurn in BNB and burns the
wrapped tokens (10.0 WETH). Then the bridge submits the related
transaction TxRelease to release 10.0 ETH back to the user.
Cross-chain token swap. Similar to the token transfer, cross-
chain token swap is another major usage of bridges. For instance, a
user can swap 10.0 USDC from Ethereum to BNB for 10.0 USDT.
Governance is a popular way to manage and implement changes.
In some DApps, users who hold the native governance tokens are
allowed to submit and vote for proposals, to participate in the
future of DApps. For instance, Aave [1] holders of AAVE and/or
stkAAVE tokens are given the rights of proposal and vote. To realize
the governance across chains, Aave proposes bridges to extend its
governance on Ethereum to other blockchains, such as Polygon [2].
Lending and borrowing have always been fundamental services
provided by DeFi platforms. Cross-chain lending and borrowing can
bring flexibility to DeFi users. For example, Crosschain Loans [36]
supports the cross-chain lending between EVMcompatible blockchains.
Users can borrow Ethereum tokens by depositing assets on other
blockchains as collateral.
Staking locks up a certain amount of assets, serves as a proof of
work, and earns passive incomes. Previously, staking is limited to
the single native blockchain. With cross-chain staking, users can
stake across different blockchains and claim staking rewards on any
blockchain, regardless of which blockchain the staked assets are
deposited. For example, RADAR Cross-Chain Token Staking [55]
allows users to stake and claim rewards on any blockchain.

C VERIFICATION MECHANISMS
C.1 External Verification
Cross-Chain Interoperability Protocol (CCIP) facilitates stan-
dardized and secure communication and information exchange
among various blockchain networks. To develop their CCIP, Chain-
link utilizes Decentralized Oracle Networks (DONs) and the Anti-
Fraud Network [40]. DONs provide off-chain services and data,
such as random number generation, and enable secure validation of
cross-chain transactions through the consensus of multiple oracle
nodes. The Anti-Fraud Network, on the other hand, detects and
halts malicious cross-chain activity to safeguard users. Chainlink’s
CCIP supports various cross-chain services, such as programmable

token bridges, cross-chain bridges, and cross-chain DApps. Specif-
ically, Chainlink’s CCIP enables a smart contract on the source
blockchain to use their messaging router to send a secure mes-
sage to a destination chain’s messaging router. The destination
messaging router then validates and forwards the message to the
destination smart contract.
Omnichain interoperability protocol (LayerZero) facilitates
seamless communication between multiple blockchains. Unlike
other protocols, Omnichain has no wrapping or intermediary lay-
ers. LayerZero is one of such protocols [146], which offers trustless
messaging and can operate on any blockchain network, such as
Ethereum and Bitcoin. LayerZero leverages an Oracle and a Relayer
to securely pass messages between different domains off-chain.
The Oracle sends a block header from the source blockchain to
the destination blockchain, while the Relayer passes a transaction
proof. If the block header and proof match and are validated, the
cross-chain message is sent to the destination blockchain. In prac-
tice, LayerZero leverages the Chainlink’s DONs to ensure trustless
delivery of messages between disparate chains, as an Oracle. For
example, Stargate [134] is a fully composable cross-chain bridge
protocol built on LayerZero that enables native asset transfers be-
tween different blockchain networks.

C.2 Optimistic Verification
Optimistic Interchain Communication Protocol (Optics) is
a protocol that enables cost-efficient message transfer between
consensus systems [115]. It relies on channels to send messages
as raw bytes from one chain to another. Once a channel is estab-
lished, any application on a chain can use it to send messages to
any other chain, without requiring a light client or extra gas for
verifying remote chain block headers. Optics contains initial im-
plementations of on-chain contracts in Solidity code and off-chain
system agents in Rust code. Applications that use Optics need to
implement their messaging protocol and are facilitated by Router
contracts. For instance, Nomad [113] extends the Optics protocol.
During a 30-minute window, challengers can question the validity
of transactions.

C.3 Local Verification
Connext’s NXTP provides a straightforward method for cross-
chain transfers and contract calls that is fully noncustodial [49].
The protocol involves three phases: route selection, preparation,
and fulfillment. During route selection, routers bid to complete the
transfer. In the preparation phase, users initiate a transaction on the
source blockchain through the NXTP contracts. In the fulfillment
phase, the message is signed to complete the transaction on the
destination blockchain. At any point, either party can cancel the
transaction if necessary. Once the transaction has expired, both
parties can cancel the transaction.

C.4 Native verification
MAP Protocol is an interoperability protocol that facilitates cross-
chain transactions, supported by the dedicatedMAP blockchain [124].
The protocol consists of three layers: the MAP Protocol Layer, the
MAPO Services Layer, and the MAPO Application Layer. The MAP

313

Cross-Chain Bridges: Attack Taxonomy, Defenses, and Open Problems RAID 2024, September 30–October 02, 2024, Padua, Italy

Protocol Layer is responsible for verifying cross-chain assets and
data through independent, self-verifying light clients deployed on
each blockchain. The MAPO Services Layer serves as the execution
layer for assets and data and supports developers to build applica-
tions for the MAPO Application Layer. Overall, MAP Protocol is
designed to enable DeFi and other applications to reach their full
potential while ensuring the safety of cross-chain assets.

D CROSS-CHAIN BRIDGE ATTACK SURFACES
A7: Vulnerable bridge smart contracts. Common vulnerabilities
in smart contracts (e.g., access control) are possible in bridge smart
contracts. We illustrate some potential attacks as follows, taking
the liquidity pool smart contract code as an example in Fig. 10.

1 contract LiquidityPool {

2 address bridgeAdmin;

3 mapping(address => uint256) balances;

4 uint256 liquidReserves;

5
6 modifier onlyAdmin {

7 require(msg.sender == bridgeAdmin);

8 }

9
10 constructor(address _bridgeAdmin) {

11 bridgeAdmin = _bridgeAdmin;

12 }

13
14 function changeAdmin(address _newAdmin) public

onlyAdmin {

15 bridgeAdmin = _newAdmin;

16 }

17
18 function addLiquidity(uint256 tokenAmount) public

payable {

19 require(balances[msg.sender] >= tokenAmount);

20 uint256 lpTokenAmount = tokenAmount /

exchangeRatio ();

21 mint(msg.sender , lpTokenAmount);

22 liquidReserves += tokenAmount;

23 emit AddLiquidity(tokenAmount , lpTokenAmount ,

msg.sender);
24 }

25
26 function removeLiquidity(uint256 lpTokenAmount)

public {

27 uint256 tokenAmountReturn = lpTokenAmount *

exchangeRatio ();

28 require(liquidReserves >= tokenAmountReturn);

29 burn(msg.sender , lpTokenAmount);

30 liquidReserves -= tokenAmountReturn;

31 emit RemoveLiquidity(tokenAmountReturn ,

lpTokenAmount , msg.sender);
32 }

33 }

Figure 10: An example of liquidity pool smart contract.

• Incorrect initialization. Bridge accounts will be set as the ad-
min/owner addresses of the liquidity pool during the pool con-
tract creation. If these privileged addresses are initialized with
incorrect values in Line 10-11, the total assets in the smart con-
tract can be drained.

• Inappropriate function permission. Similarly, there are some
special functions that change privileged addresses or control
contracts, such as killing or pausing contracts when the caller
is an admin/owner. If these functions are created with inappro-
priate permissions in Line 14-15 (e.g., allowing anyone to call
them), the contracts will be hacked.

• Unchecked balance. To add liquidity to the pools, the liquidity
providers should transfer their tokens. If the balance of tokens
is not checked in Line 19, attackers can deposit nothing or to-
kens with less value than the value of returned tokens (e.g., LP
tokens). Similarly, there will be problems if balance check is not
performed correctly in Line 28.

• Miscalculated token price. If the amount of LP tokens is given
to the liquidity providers more than desired due to the mis-
calculated token price in Line 20, the pool will lose money. In
particular, the function exchangeRatio calculates the token price.
Similarly, in the liquidity remove process, if the amount of orig-
inal tokens returned to the liquidity providers is more than
desired in Line 27, there will be financial losses too.

• Inconsistent event. The events will be emitted for off-chain
bridge server to monitor, when non-trivial actions happen. For
example, AddLiquidity event is emitted in Line 23 when the
function addLiquidity is called. If the tokenAmount representing
the amount of deposited tokens is wrong, the bridge will get
incorrect information and there will be inconsistencies. Simi-
larly, the event RemoveLiquidity in Line 31 should be correctly
recorded.

E REAL-WORLD ATTACKS
E.1 Permission Issue
E.1.1 V1. Unchecked Intermediary Permission. Among all the 35
real-world attacks, 1 falls under this specific vulnerability type.
Poly Network attack. On Aug-10-2021, Poly Network [119] suf-
fered from an attack resulting in $600M loss. In particular, the bridge
failed to set the appropriate permission in the manager smart con-
tract and allowed anyone to call the key function in the contract
controlled by the manager [33]. Thus, the attacker could change
the owner to be his/her account and drained all the tokens from
the hacked smart contract.

E.1.2 V2. Misused Proof Permission. Among all the 35 real-world
attacks, 2 fall under this specific vulnerability type.
Plasma attack. Plasma [21] is one of the popular bridges on Poly-
gon, supporting token deposit and withdraw. On Oct-05-2021, a vul-
nerability was found and exploited by white hats rescuing around
$850 million [53]. In this exploit, the previous valid proof could
be replayed multiple times, to exit the burn transaction and steal
tokens. Fortunately, no loss was caused due to the rescue.
Binance Bridge attack. On Oct-06-2022, attackers stole around
$566 million from Binance Bridge [51]. The root cause is a smart
contract bug that allows attackers to forge proofs to pass the vali-
dation so that the fraudulent withdraw can succeed. To mitigate
this attack, Binance-backed blockchains launched a hard fork on
Oct-12-2022 [10].

314

RAID 2024, September 30–October 02, 2024, Padua, Italy Mengya Zhang, Xiaokuan Zhang, Yinqian Zhang, and Zhiqiang Lin

E.1.3 V3. Problematic Approval Permission. Among all the 35 real-
world attacks, 4 fall under this specific vulnerability type.
Multichain attack.Multichain [138] is a cross-chain bridge that
supports financial services on multiple blockchains. On Jan-18-
2022, Multichain was attacked, in which several blockchains were
affected [81]. It caused around $3 million loss by multiple group
of attackers. In particular, users approved the infinite number of
tokens to bridge-related smart contracts in advance. The attacker
exploited the incorrect permission check to pass the validation and
drain the tokens from users.
LI.FI attack. On May-20-2022, an attacker exploited the vulnerable
swapping feature of LI.FI bridge [99]’s smart contract [13]. Instead
of swapping, attackers steal money from users by directly transfer-
ring their tokens. As a result, anyone who gave infinite approval to
the vulnerable contract could be attacked.
Rubic attack. On Dec-25-2022, Rubic suffered a hack which re-
sulted in a loss of $1.4 million [69]. The main reason behind the
attack was the incorrect addition of USDC tokens to the whitelist.
This led to the theft of USDC tokens from users to the Rubic con-
tract.
Socket protocol attack. On Jan-16-2024, a security incident oc-
curred within the Socket protocol, resulting in infinite approvals
granted to Socket contracts by users, due to incomplete input val-
idation [88]. Exploiting this, attackers stole funds of $3.3 million
from approximately 712 affected users.

E.1.4 V4. Invalid Signature Permission. Among all the 35 real-world
attacks, 3 fall under this specific vulnerability type.
ChainSwap attack. ChainSwap [43] is a cross-chain asset bridge,
which allows users to bridge tokens between blockchains seam-
lessly. ChainSwap was exploited on Jul-10-2021 and many projects
using ChainSwap were affected, including Razor Network [126].
The attacker stole tokens worth $8 million and sold the tokens on
various exchanges [110].
Wormhole attack. On Feb-02-2022, an attacker launched this
attack with bypassing the verification process in the Wormhole
bridge [24] and minted Wormhole ETH (wETH) tokens [37]. In
particular, the attacker injected a faked account and successfully
generated a malicious message to mint 120,000 wETH worth $320
million.
Multichain attack. On Feb-15-2022, multichain attack took place
again by the insufficient signature verification [58]. The attacker
managed to transfer the approved tokens to the victim’s contract,
resulting in a profit of 87 ETH.

E.1.5 V5. Leaked Key Permission. Among all the 35 real-world
attacks, 10 fall under this specific vulnerability type. We discussed
the Ronin Network attack in Sec. 6.1.5 and will cover the remaining
9 here.
WonderHero attack. On Apr-07-2022, WonderHero, a NFT-based
game, claimed that it was attacked by attackers who obtained sig-
natures of validators and then minted 80 millionWND tokens [120].
The loss was approximately $0.3 million.
Horizon Bridge attack. Horizon Bridge [27] supports connec-
tions between any Proof-of-Work (PoW) and Proof-of-Stake (PoS)

blockchain. On Jun-24-2022, the bridge was hacked and lost around
$100 million. The attackers compromised private keys of two valida-
tors and successfully stole tokens with the 2-of-4 multi-signature
mechanism [85].
QAN platform bridge attack. On Oct-11-2022, the QAN platform
bridge experienced a security breach that was caused by the com-
promise of a private key [11]. The attacker gained access to the
private key of the bridge address and withdrew tokens from both
the Ethereum and BNB blockchains. The attack resulted in a total
loss of approximately $2 million at the time it occurred.
Rubic attack. Attackers compromised the private key of an admin
wallet address belonging to Rubic on Nov-02-2022 [52]. This wallet
was responsible for managing the RBC/BRBC bridge and staking
rewards. The attackers were able to transfer 34 million RBC out of
the wallet, which was valued at $1.2 million at the time.
pNetwork attack.OnNov-04-2022, more than $1 billion of pGALA
tokens on Bnbwereminted out of thin air. This occurred because the
private key was leaked on Github [112]. To prevent further attacks,
pNetworkminted a substantial number of tokens themselves, trying
to the drainage of the liquidity pool. However, this action was
not handled correctly and introduced losses caused by arbitrage
opportunities.
Poly Network attack. On Jul-01-2023, attackers were suspected
to take control of the private keys associated with Poly Network
wallets, granting themselves the ability to create signatures without
limit. This exploit allowed the hacker to generate 57 tokens that
span 10 different blockchains, including Ethereum and BNB Chain,
among others. As a result of this attack, a total of $10,201,612 in
losses was incurred [57].
Multichain attack. On Jul-06-2023, Multichain experienced a sig-
nificant breach, resulting in substantial cross-chain fund losses
($231,129,033). Funds were consolidated into a single EOA across 9
chains, suggesting full control by the attacker and raising internal
operation suspicions [58].
Heco bridge attack. On Nov-22-2023, Heco bridge, facilitating
cross-chain transfers between Ethereum and Heco chain, suffered
an access control exploit [80]. The attacker compromised the private
keys of a privileged address, enabling withdrawal from the bridge’s
smart contract. The attack resulted in the loss of assets valued at
$86,284,430.
Orbit bridge attack. On Dec-31-2023, Orbit Bridge encountered
a private key breach [86]. The attacker drained funds from the
bridge contract, converting them to ETH and DAI, and dispersed
them among various EOA addresses. The attacker received funding
via TornadoCash and compromised 7 out of 10 multisig signers’
wallets.

E.2 Logic Issue
E.2.1 V6. Incorrect Balance Logic. Among all the 35 real-world
attacks, 2 fall under this specific vulnerability type.
PolkaBridge attack. PolkaBridge [116] was attacked on Nov-22-
2021 and lost around $0.6 million. The attack was caused by a smart
contract bug after the balance check was removed mistakenly.

315

Cross-Chain Bridges: Attack Taxonomy, Defenses, and Open Problems RAID 2024, September 30–October 02, 2024, Padua, Italy

Poolz Finance attack. Poolz Finance was attacked on May-15-
2023, in which attackers triggered an integer overflow vulnerability
and stole around $665,000 on several blockchains [96].

E.2.2 V7. Inaccurate Initialization Logic. Among all the 35 real-
world attacks, 3 belong to this specific vulnerability type.
Nomad attack. Nomad [113] suffered from an attack on Aug-
02-2022 with around $190 Million loss. For example [34], an at-
tacker [67] sent 0.01WBTC to Nomad inMoonbeam transaction [105]
and then Nomad transferred 100 WBTC back to the attacker in
Ethereum transaction [66] This attack was caused by an initializa-
tion error, in which the trusted root was set to an incorrect value,
the permission check could be passed by anyone, and the money
was then stolen by attackers [83].
Allbridge attack. On Apr-01-2023, Allbridge fell victim to a flash
loan attack triggered by an error in the price calculation logic. This
exploit resulted in approximately $570,000 worth of Bnb being
lost [57].
Hypr OP Stack bridge attack. On Dec-13-2023, the Hypr OP
Stack bridge suffered a compromise [127]. The exploit stemmed
from a vulnerability allowing contract reinitialization and fund
drainage by the attacker. The total loss amounted to about $215,193,
equivalent to 2,570,000 HYPR tokens.

E.3 Event Issue
E.3.1 V8. Incorrect Event Emission. Among the 35 real-world at-
tacks, 3 fall under this specific vulnerability type.
Qubit attack. Qubit [125] exploit happened on Jan-27-2022, in
which the attacker used the vulnerable functions and obtained
an ETH Deposit event with a ERC20 token transfer. The incorrect
event allowed the attacker to mint around 77,162 qxETH, which
was worth around $80 million.
Meter.io attack. On Feb-05-2022, the Meter.io bridge [102] project
was exploited, causing a $4.2 million loss [103]. In the attack, the
attacker obtained Deposit events by using the function deposit()
targeting WETH /WBNB tokens without real deposit.
Omni bridge replay attack. On Sep-16-2022, the Omni Bridge
replay attack was due to a chainID permission check vulnera-
bility [108]. Replay attacks can occur during blockchain proto-
col upgrades or when a vulnerability is exploited across multiple
blockchains. The attacker in this case first transfer 200WETH to
Ethereum Proof-of-Stake (PoS) blockchain and then used an out-
dated chainID to replay the same transaction on the Ethereum
Proof-of-Work (PoW) blockchain. Note that there are some users
who did not switch to PoS and are still on the Ethereum PoW
blockchain.

E.3.2 V9. Fake Event Emission. Among the 35 real-world attacks, 5
fall under this specific vulnerability type.
THORChain attack. In a series of unfortunate events, THORChain
experienced three separate fake deposit attacks in quick succession.
The first attack occurred on Jun-29-2021, causing a loss of approxi-
mately $350,000. Following closely, a second attack struck on Jul-16-
2021, resulting in a staggering loss of nearly $8 million. Just a week
later, on Jul-23-2021, THORChain was targeted yet again, resulting

in another substantial loss of nearly $8 million. These incidents
underscored the vulnerability of the THORChain network to such
fraudulent deposit exploits during this period [132].
pNetwork attack.On Sep-19-2021, the attacker generated counter-
feit events to access cryptocurrency in the Bitcoin blockchain [82].
The events were executed without confirmation of their legitimacy
from the pNetwork contracts. Thus, the attacker successfully stole
277 BTC, equivalent to more than $13 million by falsifying the
events.
Cennznet attack. On May-08-2022, an attacker hacked the Cennznet
bridge [32] by emitting fake Deposit events. The bridge captured
the fake events and sent ETHs to the attacker. In total, $0.4 million
(around 155 ETH) was stolen.

E.4 Front-end Issue
E.4.1 V10. Front-end Phishing. Among all the 35 real-world at-
tacks, 2 fall under this specific vulnerability type. We discussed the
EVODeFi attack in Sec. 6.4.1 and will cover the remaining 1 here.
Celer cBridge attack. On Aug-17-2022, Celer cBridge suffered from
a domain name system (DNS) poisoning attack, resulting in a loss
of $240,000 [133]. Some users were redirected to malicious smart
contracts while using the bridge, and their approved tokens were
drained by the attacker.

316

	Abstract
	1 Introduction
	2 Background
	3 Related Works
	4 Characterizing Cross-chain Bridges
	4.1 Bridge Usages
	4.2 Verification Mechanisms
	4.3 Communication Models
	4.4 Categorization

	5 Bridge Attack Surfaces
	5.1 Common Attack Surfaces
	5.2 Unique Attack Surfaces

	6 A Taxonomy of Cross-chain Bridge Attacks and Vulnerabilities
	6.1 Permission Issue
	6.2 Logic Issue
	6.3 Event Issue
	6.4 Front-end Issue

	7 Defenses and Recommendations
	7.1 Existing Defenses
	7.2 Recommendations to Developers

	8 Open Problems and Future Directions
	8.1 Security Property Concerns
	8.2 Bridge Related Issues
	8.3 Attack Detection and Prevention

	9 Conclusion
	Acknowledgments
	References
	A Related Works
	B Bridge Usages
	C Verification Mechanisms
	C.1 External Verification
	C.2 Optimistic Verification
	C.3 Local Verification
	C.4 Native verification

	D Cross-chain Bridge Attack Surfaces
	E Real-world Attacks
	E.1 Permission Issue
	E.2 Logic Issue
	E.3 Event Issue
	E.4 Front-end Issue

