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Abstract
Remote attestation mechanism enables an enclave to attest
its identity (which is usually represented by the enclave’s
initial code and data) to another enclave. To verify that the
attested identity is trusted, one enclave usually includes the
identity of the enclave it trusts into its initial data in advance
assuming no trusted third parties are available during runtime
to provide this piece of information. However, when mutual
trust between these two enclaves is required, it is infeasible to
simultaneously include into their own initial data the other’s
identities respectively as any change to the initial data will
change their identities, making the previously included iden-
tities invalid. In this paper, we propose MAGE, a framework
enabling a group of enclaves to mutually attest each other
without trusted third parties. Particularly, we introduce a tech-
nique to instrument these enclaves so that each of them could
derive the others’ identities using information solely from its
own initial data. We also provide an open-sourced prototype
implementation based on Intel SGX SDK, to facilitate enclave
developers to adopt this technique.

1 Introduction

As storage and computation outsourcing to clouds become
more and more prevalent, cautious users and security re-
searchers raise questions on whether the cloud providers
could keep their data private and execute their applications
as expected. Trusted execution environments (TEEs) have
the potentials to offer efficient solutions to these concerns.
A TEE is a secure area (usually called enclave) of a proces-
sor that protects the confidentiality and integrity of the code
and data operated inside. Examples of TEEs include Intel
Software Guard Extensions (SGX), AMD Secure Encrypted
Virtualization (SEV), ARM TrustZone, Keystone [19], and
Penglai [10].

Trusting an enclave via remote attestation. Before inter-
acting with an enclave, e.g., outsourcing sensitive data for
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processing, the enclave must be “trusted”. This trust is estab-
lished via remote attestation [15]. In the context of attestation,
the enclave is denoted the attester and the entity that wishes
to establish trust on the attester is denoted the verifier, which
could be either the user of the enclave (i.e., a human empow-
ered by code) or another enclave. Any software component
between them can be considered untrusted or even malicious.
The establishment of trust can be achieved by answering the
following three questions:

• Is the attester an enclave? The root of trust of the remote at-
testation procedure lies in some specific component within
the processor, e.g., the processor’s e-fuse with a root secret
burnt into it. This root of trust identifies the underlying
hardware and can be used to endorse a particular private
key, called attestation key, which is used to sign the evi-
dence generated by an attester to prove to a verifier that
the attester is indeed an enclave running on an authentic
TEE platform. Hence, when the evidence is verified to be
valid, the verifier can be assured that the attester is indeed
an enclave.
• What is its identity? The next immediate task for the ver-

ifier is to figure out the identity of the attester enclave.
Usually, the attester enclave’s identity is inserted by the
TEE platform to the signed evidence sent to the verifier
so that the verifier obtains the attester enclave’s identity
simultaneously when verifying the evidence. One enclave
can be identified by its initial code and data. Besides in-
cluding the whole initial code and data in the evidence,
one alternative is to use the enclave measurement, which
is the cryptographic hash of the initial code and data of an
enclave.
• Is the identity trusted? After the verifier is convinced that

it is communicating with an authentic enclave with its
identity, the verifier needs to determine whether an en-
clave with the given identity can be trusted since a mali-
cious application running inside an enclave could still leak
sensitive data. Usually, the verifier compares the enclave
identity EID_rcv from the received evidence with the ex-



(a) Mutual attestation w/ TTP. (b) Mutual attestation w/o TTP.

Figure 1: Mutual attestation w/ and w/o TTP.

pected one EID_exp from some reliable source. If they are
equal, the verifier can be assured that the attester enclave
is trusted. The reliable source can be the verifier’s own
memory or a trusted third party (TTP) such as a trusted
enclave developer or any other trusted entity that maintains
lists of trusted enclaves’ identities.

Trusting multi-enclave applications via mutual attesta-
tion. The aforementioned trust establishment covers the sim-
plest single-enclave applications. When a TEE application
becomes more complicated and consists of multiple enclaves,
it is very common that two enclaves need to interact with each
other, where mutual attestation may be necessary. Mutual
attestation is a mechanism that allows the communicating en-
claves to attest each other for establishing a trust relationship.
This is necessary, for example, in the following scenarios:

• Secure software development life-cycle: an enclave appli-
cation is modularized into multiple components, each of
which is loaded into a separate modular enclave. These
modular enclaves need to verify each other’s identities
before interaction.
• Secure connection within distributed applications: when a

client-server application is equipped with TEEs to protect
sensitive code and data, the enclave on the server-side and
the enclave on the client-side need to mutually attest each
other to establish a secure communication channel.
• Secure interaction among mutually distrusting parties:

when data needs to be exchanged between TEE-enhanced
blockchain applications, each enclave should be able to
attest the other’s identity before accepting the transaction
executed by that enclave.

Mutual attestation without TTPs. Mutual attestation can
be achieved by simply performing attestation twice, one per
each direction, by a trusted user. The user may also delegate
this effort to a TTP. As shown in Fig. 1a, a TTP could be
a stand-alone server that performs remote attestation with
each enclave, validates the results, and exchanges secrets with
the two enclaves as a middle man to bootstrap the trust. A
TTP could also be a trusted developer that issues certificates
for these enclaves or a trusted auditor that audits and signs
these enclaves [28]. Such TTP-based solutions hard-code the
corresponding public keys into the enclaves, enabling them

to verify other enclaves’ certificates or signatures to establish
the trust.

However, integrating a trusted user or a TTP into the ap-
plication’s operation dramatically increases the trusted com-
puting base (TCB) of the entire application. The security of
the application will hinge upon the trustworthiness of the
software stack of the user or the TTP, rather than solely the
security of the enclave code itself (and, of course, that of
the CPU hardware). Therefore, it is often desired to perform
mutual attestation without TTPs.

In this paper, we aim to provide a mechanism for a group
of enclaves to mutually attest one another by their enclave
identities. However, we found this problem non-trivial. As
shown in Fig. 1b, consider the cases of mutual attestation with
two enclaves that would establish mutual trust with each other.
The difficulty to do so lies in addressing the third question
described above (Is the identity trusted?) for both enclaves.
Without a TTP, both enclaves need to wait for the other en-
clave’s identities to be finalized before they could include
them in their initial data to finalize their identities and release
them. The situation has some similarities to the deadlock prob-
lem, in that both parties wait on the data held by each other
before they can proceed. This problem was first pointed out
by Beekman et al. [3]. And a strawman solution of combining
these enclaves into one single large enclave is discussed. To
our best knowledge, no prior work has addressed this problem
given enclaves with different identities.

Our solution: MAGE. The key challenge of mutual attesta-
tion for a group of enclave without TTPs is to enable each of
these enclaves to obtain the identities of other enclaves in the
same group from its own enclave memory so that during the
attestation phase, the enclave could verify whether the identity
of the attester is the same as one of the trusted enclaves in
the same group. As such, we propose a framework, dubbed
MAGE, to allow a group of enclaves to derive the identities
of other enclaves in the group. The idea of MAGE is to split
each enclave into two parts: the specific part that reflects the
enclave’s functionalities and the common part that holds the
information for deriving the identities of enclaves in the same
group.

We then provide a detailed design for TEEs that use the
measurement as the identity. Particularly, our design allows
each enclave to derive the measurements of enclaves in the
same group from some intermediate states instead of the final
outputs of the enclaves’ measuring processes. The key obser-
vation is that the measurement calculation is deterministic
and sequential. Knowing intermediate states and information
to perform subsequent measuring operations would be suffi-
cient to derive the final output, i.e., the enclave measurement.
When designed carefully, the problem could be resolved as all
enclaves could generate intermediate states of their measuring
processes and share them with others simultaneously.

We have implemented a prototype of MAGE using Intel
SGX. Particularly, MAGE reserves at the end of each enclave



a specific data segment with the same content which includes
the intermediate hash value of each trusted enclave’s content
right before the reserved data segment. Hence, during runtime,
each enclave knows the intermediate hash value of another
trusted enclave (retrieved from the reserved data segment) and
the content left to be added (i.e., the reserved data segment),
and thus could derive the other trusted enclave’s measurement.
The evaluation suggests that to enable mutual attestation for
up to 85 enclaves, 62 KB enclave memory overhead for each
enclave is introduced and roughly 21.7µs is needed to derive
one measurement. While only a prototype on Intel SGX is
presented in this paper, the method can be easily extended to
different types of TEEs, e.g., AMD SEV, and even between
different types of TEEs, as long as they adopt similar mecha-
nisms for the calculation of measurements.

We have already open-sourced MAGE on Github
(https://github.com/donnod/linux-sgx-mage).

Paper outline. Sec. 2 presents motivating scenarios and
Sec. 3 gives an overview of the proposed scheme. The main
component, the technique for enclaves to mutually derive
each other’s identities is presented in Sec. 4. We present a
prototype implementation and evaluate the performance in
Sec. 5. Sec. 6 describes a case study and Sec. 7 discusses im-
provements and extensions. Sec. 8 presents related works and
Sec. 9 concludes this paper.

2 Motivating Scenarios

In this section, we present three scenarios where mutual at-
testation is needed, describe potential TTP-based solutions,
and discuss the benefits of alternatively adopting MAGE, a
solution without TTPs.

2.1 Secure Software Development Life-cycle

Complex enclave applications have large TCB. A good prac-
tice of secure software development is to modularize the
enclave application into multiple components and adopt privi-
lege separation among these components to reduce the loss
once some components are compromised. For example, con-
sider a TEE-based smart home application that receives voice
commands to operate smart devices, e.g., asking the applica-
tion to open the light, set the room temperature, and/or play
the desired music. After obtaining voice inputs using voice
sensors, the general process within the enclave application
includes two steps: one is to extract commands from the voice
inputs and the other is to execute the extracted commands.
The former step could access sensitive biometrics information
about the host, while the latter step focuses on executing the
commands. When packing these two steps into one single en-
clave whose TCB will grow as more functionalities are added,
vulnerabilities found in the second step might be leveraged
to leak the sensitive biometrics from the first step. Enforcing

software modularization by splitting these two steps into two
enclaves could help reduce the severity of vulnerabilities. On
the other hand, these modular enclaves require a mechanism
to establish trust in each other. As in the smart home exam-
ple, the enclave that processes voice inputs needs to verify
the identity of the other enclave that executes the commands
before releasing the host’s commands while the latter needs
to verify the identity of the former to ensure the commands
to execute are indeed from the host.

TTP solutions with Trusted Users. When the user could act
as the TTP, she could provide the identities of these modu-
lar enclaves to each other. After these modular enclaves are
authenticated by the trusted user, they could obtain a list of
trusted identities from the trusted user and establish secure
channels with enclaves whose identities are in the list. As in
the smart home example, the user could register with the input-
processing enclave and the command-executing enclave, and
act as a bridge to establish a secure channel between them.

MAGE helps reduce applications’ TCB. TTPs are common
targets for attackers. TTP solutions with trusted users require
the related code on the user side to be secure and the user
to operate correctly, which might become weaknesses of the
system compared with the application code running within
enclaves, especially when the application becomes more com-
plicated and the TCB of the TTP increases. Hence, removing
TTPs from the design, e.g., using MAGE, could help keep the
TCB smaller.

2.2 Secure Connection within Distributed Ap-
plications

Distributed applications usually run on multiple computers
and communicate over a network. A typical distributed ap-
plication structure is the client-server model. When both the
server and the client are equipped with secure enclaves to
protect sensitive code and data, a secure channel between
the enclave on the server-side and the enclave on the client-
side is desired to enable two-way authentication and secret
provisioning. One example is OPERA, an Open Platform
for Enclave Remote Attestation that provides distributed and
privacy-preserving remote attestation services to Intel SGX
enclaves [6]. It has two types of enclaves: issuing enclaves
working as servers that are responsible for provisioning at-
testation keys to the other type of enclaves called attestation
enclaves, which function as clients. The attestation enclave
then uses the provisioned attestation key to provide attesta-
tion services to local enclaves. Both enclaves need to attest
each other before providing attestation services. Particularly,
the issuing enclave needs to authenticate the identity of the
attestation enclave to prevent that any attestation key is leaked
to any untrusted party while the attestation enclave should
verify the identity of the issuing enclave to ensure that it only
uses trusted attestation keys to provide attestation services to



local enclaves.

TTP solutions with Trusted Developers. When the TEE ap-
plication’s developer is trusted, the developer’s public key
can be used to establish such mutual trust. Particularly, these
enclaves could verify that they share the same developer’s
public key and create secure channels for communication.
As in the OPERA example, if the developer can be trusted,
her public key can be used by the issuing enclave and the
attestation enclave to establish mutual trust.

MAGE enables a new level of trust on already-published
software. For TTP solutions with trusted developers, since
the developer’s public key might be shared by all enclaves
developed by the same developer, the trustworthiness of a TEE
application could be affected by any future updates of other
enclaves and even new enclaves from the same developer
without any notification to the users. On the other hand, for
already-published software which has been publicly verified,
MAGE could help preserve its trustworthiness against any
unverified future modification to the software.

2.3 Secure Interaction among Mutually Dis-
trusting Parties.

Blockchains, e.g., Bitcoin and Ethereum, enable mutually dis-
trusting parties to interact, e.g., fulfill payments, without re-
lying on any centralized TTPs. TEE has been leveraged to
enhance existing blockchain applications. Designs that use
SGX to provide privacy-preserving smart contracts have been
proposed, such as Ekiden [7] and FastKitten [8], with dif-
ferent focuses. Ekiden provides efficient off-chain execution
of single-round contracts, while FastKitten targets efficient
off-chain execution of reactive multi-round contracts. Inter-
actions between these different smart contracts could bring
forth new applications. Consider a TEE-based online poker
game implemented on FastKitten which requires a deposit
for each player to join the poker game, and a credit scoring
system implemented on Ekiden that manages players’ credit
scores. The interactions between these two applications could
be as follows: players with higher scores in the credit scor-
ing system are allowed to join an online poker game with
smaller deposits and honest players in the games could gradu-
ally improve their credit scores in the credit scoring system.
To enable such interactions between the enclaves of these
smart contracts, mutual trust needs to be established, i.e., each
enclave should be able to attest the other’s identity before
accepting the transaction executed by that enclave.

TTP solutions with Public Key Infrastructures. When there
exists a public key infrastructure (PKI) that is trusted by all
participants, these enclaves could communicate with the PKI
to obtain lists of trusted identities. As in the online poker
game example, both enclaves could register with the PKI and
fetch the other’s identity from the PKI to establish mutual
trust.

MAGE eliminates the need to run PKIs. Establishing
and maintaining a PKI is challenging [9]. Especially for
blockchain applications running across different countries,
running a global secure PKI requires various skills and con-
siderable resources. Alternatively, MAGE eliminates the need
to run PKIs, facilitating more applications for mutually dis-
trusting parties to interact.

3 Overview

In this section, we describe the threat model we assume,
the problem we aim to address, and the overall workflow
of MAGE.

3.1 Threat Model

We assume the hardware implementation of TEE and the re-
mote attestation service provided by the TEE manufacturer
are secure. That is, an adversary cannot breach the confiden-
tiality and integrity of the enclave code and data, nor collude
with the TEE-manufacturer-backed remote attestation service
to endorse a malicious enclave.

We assume the code running inside of the enclaves is
logically sound and secure against memory corruption at-
tacks [4,20, 29] and access-pattern-driven micro-architectural
side channel attacks [5,11,14,21,24,26,30,31,34]. We assume
the developers are honest during the software development
and consider detecting attacks from the developer side, e.g., in-
cluding backdoors, is beyond the scope of this paper. We also
leave assumptions about the user to the developers since dif-
ferent applications might have diverse threat models. Hence,
to securely use TEE, software programs must be thoroughly
examined to be free of such vulnerabilities [32, 33].

However, we assume TEE platforms are not trusted and
may be controlled by the adversary. Specifically, the adver-
sary controls all software components outside the enclave,
including the operating system, the virtual machine manager
(if any), etc. The adversary is also able to launch any enclave
as she wants; however, she cannot create a malicious enclave
whose identity is the same as a trusted enclave. Moreover, the
adversary can perform man-in-the-middle attacks against the
communication protocols between the enclaves, including but
not limited to intercepting, dropping, replaying communica-
tions between any two enclaves.

3.2 Problem Formulation

In this paper, we aim to address the problem of enabling a
group of enclaves to mutually attest one another without TTPs.
These enclaves could be developed by the same developer
or multiple different developers, and the interaction between
them is also specified by the code. These enclaves could be
run on the same TEE platform (i.e., machine) or different



TEE platforms; they need to mutually attest each other before
they could start to interact and/or collaborate.

Existing remote attestation mechanisms enable one enclave
to verify that it is communicating with another actual enclave
whose identity is in the received evidence. Hence, the key
challenge of mutual attestation is for each enclave to obtain
the expected identities of the other trusted enclaves without
TTPs.

Consider a group of N enclaves Encli (i = 1, . . . ,N), each
of which has an identity ID(Ii), generated using a function
ID() from its initial content Ii which includes its initial code
and data. When any two of these enclaves, denoted as Encli
and Enclj, would like to establish mutual trust, both of them
need to obtain the other’s expected identity from some reliable
source. Without a TTP to provide Enclj’s identity to Encli,
Encli has to derive Enclj’s identity by itself, e.g., by hard-
coding Enclj’s identity in its initial data. Vice versa, Enclj
also needs to be able to derive Encli’s identity.

Simply hard-coding the other enclave’s identity in the en-
clave memory is not feasible. If we first hard-code Encli’s
identity into Enclj’s initial data. Then we finalize the iden-
tity of Enclj and try to hard-code it into Encli’s initial data.
However, this will change Encli’s identity. The previously
hard-coded Encli’s identity in Enclj’s initial data will be-
come incorrect.

The key insight in resolving the cyclic dependency is that
each enclave Encli can be split into two parts: (1) the specific
part I′i reflecting the functionalities of Encli and (2) the com-
mon part Icommon representing the content related to deriving
the identities of all these N enclaves including Encli itself.
With such a split, the developers could focus on developing
the enclaves’ functionalities and leave the mutual attestation
related components to our proposed solution.

Now we formally defines the mechanism for mutual iden-
tity derivation:

Definition 1 Consider a group of N enclaves Encli (i =
1, . . . ,N), each of which has a specific part I′i , a mechanism
for mutual identity derivation consists of three functions (G ,
C , F ):
• G is called common part generation function that is used

to generate the common part needed for deriving identities
of these enclaves. It takes as input the specific parts of all
N enclaves, i.e., I′1, . . . , I′N , and outputs the common part
for these enclaves, denoted as Icommon = G(I′1, . . . , I

′
N).

• C is called content builder function that is used to build
the final content of Encli from the specific part and the
common part. It takes as input the specific part I′i and
the common part Icommon, and outputs the final content of
Encli as Ii = C (I′i , Icommon).
• F is called identity derivation function that is used for

deriving identities from the common part. It takes as input
the common part Icommon and an index i (= 1, . . . ,N), and

outputs the identity of Encli. Specifically, F satisfies

F (Icommon, i) = ID(Ii),∀i = 1, . . . ,N (1)

3.3 Workflow of MAGE

We now describe the workflow of MAGE, a framework en-
abling mutual attestation for a group of enclaves without
TTPs, given a mechanism for mutual identity derivation (G ,
C , F ).

1. Develop a system including a group of enclaves that
need to interact or collaborate, particularly the specific
parts of these enclaves;

2. During compilation, derive the common part from the
specific parts of these enclaves and build the final content
of each enclave;

3. During runtime, enclaves derive the identities from the
common part to be used in establishing mutual trust.

For the first step, a group of trusted enclaves that need to
establish mutual trust are developed, especially when sensi-
tive data needs to be transferred from one enclave to another.
These enclaves could be developed by one or multiple de-
velopers. The algorithms about how the transferred secrets
will be processed are up to the enclave developers, thus out of
scope of this paper. The protocols for establishing secure chan-
nels include remote attestation [12, 25]. MAGE will provide
application programming interfaces (APIs) that implement
the identity derivation function F to be included in the attes-
tation flows within the enclaves. The missing components are
the common part of the enclaves in the group to be used by
the identity derivation function to derive identities of other
enclaves.

Then, during compilation, a tool provided by MAGE, that
implements the corresponding common part generation func-
tion G and the content builder function C will be leveraged
to extract the common part from the specific parts of these
enclaves and build the final contents of these enclaves from
the generated common part and the specific parts. Then, each
enclave is ready to be released. Since this step requires all
specific parts for generating the common part, MAGE does not
scale well for a system with enclaves developed by different
parties.

Lastly, during runtime, whenever the identity of a particular
enclave in the group is needed, the identity derivation API
will be called to derive the identity from the common part.

As most part of the workflow could be fulfilled using exist-
ing SDKs and protocols, the missing and most critical com-
ponent is the mechanism for mutual identity derivation, i.e.,
the common part generation function G , the content builder
function C and the identity derivation function F . Since these
three functions are also included in the TCB of the resulting
system, their implementations should be thoroughly exam-
ined.



4 MAGE Design for Measurement-based Iden-
tities

In this section, we first describe the measurement-based iden-
tity which is widely used in existing TEE designs, e.g., Intel
SGX, AMD SEV, Keystone and Penglai, etc. We then intro-
duce a design of MAGE that fits such TEEs. Finally, we take
Intel SGX as an example to provide an instantiation of MAGE.

4.1 Measurement-based Identity
In existing TEE designs, the enclave measurement is usually
used to identify enclaves. Generally, the enclave measurement
is the cryptographic hash of the contents of an enclave, includ-
ing initial code and data. Hence, the enclave user could verify
the identity of an enclave by comparing only its measurement
with an expected value.

A cryptographic hash function H is a mathematical algo-
rithm that maps or transfers data of arbitrary size, usually
called a message M, into a bit array of fixed size, called a
message digest or a hash value h = H (M). It is a one-way
function such that with a hash value, it is practically infeasible
to compute the original message. And it is deterministic such
that the same message always results in the same hash value.

To compute a hash value, an arbitrary-length message M
is firstly broken into fixed-length blocks M1, . . . ,ML (the last
block should be length padded) and processed one by one
sequentially. A fixed-length internal state (or intermediate
hash) is updated after each block is processed. Particularly, an
update function Hupd : (state,data)−→ state takes as input
an internal state and a data block and outputs an updated inter-
nal state. After updating the last block, a finalization function
Hfin : (state,data)−→ hash takes as input the latest internal
state and a data block containing the length of the message
and outputs the resulting hash value. Loosely speaking, the
computation can be represented as follows:

H (M) = H (M1|| . . . ||ML)

= Hfin(Hupd(Hupd(. . .Hupd(IV,M1), . . .),ML), |M|)

where IV represents the initial value of the internal state.
For simplicity, we abuse the notation of Hupd to consume

multiple blocks by recursively applying the original Hupd as
follows:

Hupd(state,B1|| . . . ||BK)

=Hupd(Hupd(. . .Hupd(state,B1), . . .),BK)

With such a deterministic and sequential computation process,
the hash value of the concatenation of two (length-padded)
messages X and Y , denoted as X ||Y , can be calculated as
follows:

H (X ||Y ) = Hfin(Hupd(Hupd(IV,X),Y ), |X |+ |Y |)

4.2 Mutual Identity Derivation Mechanism
for Measurement-based Identity

Now we introduce a mutual identity derivation mechanism
for measurement-based identity. Consider an enclave Encli
with content Ii who uses its measurement H (Ii) as its identity.
Recall that the hash value calculation is deterministic and
sequential. That is, when Ii is split into two length-padded
segments Ia

i , I
b
i , we have

H (Ii) = H (Ia
i ||Ib

i ) = Hfin(Hupd(Hupd(IV, Ia
i ), I

b
i ), |Ia

i |+ |Ib
i |)

Hence, hard-coding the fixed-length Hupd(IV, Ia
i ) (which we

call a pre-measurement of Encli), the length of Ia
i , and the

arbitrary-length Ib
i into the initial data of another enclave, say

Enclj, is sufficient for Enclj to compute the measurement
of Encli. Particularly, when Ib

i is empty, it resembles the
case of hard-coding the measurement of Encli directly while
when Ia

i is empty, it becomes hard-coding the entire content
of Encli into Enclj.

Since Hupd(IV, Ia
i ) is fixed-length and is computed before

the measuring process reaches Ib
i , if the value of Hupd(IV, Ia

i )
and the length of Ia

i are included in Ib
i , any enclave with Ib

i only
is able to derive the measurement of Encli by first retrieving
the value of Hupd(IV, Ia

i ) and the length of Ia
i from Ib

i and
then continuing the computation of the hash value with Ib

i .
This intuition leads to our design of mutual identity derivation
mechanism with measurement-based identity. The idea is to
derive the internal states of these enclaves’ specific parts and
combine them to form the common part. Specifically, we have

• A common part generation G that calculates the internal
states of the specific parts of these N enclaves along with
the sizes of the specific parts to form an array as the com-
mon part:

Icommon =G(I′1, . . . , I
′
N)

=[(Hupd(IV, I′1), |I′1|), . . . ,(Hupd(IV, I′N), |I′N |)]

where the i-th entry of the common part is a tuple of
Ii
common = (Hupd(IV, I′i ), |I′i |) and Ii

common[ j], j = 1,2 de-
notes the first or the second element of the tuple.
• A content builder function C that produces the final con-

tent by concatenating the specific part and the common
part:

Ii = C (I′i , Icommon) = I′i ||Icommon

• An identity derivation function F that generates the iden-
tity of Encli by retrieving the i-th entry from the common
part and completing the hash value calculation:

F (Icommon, i)

=Hfin(Hupd(Ii
common[1], Icommon), Ii

common[2]+ |Icommon|)
=Hfin(Hupd(Hupd(IV, I′i ), Icommon), |I′i |+ |Icommon|)
=H (I′i ||Icommon) = H (Ii) = ID(Ii),∀i = 1, . . . ,N



4.3 MAGE for Intel SGX
We now use Intel SGX as an example to describe how to
instantiate MAGE with actual TEEs. Intel Software Guard
Extensions (SGX) is a new hardware feature introduced on
recent Intel processors. To implement secure enclaves, Intel
SGX reserves a specified range of DRAM, called Processor
Reserved Memory (PRM), which will deny accesses from
any software (including the operating system) other than the
enclave itself. The enclave’s code, data, and related data struc-
tures are stored in a subset of PRM, called Enclave Page
Cache (EPC), which is further split into 4 KB EPC pages.

4.3.1 SGX Enclave Measurements

In the current Intel SGX design, enclave measurements are
calculated using SHA-256 [2]. SHA-256 is a Secure Hash
Algorithm (SHA) that is used for generating 256-bit digests
of messages. The generated digests are used to protect the
integrity of the messages. SHA-256 has three algorithms:
• Initialization algorithm initializes 8 32-bit words, as the

initial value of the intermediate hash, before calculating
the digest.
• Update algorithm takes a 512-bit block as input at a time

and updates the intermediate hash using pre-defined com-
pression functions.
• Finalization algorithm updates the intermediate hash with

the last 512-bit block which contains the number of all
bits that have been updated to the intermediate hash and
produces the final 256-bit digest by concatenating the re-
sulting 8 32-bit words.

The calculation of enclave measurement is performed along
with the creation of the enclave, as shown in Fig. 2. Specifi-
cally,
1. When creating an enclave, the SGX instruction ECREATE

will be called to create the first EPC page, called SGX En-
clave Control Structure (SECS) page, which maintains the
metadata of the enclave to be created, such as the base ad-
dress, the size of enclave memory required, and the 256-bit
enclave’s measurement, i.e., MRENCLAVE. The instruction
ECREATE initializes the MRENCLAVE field using SHA-256
Initialization algorithm and updates its value using SHA-
256 Update algorithm, which takes as input a 512-bit block
including the enclave’s metadata.

2. Then, via the SGX instruction EADD, two types of EPC
pages will be added: (1) Thread Control Structure (TCS)
pages that store information needed for logical processors
to execute the enclave code; and (2) Regular (REG) pages
that store the enclave code and data. When adding an EPC
page, a 64-byte data structure, called Security Information
(SECINFO), is also needed for the EADD instruction to
specify the properties of the added EPC page, such as page
type (a TCS page or a REG page), and access permissions
(whether the page can be read, written and/or executed).

Figure 2: Enclave measurement calculation flow.

When EADD is called each time to create a TCS or REG
page, it firstly updates MRENCLAVE with a 512-bit block
including only the metadata of the page to be added, e.g.,
its offset and access permissions. The content of the page
is measured by the SGX instruction EEXTEND which mea-
sures 256 bytes at one time. For each 256 bytes of an EPC
page, EEXTEND performs the SHA-256 Update algorithm
5 times. The first iteration measures a 512-bit block con-
taining the metadata of the 256 bytes of data including its
offset, and each of the following 4 iterations measures 64
bytes of the content. To measure a 4 KB EPC page, 16
EEXTEND operations are needed.

3. After all enclave pages are loaded, the SGX instruction
EINIT will be invoked to finalize the creation of the en-
clave. EINIT finalizes the measurement using SHA-256
Finalization algorithm which updates MRENCLAVE the last
time with a 512-bit block containing the total count of
bits that have been updated into MRENCLAVE. This count
is initialized by ECREATE and updated through ECREATE,
EADD and EEXTEND. The enclave code could be run then.

4.3.2 Mutual Identity Derivation for Intel SGX

Now we describe a mutual identity derivation mechanism for
Intel SGX. We will start with the case of two enclaves and
then generalize to cases of multiple enclaves.

Generating and instrumenting the common part during
development. The common part that is required for deriving
the other enclave’s measurement needs to be extracted (via



Figure 3: The flow of generating the common part and build-
ing the final content for mutual identity derivation.

Table 1: MAINFO: information needed for mutual identity
(measurement) derivation.

Component Description
PREMR The intermediate hash before MARS;
COUNT The number of bytes updated to PREMR;
OFFSET The offset of MARS;
SECINFO The security information of MARS;

the common part generation function) and hardcoded into
the enclave’s initial data (via the content builder function). It
should be done during the enclave development phase. The
whole flow is shown in Fig. 3. Basically, the development of
Encl1 and Encl2 could follow the following steps:
• Each of these two enclaves reserves a data segment (called

mutual attestation reserved segment, denoted as MARS) of
the same size (e.g., 4 KB, the size of one EPC page) for the
common part Icommon in their own enclave memory, which
will be loaded last during the enclave creation. Further,
this data segment should be aligned to the page bound-
aries, so that it will not overlap with other enclave pages
during measurement calculation. The SHA-256 intermedi-
ate hash of all pages before this reserved region, i.e., the
pre-measurement (denoted as PREMR), will be calculated.
• For each enclave, the information needed for deriving its

own measurement, called Mutual Attestation Information
(MAINFO) as depicted in Table 1, is collected. Particular,
MAINFO contains four fields: (1) the pre-measurement
PREMRi of Encli, (2) the number of bytes updated to

PREMRi, (3) the offset of the reserved data segment MARSi,
and (4) the security information of MARSi. The former two
are used to reconstruct the state of measurement calcu-
lation before updating the reserved data segment MARSi,
and the latter two are needed for updating the MARSi into
the hash value as described in Sec. 4.3.1. Particularly,
SECINFO field can be dropped if a constant SECINFO
is adopted, e.g., by assuming MARS contains only read-
only data pages. While fixing the offset of MARS could
also save the memory space for the OFFSET field, it will
add extra workload for enclave developers to adjust the
enclave memory layouts, which might not be preferred.
• The collected MAINFOs of both enclaves are organized to

form the common part to be instrumented into the MARS
of these enclaves so that each enclave knows the MAINFO
of the other enclave (from its own MARS) and the content
of the other enclave’s MARS (same as its own MARS).

Deriving measurements during runtime. As described in
Sec. 4.3.1, the calculation of the enclave measurement de-
pends on the order the enclave pages are created. Even with
exactly the same enclave code and data, when loaded in differ-
ent orders, different measurements will be generated. Hence,
during enclave creation, EPC pages of Encl1 and Encl2 have
to be in a particular order that can be simulated during runtime
to derive their measurements, as shown in Fig. 3. Particularly,
all enclave pages except MARSs need to be created in the same
order that generates the pre-measurement PREMR. The MARS
is created and loaded last. The enclave is initialized afterward.
We will describe how to adjust the order the enclave pages are
created in Sec. 5 when needed, and also discuss an alternative
design when the loading order cannot be altered in Sec. 7.
Now we assume the enclave is loaded exactly in the same
order as how the PREMR is computed.

After one enclave, e.g., Encl1, is created, it could derive
the measurement of the other enclave (Encl2) according to
the identity derivation function as follows:
• From Encl1’s reserved data segment MARS1, Encl1 re-

trieves Encl2’s pre-measurement PREMR2, the number of
bytes updated PREMR2, the offset of Encl2’s reserved data
segment MARS2, and the SECINFO of MARS2.
• Encl1 simulates Encl2’s process of loading the reserved

data segment MARS2, whose content is the same as MARS1
which Encl1 could access directly. Encl1 then updates the
number of bytes contributing to the resulting SHA-256
intermediate hash and performs the finalization operation
to obtain the measurement of Encl2.

For verification, recall how Encl2’s measurement is actually
generated by the SGX implementation: The SHA-256 inter-
mediate hash is updated as Encl2’s pages are created one by
one; When it comes to MARS2 which will be loaded last, the
SHA-256 intermediate hash is PREMR2, assuming the correct
loading order; The SHA-256 intermediate hash keeps being
updated when loading MARS2 and gets finalized afterward.



Algorithm 1: Identity Derivation Function
Input: idx
Output: mrenclave

1 if idx ≥ total number of MAINFO entries in MARS
then

2 return NULL;

3 [PREMR, COUNT, OFFSET, SECINFO]← idx-th MAINFO
in MARS;

4 sha_handle← sgx_sha256_init();
5 replace related fields of sha_handle with PREMR and

COUNT;
6 for page in MARS do
7 sgx_sha256_update(sha_handle,

“EADD”‖OFFSET‖SECINFO);
8 for every 2048-bit data in page do
9 sgx_sha256_update(sha_handle,

“EEXTEND”‖OFFSET);
10 sgx_sha256_update(sha_handle,data[511:0]);
11 sgx_sha256_update(sha_handle,data[1023:512]);
12 sgx_sha256_update(sha_handle,data[1535:1024]);
13 sgx_sha256_update(sha_handle,data[2047:1536]);

14 OFFSET = OFFSET + 256;

15 mrenclave← sgx_sha256_get_hash(sha_handle);
16 return mrenclave;

Hence, what Encl1 derives is exactly the measurement of
Encl2. Similarly, Encl2 could also derive Encl1’s measure-
ment.

Supporting multiple enclaves. Now we describe how to ex-
tend the method presented above to a group of (more than two)
enclaves, Encl1, Encl2,. . . , EnclN. MAINFOs of all enclave
are extracted and organized to generate the common part, i.e.,
MARS, to be instrumented into these enclaves. And the creation
of each enclave needs to follow the pre-defined order for calcu-
lating the corresponding PREMR. After one enclave is created,
it could derive the measurement of any enclave by fetching
the corresponding MAINFO from its own MARS and simulat-
ing the measuring process with the content of its own MARS.
The identity derivation function is shown in Algorithm 1. It
takes as input the index idx of the enclave measurement to
be derived, and outputs the derived enclave measurement.
The function retrieves the idx-th MAINFO to create an SHA-
256 handle, updates it with the content of MARS following
the process described in Sec. 4.3.1. sgx_sha256_init(),
sgx_sha256_update() and sgx_sha256_get_hash() are
the implementations of the initialization, update and finaliza-
tion algorithms inside the enclave.

5 Implementation and Evaluation

In this section, we describe our prototype implementation of
MAGE and evaluate its runtime performance overhead and
memory overhead.

5.1 Implementation
MAGE is implemented by extending the Intel SGX SDK (ver-
sion 2.6.100.51363) [16]. Specifically, it consists of three
components: (1) An SDK library that reserves a data seg-
ment for MARS and provides APIs to support derivation of
measurements from MAINFOs located in MARS; (2) A modified
enclave loader that loads MARSs last when creating enclaves;
(3) A modified signing tool that extracts MAINFO from an en-
clave and fills the MARS of an enclave with a list of extracted
MAINFOs.

MAGE library. libsgx_mage is implemented to facilitate
enclave developers to use MAGE. When included in an en-
clave, it reserves a read-only data section, named .sgx_mage,
to be used as MARS. The range of the .sgx_mage section is
aligned to page boundaries, i.e., 4KB. So its size is a multiple
of the page size, i.e., 4KB. Besides reserving the .sgx_mage
section, libsgx_mage provides two APIs:
• sgx_mage_size() examines the .sgx_mage section and

returns the total number of MAINFOs in it.
• sgx_mage_gen_measurement() takes as input an index

of the enclave whose measurement is requested and out-
puts the resulting measurement. Particularly, it retrieves
from the .sgx_mage section the corresponding MAINFO
specified by the index and calculates the final measurement
following Algorithm 1.

Modified enclave loader. The original enclave loader in Intel
SGX SDK loads enclave code and data pages first and then the
TCS pages. Hence, the .sgx_mage section, as a data segment,
will not be loaded last by default. To address this, we modified
the enclave loader to load the enclave pages in two stages:
• First, the modified enclave loader follows the original load-

ing process except that when an .sgx_mage section is
encountered, it skips the .sgx_mage section. Here the
libsgx_mage APIs are located in code pages and loaded
along with the original enclave code pages.
• Second, when all other pages, including enclave code and

data pages and the TCS pages, are loaded, the modified
enclave loader checks whether there is an .sgx_mage sec-
tion, and loads pages in the .sgx_mage section if found.

Particularly, if no .sgx_mage section is present, the mod-
ified enclave loader will load the enclave in the same or-
der as the unmodified enclave loader, producing the same
measurement. When there exists an .sgx_mage section, the
modified and unmodified enclave loaders will produce dif-
ferent measurements due to different loading orders, as the
unmodified enclave loaders will load .sgx_mage section ear-



Figure 4: Workflow of enclave development using MAGE.

lier than the modified one. Since our implementation of
sgx_mage_gen_measurement() produces the measurement
in the same order as the modified enclave loader, platforms
running the enclaves developed with MAGE need to use the
modified enclave loader. If using a modified loader is unde-
sired, we discuss an alternative design in Sec. 7.

Modified signing tool. The original signing tool is provided
by Intel SGX SDK for enclave developers to sign enclaves
so that they can be accepted by the Intel-signed Launch En-
clave and thus be launched successfully. The signing tool
simulates the loading process of the enclave to calculate the
measurement before signing it. We modified the signing tool
to provide the following two functionalities:

• Deriving MAINFOs: given an enclave developed with
MAGE, the modified signing tool could simulate the first
stage of the modified enclave loader, which loads all pages
except for the .sgx_mage section, to generate MAINFO,
which includes the SHA-256 intermediate hash, i.e., the
PREMR, the number of bytes updated to PREMR, and the
offset of the .sgx_mage section. The SECINFO is not
included as our prototype implementation adopts a con-
stant value of SECINFO with access permissions set to be
read-only.
• Filling the .sgx_mage section: given an enclave devel-

oped with MAGE and a list of MAINFOs derived from
a group of trusted enclaves, the modified signing tool
could fill the .sgx_mage section with the list of MAINFOs.
The measurement of the instrumented enclave will be re-
calculated and signed afterward.

As shown in Fig. 4, the workflow of enclave development
using MAGE can be depicted as follows: Ê each enclave is
developed with the libsgx_mage library, and its MAINFO is
derived using the modified signing tool. Ë if these enclaves
are from different developers, the enclave developers share
their enclaves with one another, so that they could validate
the trustworthiness of the enclaves from other developers, and
then use the modified signing tool to derive the MAINFOs of

them. Ì with the same list of MAINFOs, the modified signing
tool can be leveraged to fill the .sgx_mage section of each
enclave, and sign the resulting enclave before release.

5.2 Evaluation

Now we describe the evaluation of our prototype implementa-
tion of MAGE. Results are measured on a Lenovo Thinkpad
X1 Carbon (4-th Gen) laptop with an Intel Core i5-6200U
processor and 8GB memory.

Since the results are highly related to the size of the
.sgx_mage section, so we evaluate the metrics with regards
to different sizes of the .sgx_mage section.

The number of MAINFOs supported. We first calculate the
number of MAINFOs that can be stored in an .sgx_mage sec-
tion with L bytes (L is a multiple of the page size, i.e., 4KB).
The content of an .sgx_mage section is organized as a struc-
ture as follows: the first 8 bytes hold the total number of
MAINFOs and the rest is used to store the content of these
MAINFOs. Each MAINFO takes 48 bytes (32-byte PREMR, 8-
byte COUNT, and 8-byte OFFSET). SECINFO is not included as
we use a constant SECINFO in our prototype implementa-
tion. Hence, bL−8

48 c MAINFOs can be supported. For example,
an .sgx_mage section of one page size could support up to
85 MAINFOs. On the other hand, to support N MAINFOs, a to-
tal of d 48N+8

4096 e pages are needed. For example, supporting
N = 10,000 MAINFOs requires an .sgx_mage section of 118
pages (472 KB).

Efficiency of measurement derivation. We then measure
the time needed for deriving one measurement. From the mea-
surement derivation function described in Algorithm 1, we
can see that the time needed for the derivation is independent
of the size of the original content of the enclave and the ac-
tual number of MAINFOs in the .sgx_mage section. This is
because the content is updated into a single MAINFO where the
derivation process starts from and all bytes in the .sgx_mage
section need to be updated into the final measurement.

So we evaluated the efficiency of measurement derivation
using a dummy enclave with only one enclave function that
calls sgx_mage_gen_measurement() to derive one measure-
ment from its .sgx_mage section. Also, only one MAINFO
from itself is generated and inserted into its .sgx_mage sec-
tion. As expected, we verified that the derived measurement is
the same as its own measurement. We measured the time (av-
eraged from 10000 iterations) needed to run one invocation of
sgx_mage_gen_measurement() when the number of pages
in the .sgx_mage section ranges from 1 to 10000. When
the .sgx_mage section has a size of a single page, the time
for deriving one measurement is around 2.17e−5 seconds
or 21.7µs. When the .sgx_mage section has a size of 10000
pages, the time for deriving one measurement is around 0.212
seconds. The time needed for deriving one measurement in-
creases almost linearly with regards to the number of pages



in the .sgx_mage section because the main operations are
updating the intermediate hash value with the content of the
.sgx_mage section.

Memory overhead. The memory overhead introduced by
MAGE includes two components: (1) extra data pages for
MARS; (2) extra code pages related to the measurement deriva-
tion. The first part is straightforward, which is the size of
the .sgx_mage section. To calculate the second part, we cre-
ated another enclave similar to the dummy enclave we just
developed, except that the MAGE-related code and data are
removed. We calculated the differences in memory sizes be-
tween these two enclaves. Subtracting the first component
from the total extra memory, we got the size of the second
component, which is around 58 KB. Since libsgx_mage
leverages the SHA-256 implementations provided in the Intel
SGX SDK, the second component could be smaller if the
original enclave already includes them. Hence, the total mem-
ory overhead with a .sgx_mage section of n pages is 58+4n
KB.

6 Case Study: OPERA with MAGE

We now give an example of integrating MAGE into an open-
sourced SGX application, OPERA. We will first describe
the design of OPERA and then introduce the integration of
MAGE into OPERA.

6.1 OPERA: Open Platform for Enclave Re-
mote Attestation

OPERA introduces an attestation service to provide better
privacy guarantees to enclaves [6]. The proposed attestation
service is based on the same scheme adopted by Intel, i.e.,
Enhanced Privacy ID (EPID). EPID is a digital signature algo-
rithm that could protect the anonymity of SGX platforms [17].
To facilitate EPID based remote attestation, Intel introduces
two services, i.e., Intel Provisioning Service (IPS) and Intel
Attestation Service (IAS), and provides SGX platforms with
two privileged enclaves, Intel-signed Provisioning Enclave
(PvE) and Quoting Enclave (QE). Particularly, IPS and the
PvE run an EPID provisioning protocol to provision an EPID
private member key (attestation key) to an SGX platform.
The EPID private member key could only be accessed by the
PvE and the QE. Otherwise, any malicious enclave that could
access the EPID private member key will be able to forge
valid signatures to deceive the remote entity. Hence, to get a
signature signed by the EPID private member key, the attester
enclave needs to firstly attest itself to the QE via local attesta-
tion. After the QE verifies the attester’s report, it will generate
a data structure, called quote, which contains the attester’s
measurement and attestation data that are copied from the
report, and sign the quote using the EPID private member
key. The attestation enclave could then use the signed quote

to attest itself to the remote entity. In the current design, the
signed quote is encrypted by the QE, so that the remote entity
has to forward the encrypted signed quote to IAS for verifi-
cation, raising sensitive users’ concerns about the enclave’s
privacy.

OPERA is proposed to address such privacy concerns. It
has two types of enclaves: issuing enclaves (IssueE) that are
responsible to provision EPID private keys to the other type
of enclaves called attestation enclaves (AttestE). AttestEs
then use the provisioned EPID private keys to provide at-
testation services to local enclaves. One important property
of OPERA is its openness, i.e., the implementation is com-
pletely open so that its code (and hence behaviors) can be
publicly verified and thus is trustworthy, while its developer
can be untrusted. This property enables OPERA to achieve
better security without introducing extra trusted parties. As
such, mutual attestation without TTPs is desired in OPERA.

However, due to the lack of a mutual attestation mechanism
without TTPs between IssueE and AttestE, the authors of
OPERA provided an alternative design that transfers part
of the attestation workload to the user of the system. Partic-
ularly, only IssueE verifies the identity of AttestE before
provisioning EPID private keys. AttestE has no means to
verify whether the provisioned EPID private keys are from
a trusted enclave or not. The TCB of the OPERA includes
partial code on the user side that verifies whether AttestE
obtained the EPID private keys from a trusted IssueE or not.
While the authors proved the secrecy property of the protocol
using ProVerif (an automatic cryptographic protocol verifier),
they did not discuss other potential threats due to the lack
of mutual attestation. For example, the adversary could pro-
vision the AttestE with an EPID private key controlled by
the adversary and launch co-location attacks on the user of
OPERA by monitoring the error message (e.g., “EPID private
key is from an untrusted server enclave”) of the attestation
results. Hence, designing a mutual attestation mechanism for
OPERA could reduce the attack surface and make it more
self-contained.

6.2 OPERA-MAGE

We integrated OPERA with MAGE, resulting in OPERA-
MAGE. The integration includes two parts:
• Add identity verification logic to AttestE: In the exist-

ing OPERA design, only IssueE verifies the identity of
AttestE before provisioning an EPID key while AttestE
is not able to verify the identity of IssueE. We modi-
fied AttestE to include the verification logic so that both
IssueE and AttestE could mutually attest each other be-
fore the EPID provisioning process.
• Include MAGE in both IssueE and AttestE: We included

the MAGE library in both IssueE and AttestE and used
the modified signing tool to extract the common part, fi-
nalized IssueE and AttestE, and signed them.



We run OPERA-MAGE on an SGX platform with the
modified enclave loader installed and the resulting IssueE
and AttestE could successfully attest each other and pro-
vide the claimed attestation service to other local enclaves.
We have already open-sourced OPERA-MAGE on Github
(https://github.com/donnod/opera-mage).

7 Discussion

In this section, we discuss possible extensions of MAGE, its
limitations, and alternative designs.

7.1 Extending MAGE with Untrusted Storage
The basic design of MAGE enables the derivation of identi-
ties from information completely inside the enclave memory.
Next, we discuss how MAGE can be extended with untrusted
storage outside the enclaves (e.g., unencrypted memory, hard
drives, etc.).

Supporting unmodified enclave loaders. In our implemen-
tation with Intel SGX, we modified the enclave loader to rear-
range the order of enclave pages to be loaded in a way such
that the common part is loaded after all other content. When
such enclave loader modification is undesired, we present
a potential solution to support MAGE without the need of
modifying enclave loaders.

Consider the specific part of an enclave I′i is split into two
parts (Ipre

i , Ipost
i ) where Ipre

i is the part loaded before Icommon,
and Ipost

i is the part loaded after Icommon. The measurement
can be calculated as

H (Ipre
i ||Icommon||Ipost

i )

=Hfin(Hupd(Hupd(IV, Ipre
i ), Icommon||Ipost

i ),

|Ipre
i |+ |Icommon|+ |Ipost

i |)

We can still insert the intermediate hash of all pages before
Icommon, i.e., Hupd(IV, Ipre

i ) and the length of Ipre
i into Icommon.

As for Ipost
i , storing all its content within Icommon might intro-

duce too much memory overhead. When untrusted storage is
available to hold the content of Ipost

i , the enclave could access
it during runtime to derive the measurements. The integrity
of Ipost

i could be examined by storing its hash value within
Icommon. The common part generation function can be defined
as

Icommon =G((Ipre
1 , Ipost

1 ), . . . ,(Ipre
N , Ipost

N ))

=[(Hupd(IV, Ipre
1 ), |Ipre

1 |,H (Ipost
1 )),

...

(Hupd(IV, Ipre
N ), |Ipre

N |,H (Ipost
N ))]

During runtime, the enclave requests the host program to
provide the content of Ipost

i for measurement derivation. The

hash value H (Ipost
i ) stored in Icommon will be used to verify the

integrity of Ipost
i and obtain its length |Ipost

i |. Then, the mea-
surement derivation function could start from Hupd(IV, Ipre

i )

and update the content of Icommon and Ipost
i into the intermedi-

ate hash to obtain the final measurement. This design requires
extra untrusted storage to store Ipost

i , which unfortunately may
take longer time to derive a measurement when Ipost

i is large.

Increasing scalability. In our current design, the time cost
for identity derivation and memory overhead grows linearly
with regards to the size of the common part which reflects
the group size of trusted enclaves. To support a larger number
of enclaves, when untrusted storage outside the enclave is
available, the content of the pre-measurement array can be
moved out of the common part and only its hash value is
stored within the common part for integrity protection:

Icommon = H ([(Hupd(IV, I′1), |I′1|), . . . ,(Hupd(IV, I′N), |I′N |)])

During measurement derivation, the internal state and the
size of the corresponding enclave will be retrieved from the
untrusted storage and authenticated within the enclave. In this
way, the memory overhead becomes constant, as the common
part stores only a hash value. The time cost for measurement
derivation will also become constant as only a constant size
of Icommon is required to be updated to the measurement.

However, since the pre-measurement array is stored in un-
trusted storage, the overhead for its retrieval and integrity ver-
ification might still have a linear time complexity. To address
this, the Merkle tree structure [22] could be adopted to orga-
nize the pre-measurement array outside the enclave memory
(only the root hash of the Merkle tree is stored within Icommon)
for efficient retrieval and verification, achieving a logarithmic
time complexity instead of a linear time complexity.

7.2 Extensions to Other TEEs
Remote attestation is a general concept in trusted computing.
While this paper provides only one instantiation with Intel
SGX, the proposed solution, MAGE, can be extended to other
TEEs that use measurement-based identity to support mutual
attestation. For example, AMD’s Secure Encrypted Virtual-
ization (SEV) is a TEE solution that encrypts the memory
of virtual machines (VM) without a trusted hypervisor [18].
Remote attestation in SEV enables a guest owner to verify the
initial integrity and authenticity of a guest VM launched on an
SEV platform. The current generation of SEV, which is called
SEV-SNP (Secure Nested Paging), allows the guest VM to
request attestation reports at any time while the previous ver-
sions, i.e., SEV and SEV-ES (Encrypted State), only support
attestation during guest launch. The attestation report contains
the guest VM’s measurement and can be used by a remote
user or another guest VM to verify its identity. While ARM
TrustZone does not provide integrity measurement inherently,
Zhao et al. proposed a software-based approach to provide



secure enclaves using TEE such as ARM TrustZone [35]. The
proposed scheme also includes a measurement-based iden-
tity. Hence, these TEEs could be integrated with MAGE to
enable mutual attestation without TTPs. In addition, MAGE
could be extended to work on TEEs that adopt more compli-
cated measurement-calculation mechanisms. We describe one
extension of MAGE for TEEs that leverage Merkle trees to
compute measurements in Appendix A.

Further, MAGE can be extended for different types of TEEs
to mutually attest each other. This could benefit applications
that integrate different types of TEEs. For example, a privacy-
preserving pandemic tracking system could be possible when
mobile devices with ARM TrustZone are used to collect and
transmit users’ trajectories to cloud platforms with Intel SGX
via secure channels established through mutual attestation.
The collected trajectories could be monitored and analyzed
privately within enclaves, and notifications would be returned
to those affected mobile users. We expect mutual attestation
between SGX and TrustZone would enable many other inter-
esting use cases with cloud/client and edge/client computing
models.

7.3 Supporting Enclave Updates
The current design of MAGE does not support enclave updates.
If the content of any of the enclaves is changed, to continue
the use of MAGE, all other enclaves need to be updated to
reflect the change before these enclaves are re-deployed in
the system. Hence, MAGE does not fit a system which is de-
veloped by multiple developers and requires frequent updates.
On the other hand, when these enclaves are developed by the
same developer, e.g., in the cases of modularized applications
and distributed applications, enclave updates could be fulfilled
by the same developer directly. When these enclaves are from
mutually distrusting parties, the lack of support of enclave up-
dates in MAGE is intended. This is because updates of enclave
code change not only the identity of the enclave but also the
trustworthiness of its behavior. Therefore, a new version of
an enclave should be inspected again for its trustworthiness.
In other words, the trust relationship between these enclaves
should be re-evaluated if one has been updated. Such enclave
applications are similar to decentralized applications (dApps)
built atop smart contracts, which are also difficult to patch
once deployed. Therefore, solutions for dApps might also
work for these enclave applications. We leave the investiga-
tion of facilitating enclave updates to future work.

7.4 Supporting Private Code
This paper assumes a trust model where an enclave is trusted
by its identity, i.e., its initial code and data, which implicates
that its initial code and data should be publicly available and
verifiable. This is undesired for enclave code and data with
intellectual property rights, such as machine learning infer-

ence models. It is preferred to keep the content private. On
the other hand, integrating such private enclaves into an ap-
plication requires trust in their owners/developers. Given that
the MAGE design for measurement-based identity requires
only the pre-measurements and the sizes of these enclaves’
the specific parts to function, the design could still apply for
such a hybrid trust model: enclaves with intellectual property
rights provide only pre-measurements and the sizes of their
specific parts while the others additionally provide initial code
and data.

8 Related Work

The work that is most related to ours is presented by Grev-
eler et al. [12]. The authors proposed a protocol for two iden-
tical Trusted Platform Modules (TPM) to mutually attest each
other for system cloning. The two identical TPMs generate
the same value of the platform configuration register (PCR),
which is the cryptographic hash of the software loaded into
the TPM, having the same functionality as the measurement
for TEEs. However, this protocol only works when both en-
tities have the same identity, e.g., PCR or measurement so
that each entity could simply use its own measurement for
verification. In contrast, our scheme enables enclaves with
different measurements to mutually attest each other, enabling
applications beyond system cloning. Shepherd et al. proposed
a Bi-directional Trust Protocol (BTP) for establishing mu-
tually trusted channels between two TEEs [25]. But BTP
assumed that both TEEs know the identity of the other, while
our work answers how this assumption could be realized.

Apache Teaclave, an open-sourced universal secure com-
puting platform, addresses the mutual attestation problem by
relying on third-party auditors [28]. Enclaves will be audited
and signed by these auditors. The public keys of the auditors
are hardcoded into these enclaves to support mutual attes-
tation. These auditors are trusted by all involved enclaves
and act as TTPs. On the contrary, MAGE tackles the mutual
attestation problem without TTPs.

Also related to our work is a line of research on enclave
migration. Park et al. was the first to address this problem
by proposing a new SGX hardware instruction to be used to
produce a live migration key between two SGX platforms for
secure transfer of enclave content [23]. Gu et al. proposed a
software-based solution by augmenting enclaves with a thread
that could run remote attestation to establish a secure channel
with the thread within another identical enclave, and then
perform state transfer [13]. Alder et al. proposed an approach
to migrate the persistent states of enclaves, e.g., sealed data,
which is outside of the enclave memory [1]. And Soriente et al.
designed ReplicaTEE for seamless replication of enclaves in
clouds [27]. While all these designs address secret migration
between enclaves with the same measurement, our technique
could complement them by enabling secret migration between
enclaves with different measurements.



9 Conclusion

In this paper, we study techniques for a group of enclaves
to mutually attest each other without trusted third parties.
The main contribution of this paper is the mutual identity
derivation mechanism that enables enclaves to derive other
trusted enclaves’ identities during runtime. We implement the
proposed mechanism based on Intel SGX SDK and evaluate
the performance. We demonstrate through a case study that
this technique could facilitate new applications that require
mutual trust for interaction and collaboration.
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A Extending MAGE for TEEs that Leverage
Merkle Trees to Compute Measurements

A Merkle tree is a binary tree with an assignment Φ that
maps each node to a k-length bit-string: n−→Φ(n)∈ {0,1}k.
Particularly, the value of a parent node is the cryptographic
hash of its children nodes’ values:

Φ(nparent) = H
(
Φ(nle f t)||Φ(nright)

)
And the value of a leaf node is the cryptographic hash of a
data block.

A Merkle tree for an arbitrary-length message M, which
is broken into fixed-length data blocks M1, . . . ,ML, can be
built by firstly calculating the leaf nodes’ values, i.e., the cryp-
tographic hashes of the data blocks H (M1), . . . ,H (ML) and

then calculating each parent node’s value when its children
nodes’ values are ready. Let Ψ(M) denote the root node of
the built Merkle tree. The root hash of the built Merkle tree is
its root node’s value Φ(Ψ(M)).

Consider TEEs that leverage Merkle trees to compute mea-
surements. Particularly, an enclave Encl with content I could
use the root hash as its identity ID(I) = Φ(Ψ(I)). Given a
group of N enclaves Encli (i = 1, . . . ,N), each of which has
a specific part I′i , one potential mechanism for mutual identity
derivation is as follow:
• A common part generation G that calculates the root

hashes of the specific parts of each enclave to form an
array:

Icommon =G(I′1, . . . , I
′
N)

=[Φ(Ψ(I′1)), . . . ,Φ(Ψ(I′N))]

• A content builder function C that takes as input the specific
part I′i and the common part Icommon, and produce the final
content Ii such that the resulting Merkle tree has a root
node Ψ(Ii) with a left child node Ψ(I′i ) and a right child
node Ψ(Icommon). So we have

Φ(Ψ(Ii)) = H
(
Φ(Ψ(I′i ))||Φ(Ψ(Icommon))

)
• An identity derivation function F that generates the iden-

tity of Encli by retrieving the i-th entry from the common
part, deriving Φ(Ψ(Icommon)) from Icommon and complet-
ing the final root hash calculation:

F (Icommon, i)

=H
(
Ii
common||Φ(Ψ(Icommon)

)
=H

(
Φ(Ψ(I′i ))||Φ(Ψ(Icommon))

)
=Φ(Ψ(Ii)) = ID(Ii),∀i = 1, . . . ,N
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