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Abstract
Hardware memory encryption serves as the foundation for

TEE security, where processors transparently encrypt data
bound for DRAM while maintaining plaintext within CPU
boundaries—a critical defense against physical attacks like
memory bus snooping and cold-boot attacks. Although ubiqui-
tous in major TEE implementations (Intel SGX/TDX, AMD
SEV), design flaws have introduced severe vulnerabilities
including ciphertext replacement attacks, ciphertext replay
attacks, and ciphertext side-channel attacks.

Our work makes three key contributions: First, we present
the first comprehensive analysis of Hygon CSV’s memory
encryption engine, a prominent TEE in China’s confidential
computing market. Second, we identify a novel vulnerabil-
ity class stemming from tweak value repetition within 64-
byte blocks, causing identical 16-byte plaintexts to generate
identical ciphertexts. Third, we demonstrate how this enables
CipherShadow Attacks through: (1) an automated binary scan-
ner detecting vulnerable code patterns, (2) end-to-end attacks
demonstrating both OpenSSH authentication bypass and ma-
chine learning training data reconstruction.

1 Introduction

Trusted Execution Environments (TEEs) are hardware-
assisted secure runtime environments that protect application
code and data integrity/confidentiality, even against privileged
or physical adversaries (e.g., malicious OS/kernel or system
administrators). Their security foundation in part relies on
hardware-enforced memory encryption through a dedicated
memory encryption engine, which transparently encrypts/de-
crypts data traversing the memory bus. This maintains persis-
tent encryption in DRAM while enabling plaintext process-
ing within the CPU boundary, effectively mitigating physical
attack vectors including memory bus snooping [20] and cold-
boot attacks [26].
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The security guarantees of hardware memory encryption
fundamentally depend on implementation choices by hard-
ware vendors, which typically balance security against per-
formance and scalability. For example, Intel SGX employs
robust encryption with integrity verification and temporal
freshness, but these strong protections imposed strict enclave
size limits [22]. While Scalable SGX removed the size con-
straints, it sacrificed freshness guarantees in the process [31].
On the other hand, VM-based TEEs like SEV and TDX adopt
simpler encryption schemes to accommodate larger protected
memory regions, but their weaker cryptographic properties
have led to demonstrated vulnerabilities [35, 38, 52, 56].

For instance, early versions of AMD SEV were vulnerable
to replacement attacks due to weak tweak functions [37, 56].
Later versions, including AMD SEV and SEV-ES since the
Zen 2 architecture, were susceptible to replay attacks because
of insufficient integrity protection [39]. Even with added write
isolation protection and a stronger tweak function, the ini-
tial version of AMD SEV-SNP still faces novel ciphertext
side-channel attacks [35]. These vulnerabilities stem from
two architectural characteristics: (1) the attacker’s ability to
continuously observe encrypted memory, and (2) the lack of
temporal freshness in memory encryption [35, 38].

Motivated by these discovered vulnerabilities, we aim to
investigate whether such security flaws represent an endemic
problem across TEE architectures. Particularly, this paper
delivers the first in-depth security analysis of Hygon China
Secure Virtualization (CSV), a commercially significant yet
understudied TEE that dominates China’s confidential com-
puting market, with widespread deployment in major cloud
platforms including Tencent Cloud [6] and Alibaba Cloud [5].
CSV has become the TEE of choice for numerous research
initiatives and practical applications [2, 12, 13].

Through our security analysis of CSV’s architectural de-
sign, we identify a novel class of memory encryption vul-
nerability, which stems from CSV’s reuse of tweak values
across multiple 16-byte blocks within a cache line. Specif-
ically, CSV’s memory encryption scheme utilizes a single
derived key per 64-byte cache line, rather than implementing
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distinct tweak values for individual 16-byte sub-blocks. This
architectural decision produces deterministic ciphertext pat-
terns wherein any identical 16-byte plaintext sequences within
a 64-byte block will generate matching ciphertext outputs.

To validate the implications of this newly discovered vul-
nerability, we present a new class of attacks that we term as CI-
PHERSHADOW Attacks. This attack vector capitalizes on the
repetitive nature of encryption keys within the same 64-byte
aligned memory block, paving the way for the exploitation
of inherent weaknesses in memory encryption. The ramifi-
cations of CIPHERSHADOW extend beyond mere data leak-
age, encompassing the potential for adversaries to orchestrate
complete takeovers of confidential virtual machines. Such
breaches pose a grave threat to the overall security posture of
the system, especially when memory integrity measures are
supposedly in place.

We make the following contributions in this paper:
• We demystify the design of hardware memory encryption
of Hygon CSV and empirically verify its susceptibility to
known attacks against AMD SEV.
• We identify a new class of vulnerabilities in Hygon CSV,
which is caused by the repeated use of the same tweak values
within the same cacheline-sized memory blocks.
• We taxonomize the security designs of hardware memory
encryption and establish a connection between various de-
sign choices and known attacks against existing memory
encryption schemes.
• We introduce CIPHERSHADOW attacks, a novel class of
attacks that exploits the vulnerability of repetitive tweak
values; design and implement a binary scanner to automate
the discovery of exploitable gadgets in program binaries.
• We showcase the power of CIPHERSHADOW attacks, by

performing end-to-end attacks demonstrating both OpenSSH
authentication bypass and training data reconstruction in
machine learning programs.

2 Hygon CSV Demystified

Hygon is a manufacturer of x86 CPUs [1], with its pro-
cessors widely deployed by major cloud service providers,
including Tencent Cloud [6] and Alibaba Cloud [5]. Among
its security offerings, Hygon CSV is a prominent VM-Based
TEE solution. While CSV has seen significant adoption in
both industry and academia [2, 10, 12, 13], its security mech-
anisms remain understudied. In this section, we conduct a
comprehensive analysis of CSV, focusing first on critical as-
pects of its architecture design, memory encryption scheme,
and potential vulnerabilities.

2.1 Comparing Architectures of CSV and SEV
Hygon’s CPU architecture is based on the AMD Zen archi-

tecture; however, the security features of its CSV technology

were developed independently of AMD’s SEV. Hygon CSV
has evolved through multiple generations—CSV v1, v2, and
v3—which align closely with AMD’s SEV [33], SEV-ES [32],
and SEV-SNP [44] in both architectural design and security
objectives. To systematically evaluate these technologies, we
provide a detailed comparative analysis, highlighting criti-
cal similarities and distinctions between the CSV and SEV
architectures.

2.1.1 Similarities between CSV and SEV

CSV v1. As illustrated in Figure 1, CSV v1 employs a nested
page table (NPT) for Guest Physical Address (GPA) to Host
Physical Address (HPA) translation, similar to SEV. The Ad-
dress Space ID (ASID) field serves dual purposes: it distin-
guishes between different VMs’ page tables and is used by
the Platform Security Processor (PSP) to retrieve each VM’s
unique encryption key (VEK). This key enables the hard-
ware memory encryption engine to transparently encrypt and
decrypt VM memory.

CSV v2. Similar to SEV-ES, CSV v2 provides encrypted
protection for VM register states during world switches by
storing them in the VM Save Area (VMSA) using SM4 en-
cryption. Also similar to SEV-ES, it categorizes VMEXIT
events into Non-Automatic VM Exits (NAE) and Automatic
VM Exits (AE), with the former maintaining register confiden-
tiality, and the latter for managing special instructions (e.g.,
VMMCALL, CPUID) that require register exposure. The NAE
workflow follows SEV-ES’s established process - a VMM
Communication Exception (VC) [14] triggers the Guest OS’s
VC handler to write relevant registers to the Guest-Hypervisor
Communication Block (GHCB) based on the exit reason, fol-
lowed by hypervisor processing via VMGEXIT and subsequent
VM resumption through VMRUN.

CSV v3. CSV v3 and SEV-SNP share the fundamental secu-
rity objective of enforcing robust memory isolation between
VMs and untrusted software components. In SEV-SNP, this
is achieved through a Reverse Map Table (RMP) that main-
tains strict guest ownership records for physical pages, pre-
venting unauthorized hypervisor remapping or accesse [15].
Similarly, CSV v3 implements a Secure Memory Isolation
Management Unit (SIMU), a hardware module that provides
hardware-enforced memory isolation with critical configura-
tion parameters managed exclusively by the PSP. It features
a Secure Page Ownership Table (SPOT) similar to RMP to
maintain the memory ownership of VM. thereby preventing
external access to protected VM physical memory regions [7].

Software Compatibility. CSV maintains Application Binary
Interface (ABI) compatibility with SEV, aiming at seamless
software interoperability between the two platforms. This
compatibility enables OSes and applications designed for
SEV environments to run unmodified on CSV implementa-
tions. A notable example of this cross-compatibility can be
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Figure 1: Comparison of the memory encryption design of
CSV and SEV. Yellow blocks are features added in CSV v2
and SEV-ES; green blocks are features added in CSV v3 and
SEV-SNP; blue and red blocks denote the different designs
adopted by SEV and CSV, respectively.

observed in major Linux distributions: both openEuler [9] and
Anolis OS [8] operate flawlessly on CSV v2 hardware with
their SEV-ES-optimized kernel versions. This binary-level
compatibility significantly simplifies the adoption for existing
SEV-enabled software stacks in CSV environments.

2.1.2 Differences between CSV and SEV

A key distinction between CSV and SEV lies in their mem-
ory encryption engine. While SEV processors rely on interna-
tional encryption standard, AES [27], CSV adopts the SM4
symmetric encryption algorithm [11], which is compliant with
China’s national commercial cryptographic standards. Fur-
thermore, CSV employs a specialized key derivation mode
for encrypting 128-bit plaintext blocks. We defer our analysis
of the memory encryption engine of CSV in Section 2.2.

SEV-SNP uses RMP to protect the integrity of page tables
within VMs, while the attributes of NPT are still under the
control of the hypervisor. CSV v3 encrypts the NPT and
manages it through SIMU, blocking hypervisor access and
manipulation [7], serving as a mitigation for page-fault-based
side-channel attacks and numerous end-to-end attacks that
require page fault tracking assistance.

2.2 Demystifying CSV Memory Encryption

In this section, we empirically explore how CSV’s memory
encryption is designed.

2.2.1 CSV’s Encryption Mode

A disclosed CSV patent [3] details a dynamic key
derivation mechanism that regenerates encryption keys per
cacheline-sized (64-byte) memory block - a fundamental ar-
chitectural divergence from static-key approaches employed
in SEV and TDX. The cryptographic operations are formally
defined as:

Enc : M
Enc,P↑↑↑↓ EK↔T (P)(M) =C

Dec : C
Dec,P↑↑↑↓ DK↔T (P)(C) = M

In this model, each memory block is encrypted using a key
derived from the root key K and its physical address P. Specif-
ically, the encryption key is computed as K↔T (P), where the
tweak function T (P) is a transformation of P (e.g., hashing or
bit-masking) to a random bit string of the same length as the
encryption key. This ensures that the same plaintext stored at
different physical addresses results in different ciphertexts, en-
hancing security against memory remapping or replay attacks.
Note that the actual transformation T (P) and key derivation
mechanisms are not specified in the patent, making the de-
scription conceptual rather than implementation-specific.

2.2.2 Reverse-Engineering CSV’s Encryption Scheme

We conducted a series of experiments to reverse-engineer
CSV’s encryption mode, with respect to encryption freshness,
granularity of encryption, and protection of integrity.

Experimental Setup. We collected plaintext-ciphertext pairs
by: (1) writing data (plaintext) to C-bit-set memory, triggering
encryption to DRAM; and (2) reading from the same address
with C-bit unset, retrieving the raw ciphertext. This approach
exploits CSV’s memory encryption behavior where C-bit
controls encryption/decryption.

Observations. We systematically tested the encryption
scheme by: (1) varying plaintext values and lengths, and (2)
collecting ciphertexts from both identical and distinct memory
locations. For comparative analysis, we replicated all experi-
ments on SEV under identical conditions. Our investigation
revealed several key findings:
• 128-bit Block Encryption. Our experiments showed that
flipping a single plaintext bit alters only the corresponding
128-bit ciphertext block in CSV, and vice versa, confirming
its 128-bit block size encryption.
• No Freshness. We observe that when we repeatedly en-
crypt the same plaintext at the same physical address, the
ciphertext remains unchanged. This indicates a lack of fresh-
ness in CSV’s memory encryption.
• No Integrity Protection. Our observations reveal that an

adversary with host privileges can modify guest VM cipher-
text without triggering system crashes. This demonstrates
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Within a Cacheline Length
Ciphertext Consistency 

SEV Memory Ciphertext

CSV Memory Ciphertext

 

00 00 1331e: 
66 0f 1f 84 00 00 00  13317: 

retq   c3                    13316: 
pop  r1241 5c                 13314: 
pop  rbp5d                    13313: 
xor  eax, eax31 c0                 13311: 
pop  rbx5b                    13310: 

66 0f 1f 44 00 00    1330a: 
retq   c3                    13309: 
pop  r1241 5c                 13307: 
pop  rbp5d                    13306: 
mov  0x1, eaxb8 01 00 00 00        13301: 
pop  rbx5b                    13300: 

jne  1331075 14                 132fa: 
test eax, eax85 c0                 132f8: 
call strcmpe8 d8 95 ff ff        132f3: 

00 00 1331e: 
66 0f 1f 84 00 00 00  13317: 

retq   c3                    13316: 
pop  r1241 5c                 13314: 
pop  rbp5d                    13313: 
xor  eax, eax31 c0                 13311: 
pop  rbx5b                    13310: 

66 0f 1f 44 00 00    1330a: 
retq   c3                    13309: 
pop  r1241 5c                 13307: 
pop  rbp5d                    13306: 
mov  0x1, eaxb8 01 00 00 00        13301: 
pop  rbx5b                    13300: 

jne  1331075 14                 132fa: 
test eax, eax85 c0                 132f8: 
call strcmpe8 d8 95 ff ff        132f3: 

b0 23 15 de f8 a8 22 88 c9 02 09 19 f9 72 e5 e5 00070: 
f3 a5 cb 85 12 4b f4 31 92 72 67 c1 a1 9e 52 18 00060: 
73 31 aa 93 fd 4f 69 ee 97 eb e5 70 df 70 96 ce 00050: 
b6 47 9a 41 cc 3f bb b6 80 c6 7e b7 93 0b 67 ce 00040: 
5d ea 61 ed ca 6c a9 2e 86 a2 19 9e 34 e0 91 40 00030: 
34 4f 57 c9 74 22 9a 0a 9f 4b ea 58 3d 49 be 31 00020: 
a4 12 33 ce a6 2b 3a 5c f1 31 97 bb af 4e 67 7d 00010: 
73 ce 75 8f 62 fb 2a f7 dd c4 96 20 d8 ab 0a 8f 00000: 

d1 b0 9a b9 72 a4 4b 40 af b8 a9 4d cf 41 dd 0a 00070: 
d1 b0 9a b9 72 a4 4b 40 af b8 a9 4d cf 41 dd 0a 00060: 
d1 b0 9a b9 72 a4 4b 40 af b8 a9 4d cf 41 dd 0a 00050: 
d1 b0 9a b9 72 a4 4b 40 af b8 a9 4d cf 41 dd 0a 00040: 
6f c8 05 89 78 d2 35 60 cb b2 9f a1 2d dd 26 c2 00030: 
6f c8 05 89 78 d2 35 60 cb b2 9f a1 2d dd 26 c2 00020: 
6f c8 05 89 78 d2 35 60 cb b2 9f a1 2d dd 26 c2 00010: 
6f c8 05 89 78 d2 35 60 cb b2 9f a1 2d dd 26 c2 00000: 

    

Figure 2: Ciphertext of CSV and SEV from the same 128-byte
plaintext blocks.

that CSV v1/v2, like SEV and SEV-ES, provides neither
cryptographic integrity protection nor access controls to en-
crypted guest memory.

• Tweak Values Repetition: New Problem. Our experi-
ments observe that CSV reuses the tweak values for en-
cryption key derivation within 64-byte cacheline boundary.
As shown in Figure 2, when encrypting all-zero plaintexts,
we observe a pattern of repeated 16-byte ciphertext chunks
within the same 64-byte block, but completely different ci-
phertexts between two 64-byte blocks. This suggests that
CSV repeatedly uses the same tweak value for the key deriva-
tion procedure [3] of each of the 16-byte chunks within the
same 64-byte block. We posit that this design decision prin-
cipally originates from performance optimization consid-
erations for cache-line-aligned memory operations, where
maintaining consistent encryption parameters across a full
cache line (typically 64 bytes) reduces cryptographic over-
head during bulk memory accesses. However, this mismatch
- 16-byte encryption granularity and 64-byte tweak granular-
ity - leads to tweak value repetition, a new vulnerability that
we will explore in-depth in this paper.

2.2.3 Summary of Findings

To sum up, CSV’s memory encryption ressemble that of
SEV in that (1) they both employ 128-bit block-mode de-
terministic encryption schemes; (2) they both use physical
address-based plaintext tweak or key derivation; (3) they pro-
vide unique encryption key for each confidential VM, (4) they
both lack of integrity protection and freshness.

However, these two schemes are different from the follow-
ing aspects: (1) CSV uses SM4 for encryption and SEV uses
AES; (2) In CSV, within a 64-byte aligned memory block, the
four 16-byte chunks have identical ciphertext if the plaintexts
are the same. In SEV, each of the four 16-byte chunks will
have different ciphertexts even if the plaintexts are identical.

2.3 Validating Known Attacks on CSV
Given the architectural similarities between CSV and SEV,

we hypothesize that known SEV vulnerabilities may also af-
fect CSV. However, differences in their memory encryption
implementations could introduce distinct security properties.
To systematically evaluate these possibilities, we conduct em-
pirical testing of CSV against documented VM-TEE attacks
(including those targeting AMD SEV and Intel TDX). Our
vulnerability assessment results are presented in Table 1. We
defer a systematic assessment of defects caused by memory
encryption design to Section 3 and focus only on other vul-
nerabilities in this section.

2.3.1 Interrupt Injection Attack

Interrupt injection attacks from the hypervisor represent a
critical security challenge for TEEs, with demonstrated vulner-
abilities affecting SGX [47], SEV-SNP [42,43], and TDX [43].
While SEV-SNP introduces two optional hardware modes to
restrict hypervisor interrupt injection [44], compatible soft-
ware implementations had not been widely applied before
WeSee [42] and Heckler [43]. CCA [17] employs the Realm
Management Monitor (RMM) to protect realm VM states
during hardware interrupts, yet recent research shows it still
permits hypervisor-initiated interrupt injection [18].

WeSee [42]. SEV-SNP can be compromised through
hypervisor-injected #VC exceptions, resulting in unauthorized
disclosure and modification of the rax registers. Our experi-
ments show that while CSV v1 resists hypervisor attacks by
ignoring injected VC exceptions (#29) and NAE VMEXIT in-
structions (e.g., VMMCALL). CSV v2/v3 shares SEV-SNP’s vul-
nerability: When injecting VC exceptions from the hypervisor
and setting the exit_reason corresponding to VMMCALL, we
successfully handled the VMMCALL in the VMGEXIT handler,
enabling rax leakage. Moreover, by manipulating the rax
values through the VMGEXIT handler, we demonstrate that
these modifications are observable within the guest VM. This

However, in CSV v3, since page-fault tracking can no longer
be performed, successful exploitation using WeSee will be-

confirms the susceptibility of CSV v2/v3 to WeSee attacks.

come more complex.

Heckler [43]. SEV-SNP is susceptible to malicious injection
of INT 0x80 and INT 0 (SIGFPE) interrupts by the hyper-
visor. To verify this vulnerability in CSV, we ran an empty
loop in the guest VM while injecting INT 0x80 and INT 0
interrupts from the hypervisor. Our tests showed that both
interrupts can be injected successfully: INT 0x80 leads to
a segmentation fault in the victim program and INT 0 trig-
gers a divide-by-zero signal that terminates the VM with an
asm_exec_divide_error. These findings demonstrate that
CSV v1-v3 fail to prevent interrupt injection by the hypervi-
sor. In CSV v3, the exploitation of Heckler will be limited by
the lack of page fault tracking assistance.
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Table 1: Summary of existing TEE attacks on different platforms. Each cell indicates whether a vulnerability has been validated
on the corresponding platform. ✁✂ jindicates the platform was initially vulnerable but later patched through hardware. indicates
a potential threat of attack that is yet to be validated.

Attack Vectors Vulnerability Example Attacks SEV SEV-ES SEV-SNP CSV v1 CSV v2 CSV v3 SGX TDX CCA

Memory
Encryption

Abuse

Vulnerable Tweak
Function SEV-Unsecure [56] ✁✂ ✂ ✂ ✂ ✂ ✂ ✂ ✂ ✂

Insufficient Entropy SEVurity [52] ✁✂ ✁✂ ✂ ✂ ✂ ✂ ✂ ✂ ✂

No Freshness
Software-based Ciphertext

Side Channels [35, 38] ✃ ✃ ✁✂ ✃ ✃ ✂ ✂ ✂ ✂

Unequal Granularity CIPHERSHADOW ✂ ✂ ✂ ✃ ✃ ✂* ✂ ✂ ✂

Interrupt
Injection

Inject Int 80 Heckler [43] ✃ ✃ ✁✂ ✃ ✃ ✃† ✂ ✃ ✂
Inject #VC WeSee [42] ✃ ✃ ✁✂ ✃ ✃ ✃† ✂ ✂ ✂

Inject SIGFPE Sigy [47], Heckler [43] ✃ ✃ ✁✂ ✃ ✃ ✃† ✃ ✂
Inject APIC Timer Single-Steping [49, 51, 53] ✃ ✃ ✃ ✃ ✃ ✃ ✁✂ ✃

Register Leakage
Exposing Registers during

World Switch SEVerESt [50] ✃ ✂ ✂ ✃ ✂ ✂ ✂ ✂ ✂

Exposing Performance
Information SEVerESt [50] ✃ ✃ ✃ ✃ ✃ ✃† ✂ ✂ ✂

Memory Remapping Page Table Tampering SEVered [39],
SEVerity [40] ✃ ✃ ✂ ✃ ✃ ✂ ✂ ✂ ✂

Other Attacks

Calculation Errors in
Attestation Measurement undeSErVed [54] ✃ ✃ ✂ ✃ ✃ ✂ ✂ ✂ ✂

Lack of protection for
ASID CrossLine [36] ✃ ✃ ✂ ✃ ✃ ✂ ✂ ✂ ✂

Abuse of invd CacheWarp [55] ✃ ✃ ✁✂ ✃ ✃ ✃† ✂ ✂ ✂
†: Hygon mitigates end-to-end attacks by preventing Page Fault Tracking.
*: One-shot ciphertext leakage can still be exploited.

Single-Stepping [49,51,53]. Such attacks leverage the hyper-
visor’s capability to inject timer interrupts, enabling control
flow tracing within TEEs. SGX [49] is vulnerable to such
attacks via high-resolution timers (e.g., LAPIC). Countermea-
sures like AEXNotify [21] introduce ISA extensions allowing
enclaves to register interrupt handlers. The SEV family [53]
and CCA lack interrupt frequency detection mechanisms, leav-
ing them exposed. TDX attempts to mitigate these attacks
through its trusted TDX module, which detects suspicious
interrupt patterns and introduces random delays. However,
recent research in TDXdown [51] reveals that these protec-
tions can be circumvented—either by manipulating CPU fre-
quency to bypass timing checks or via the StumbleStepping
side channel, which leaks instruction counts within a TD. To
implement interrupt-based single-stepping on CSV, we config-
ure the APIC timer interval from the hypervisor to precisely
control guest VM execution timing. By leveraging hardware
performance counters, we distinguish between three execution
states: single-step, zero-step, and multi-step transitions. By
adjusting the APIC intervals, we establish a reliable method
for achieving consistent single-step execution.

2.3.2 Register Leakage and Manipulation

Unprotected register states during world switches pose a
critical security risk, enabling both register value leakage and
manipulation. TEEs employ different approaches to regis-
ter protection during world switches: SEV-ES/SEV-SNP and
CSV v2/v3 encrypt registers on VMEXIT to prevent direct
leakage; SGX uses an encrypted State Save Area (SSA) [29]

to save the register information of the enclave during context
switches; TDX strengthens isolation by executing its module
in a hardware-secured environment, guaranteeing encrypted
register state during exits [19]; while CCA adopts a stricter
model where the RMM mediates all context switches, enforc-
ing complete register isolation from untrusted software [16].

SEVerESt [50]. Our experiments reveal that this vulnerabil-
ity persists in CSV v1 due to its exposure of general-purpose
registers in plaintext during VM context switches. Like SEV-
ES, CSV v2 resolves this security gap through register state
encryption, effectively preventing such instruction inference
attacks. Moreover, like SEV-ES where applications finger-
prints can be extracted through Instruction-Based Sampling
(IBS) [50], CSV v2/v3 also provides performance monitor-
ing mechanism with the capability of monitoring TLB and
cache misses, retired instruction counters, context switches,
bad speculation, and branch miss events, among others, mak-
ing CSV v2/v3 susceptible to such attacks. The collection of
application fingerprint information requires details such as
page addresses. In CSV v3, the lack of page fault assistance
prevents attackers from obtaining such information, thereby
limiting these types of attacks.

2.3.3 Memory Remapping Attacks

In SEV and SEV-ES, the hypervisor retains full control
over the NPT, enabling it to monitor or manipulate VM mem-
ory mappings undetected [39, 40]. SEV-SNP addresses this
limitation by introducing hardware-enforced page table vali-
dation via the RMP, which prevents unauthorized remapping

USENIX Association 34th USENIX Security Symposium    5763



and enforces strict page access control [44]. Similarly, SGX
relies on the hardware-protected Enclave Page Cache Map
(EPCM) to validate enclave pages, ensuring software cannot
access or modify it [22]. In contrast, TDX and CCA protect
page tables by virtualizing or relocating them within the TEE
context, preventing the untrusted host from directly inspecting
or modifying guest address mappings [16, 30].

SEVered and SEVerity [39, 40]. Our experiments show that
on both CSV v1 and v2, the hypervisor can modify the NPT to
successfully perform memory remapping attacks. Specifically,
we implemented a program in the guest VM that reads data in
a busy loop from a buffer located on a specific memory page.
In the hypervisor, we modified the page table entry for the
buffer’s GPA in the NPT to point to a different physical page.
We observed that the output of the test program changed
immediately after the remapping. In CSV v3, the NPT is
encrypted and no longer under the control of the hypervisor;
hence, such attacks can no longer be successfully carried out.

2.3.4 Other Known Attacks

CacheWarp [55]. The SEV processor series allows hyper-
visors to utilize the privileged invd instruction, which in-
validates dirty VM cache lines without writing them back,
causing VMs to use stale data. SEV-SNP fixes this vulnerabil-
ity by updating hardware patches to disable the “enable invd
behavior” MSR. To test this vulnerability on CSV v1, v2, and
v3, we pinned the victim VM and the attacker program to dif-
ferent physical cores so that they share the Last Level Cache
(LLC). First, to avoid system crash, the attacker program exe-
cutes wbinvd to write back all cache lines in the LLC, as the
LLC might contain dirty data from the kernel. Then in the
victim VM, a program runs in a busy loop; in each iteration,
it reads the value from a fixed address, increments it by 1,
writes it back, and then evicts its copy in the private cache
to LLC via cache Priming. Right after the victim’s Priming
and before its subsequent read, the attacker program executes
invd to invalidate the LLC, without writing back dirty data.
In our experiments, we observe that the victim reads a stale
data in the next iteration. This demonstrates that CSV v1-v3
are potentially susceptible to CacheWarp attacks. However,
in CSV v3, the absence of page fault assistance will make a
successful end-to-end attack much harder.

undeSErVed [54]. In SEV and SEV-ES, rearranging 16-
byte-aligned data in OVMF during VM launch preserves the
launch digest, enabling secret leakage [54]. Our investiga-
tion of CSV v1/v2 reveals that while CSV replaces SEV’s
SHA-256 with SM3 for launch digest calculation—hashing
OVMF appended with an optional hash table (kernel, ini-
trd, launch commands)—it inherits the same vulnerability:
modifying 16-byte-aligned OVMF data leaves the digest un-
changed, demonstrating that CSV merely substitutes SM3
without fixing SEV’s flawed measurement scheme. In CSV v3,

altering the 16-byte-aligned OVMF data will prevent passing
the LAUNCH_FINISH phase, indicating that this vulnerability
has been fixed.

CrossLine [36]. SEV and SEV-ES are vulnerable to ASID
(Address Space Identifier) spoofing attacks due to the lack of
hardware-enforced ASID protection [36]. During VMEXIT,
an attacker can maliciously modify the ASID and associ-
ated memory mapping information, enabling a compromised
CVM to impersonate a victim CVM and access its memory
using the victim’s encryption key. While SEV-SNP addresses
this issue through hardware-based memory ownership veri-
fication and mapping integrity protection, our experimental
results demonstrate that CSV v1 and v2 remain susceptible -
a malicious hypervisor can still arbitrarily manipulate ASIDs
of protected CVMs. CSV v3 ensures the trust and integrity
of ASIDs and their corresponding memory through SPOT,
thereby preventing this attack.

3 Memory Encryption Taxonomy in Commod-
ity TEEs

To comprehensively assess the security implications of
these vulnerabilities and their relationship to other weaknesses
in the memory encryption architecture, in this section, we
systematically analyze the memory encryption mechanisms
in different TEEs, starting from three design considerations:
encryption freshness, encryption granularity, and integrity
protection. We categorize designs with different encryption
characteristics into four security levels and landscape the
attack threats faced by each security level, as shown in Figure
3. This allows us to assess the security of memory encryption
in mainstream TEE products, thereby evaluating the security
of CSV memory encryption.

3.1 Security Design Choices
Hardware-assisted memory encryption engines encrypt

and decrypt data traversing the memory bus on the fly. This
ensures that only plaintext is available inside the CPU for
computation, while ciphertext is stored in DRAM to protect
data confidentiality. We categorize the key design choices in
hardware-assisted memory encryption that influence its secu-
rity properties into three main aspects: encryption freshness,
encryption granularity, and integrity protection.

Encryption Freshness. For performance reasons, hardware
memory encryption engines primarily support symmetric en-
cryption algorithms such as AES or SM4. The former is the
acronym for the Advanced Encryption Standard [27], which
was officially adopted by the National Institute of Standards
and Technology (NIST) of the United States in 2001. Most
TEE designs use AES as their memory encryption algorithm,
including Intel SGX, Intel TDX, ARM CCA, and AMD SEV.
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Figure 3: A Taxonomy of Hardware Memory Encryption.

SM4 [11] was designed by China’s State Cryptography Ad-
ministration and is widely used in a variety of encrypted
communication and e-Commerce contexts within China. The
SM4 algorithm has a key length and block length of 128 bits
and operates in a structure of 16 rounds of iteration. Hygon
CSV chooses SM4 as its encryption algorithm [4].

With a specific encryption key, symmetric encryption algo-
rithms (AES and SM4) always deterministically transform a
plaintext block into the corresponding ciphertext block. How-
ever, with hardware memory encryption, this leads to deter-
ministic encryption, resulting in a lack of the freshness of
encryption. To address this, equality protection is essential to
ensure that the same plaintext in different memory locations
does not produce identical ciphertext.

Encryption Granularity. Granularity refers to the size of
the encryption block and the size of the tweak window. As
shown in Figure 3, when these sizes are equal, it is referred
to as equal granularity. On the other hand, if the sizes are
different, it is classified as unequal granularity.
• Encryption Block Size: In the context of memory encryp-
tion, a 16-byte block is typically used to align with the
requirements of block cipher systems such as AES/SM4,
where 16-byte (128-bit) encryption units are employed.
• Tweak Size: The tweak function mitigates deterministic
encryption by incorporating physical addresses to produce
unique ciphertexts for identical plaintexts. The tweak size —
i.e., the number of entropy bits used—directly impacts the
level of diversification. While a full 128-bit tweak is unneces-
sary, vendors can select smaller sizes based on performance-
security trade-offs.

Integrity Protection. To ensure the integrity of encrypted
memory, different TEEs adopt distinct design choices:
• Cryptography Integrity: Cryptographic integrity protection
ensures the integrity of data by incorporating Message Au-

thentication Code (MAC) values. Attackers lacking the in-
tegrity key for computing the MAC will cause a mismatch in
the MAC values, thereby enabling the detection of malicious
tampering with the ciphertext.
• Remapping Checks:

Remapping checks are used to verify whether confidential
memory is mapped to crafted memory addresses through
either virtual memory-remapping or physical memory-
remapping attacks, thereby hindering the implementation
of potential memory tampering and replay attacks. Vir-
tual remapping checks are used to inspect virtual memory-
remapping attacks, where attackers manipulate the virtual
address mappings of a TEE instance, remapping the virtual
memory to meticulously crafted memory locations, thereby
altering the data within the confidential instance. Physical
remapping checks are used to inspect physical memory-
remapping attacks, where the physical addresses of the TEE
instance are remapped to ’fabricated’ physical addresses (i.e.,
aliasing), allowing attackers to observe and modify the TEE
instance’s memory by reading and writing to these physical
addresses.

3.2 Security Levels of Memory Encryption
Based on memory freshness, memory integrity, and known

attacks, we summarize the following five security levels of
memory encryption.

• Level-1: This level implements a basic memory encryp-
tion mechanism, but there are flaws in the design of the
encryption scheme.
• Level-2: This level provides encryption without crypto-
graphic integrity protection and lacks remapping checks,
allowing both virtual and physical memory-remapping at-
tacks, enabling memory tampering and replay attacks.
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• Level 3: This level introduces a virtual remapping check
that prevents tampering with memory of TEE instances
through virtual memory-remapping attacks, but it is still
vulnerable to tampering through physical memory remap-
ping.

• Level-4: This level incorporates both virtual and physical
remapping checks to prevent virtual and physical memory-
remapping attacks.

• Level-5: This level offers a memory encryption algorithm
that includes both freshness and integrity, capable of defend-
ing against replay and memory tampering attacks from both

As shown in Figure 3, different levels of memory encryp-
tion are vulnerable to varying types of attacks. For example,
memory encryption without freshness faces attacks from ci-
phertext side-channel [35, 38] and replay attacks [28, 39, 40].
Unequal encryption granularity leads to the CIPHERSHADOW
attack that we explore in-depth in this work. The absence
of remapping checks exposes the confidential memory to
memory-remapping attacks [23, 39, 40]. Recent studies have
shown that physical attacks on the unencrypted address bus
of SGX can lead to off-chip side-channel attacks [34]. How-
ever, the lack of encryption on the address bus falls outside the

software and hardware attackers at the cryptographic level.

scope of discussion for TEE memory encryption mechanisms.

3.3 Design Spectrum of Memory Encryption

AMD SEV (Zen 1) (Level-1, XE With Flaws in the Tweak
Function). To address vulnerabilities caused by deterministic
encryption, AMD initially used XOR-and-Encrypt (XE) mode
in the first generation of SEV. However, this mode was later
proven unsecure with a vulnerable tweak function [37, 56],
resulting in the leakage of the tweak value through the collec-
tion of plaintext-ciphertext pairs.

AMD SEV/SEV-ES (Zen 2,3,4) (Level-2, XEX Without
Remapping Checks). XOR-Encrypt-XOR (XEX) provides a
more secure tweak function but has vulnerabilities on some
SEV platforms due to its use of limited 32-bit entropy, allow-
ing brute-force attacks on the tweak constants and performing
ciphertext replacement attacks [52]. The XEX tweak func-
tion uses physical addresses as input and lacks freshness,
which causes identical plaintexts at the same physical address
to produce the same ciphertext. This makes it vulnerable to
ciphertext side-channel attacks [35,38]. Furthermore, hypervi-
sor manipulation of NPT without remapping checks can lead
to virtual memory-remapping attacks, causing replay attacks
to be implemented. [39, 40].

AMD SEV-SNP and ARM CCA (Level-3, XEX With Vir-
tual Remapping Checks). SEV-SNP uses the same XEX
mode for memory encryption as SEV and SEV-ES, which
lacks the property of freshness. Therefore, it is also suscepti-
ble to ciphertext side-channel attacks. The latest version of

SEV-SNP eliminates such attacks through Ciphertext Hid-
ing [15], which restricts the hypervisor’s access to VM ci-
phertext by matching the ownership of accessed memory.
Additionally, SEV-SNP introduces a virtual remapping check
mechanism that uses RMP to verify the integrity of GPA to
HPA mappings during page table walks. Recent studies have
shown that although RMP can defend against virtual memory
remapping, its unencrypted data storage leaves it susceptible
to modification by physical memory-remapping attacks. Once
altered, the platform becomes vulnerable to virtual memory-
remapping and ciphertext side-channel attacks again [23].

Similarly, Arm CCA [16] employs AES-XEX or QARMA-
based memory encryption without MACs, thereby lacking
both integrity and freshness guarantees. The Granule Protec-
tion Table [24], which is entirely located in external memory,
is similar to SEV-SNP’s RMP and can only defend against
virtual memory-remapping attacks. As a result, CCA remains
vulnerable to physical memory-remapping attacks.

Intel TDX/Scalable SGX (Level-4, XTS With Virtual and
Physical Remapping Checks). Intel TDX [19, 41] and Scal-
able SGX [31] both employ AES-XTS [25] mode for memory
encryption. While both XEX and XTS involve two XOR
operations, XTS includes a tweak value derivation func-
tion and without freshness, thus, is vulnerable to ciphertext
side-channel attacks. But, Scalable SGX and TDX both uti-
lize memory access control, which can prevent other pro-
grams from accessing confidential memory, thereby miti-
gating ciphertext side channels. SGX leverages DRAM’s
ECC as ownership to isolate access from outside programs,
and uses ACTM to isolate access from other confidential in-
stances. When attackers attempt to access confidential mem-
ory through remapped physical addresses, they will be de-
tected based on differences in permissions, thereby achieving
physical remapping checks. TDX uses a remapping check
similar to Scalable SGX and provides optional cryptographic
integrity protection mechanisms. It uses ciphertext, tweak
value, MAC key, and TD-owner extracted from ECC to gener-
ate a 28-bit MAC value to prevent memory tampering attacks,
thereby ensuring memory integrity.

Intel SGX v1 (Level-5, AES-CTR With Merkle Tree). The
AES-CTR encryption mode used by Intel SGX v1 introduces
a notion of freshness via counters for each block, which in-
herently provides resistance to ciphertext side-channel and
replay attacks. By constructing a binary tree structure and
comparing root hashes, the integrity of the entire confiden-
tial memory can be verified and prevent memory tampering
attacks. However, the use of Merkle trees presents certain
limitations. They necessitate extra memory to store the com-
puted hashes, which can be problematic in environments with
limited memory capacity. Moreover, as the hash tree expands,
the verification process becomes more time-consuming due
to the increased depth of the tree. Thus, the implementation of
the Merkle tree imposes a significant maintenance overhead.
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Consequently, SGX v1 is restricted to support small memory
sizes [22, 48].

Hygon CSV v1/v2 (Level-2, SM4 With Tweak-derived
Keys): CSV employs the SM4 encryption algorithm with
an encryption key derivation mode that lacks freshness, mak-
ing it susceptible to ciphertext side-channel and replay at-
tacks. Additionally, the absence of remapping checks and
cryptography integrity protection makes it equally vulnera-
ble to both virtual and physical memory-remapping attacks.
The key derivation strategy used by CSV implements unequal
granularities, leading to new security issues for CSV. Specif-
ically, this characteristic of unequal granularities results in
a repeated tweak value within a 64-byte block, leading to
more severe replace attacks, as the contents of the adjacent
four 16-byte chunks can be interchanged. This also results
in additional information leakage, revealing whether the four
adjacent chunks contain the same plaintext. We refer to these
enhanced attack vectors resulting from the repeated tweaks
as the CIPHERSHADOW attack, and further discuss the secu-
rity impact of the CIPHERSHADOW attack later in this paper.
Notably, the root cause of these new vulnerabilities in CSV is
its misaligned encryption granularity and tweak granularity,
not the tweak function itself.

4 CIPHERSHADOW Vulnerability Analysis

In this section, we present CIPHERSHADOW attacks, which
exploit the newly discovered vulnerability in CSV’s memory
encryption scheme.

4.1 Threat Model
Our threat model considers attacks from both privileged

software and adversaries with physical accesses to the TEE
platform. Specifically, we assume the software adversary can
execute privileged instructions, manage the scheduling of
confidential VMs, and access the ciphertext of the encrypted
guest memory with either read-write permissions or read-only
permissions. The adversary can further leverage controlled-
channel attacks (e.g., page fault or interrupt-based) and cache
side-channel attacks to extract sensitive information from the
protected VM, including identifying memory pages contain-
ing critical functions or data structures. For physical attacks,
we assume the adversary has access to the server hardware and
can carry out low-level hardware attacks, such as intercepting
memory bus traffic or extracting DRAM contents via a one-
time cold boot attack. We do not consider Denial-of-Service
(DoS) attacks, as they are outside the TEE’s confidentiality
guarantees and are generally detectable by the TEE owner.

4.2 CIPHERSHADOW Attack Overview
Next, we provide an overview of how CIPHERSHADOW

can hijack the control flow of confidential VMs and thus

2/1

框码代22:91 11/7/4202

  pop  r1241 5c           1330e: 
  pop  rbp5d              1330d: 
  xor  eax,eax31 c0           1330b: 
  pop  rbx5b              1330a: 
  retq   c3              13309: 
  pop  r1241 5c           13307: 
  pop  rbp5d              13306: 
  mov  eax,0x1b8 01 00 00 00  13301: 
  pop  rbx5b              13300: 

  jne  1331075 14           132fa: 
  test eax,eax85 c0           132f8: 
  call strcmpe8 d8 95 ff ff  132f3: 

Assembly Code  Binary code      Offset

 13313: 5d                   pop  rbp
 13314: 41 5c                pop  r12
 13316: c3                   retq   
 13317: 66 0f 1f 84 00 00 00 
 1331e: 00 00

xor  eax, eax 13311: 31 c0                
pop  rbx5b                    13310: 

66 0f 1f 44 00 00    1330a: 
retq   c3                    13309: 
pop  r1241 5c                 13307: 
pop  rbp5d                    13306: 
mov  eax, 0x1b8 01 00 00 00        13301: 
pop  rbx5b                    13300: 

jne  1331075 14                 132fa: 
test eax, eax85 c0                 132f8: 
call strcmpe8 d8 95 ff ff        132f3: 

b0 23 15 de f8 a8 22 88 c9 02 09 19 f9 72 e5 e5 00070: 
f3 a5 cb 85 12 4b f4 31 92 72 67 c1 a1 9e 52 18 00060: 
73 31 aa 93 fd 4f 69 ee 97 eb e5 70 df 70 96 ce 00050: 
b6 47 9a 41 cc 3f bb b6 80 c6 7e b7 93 0b 67 ce 00040: 
5d ea 61 ed ca 6c a9 2e 86 a2 19 9e 34 e0 91 40 00030: 
34 4f 57 c9 74 22 9a 0a 9f 4b ea 58 3d 49 be 31 00020: 
a4 12 33 ce a6 2b 3a 5c f1 31 97 bb af 4e 67 7d 00010: 
73 ce 75 8f 62 fb 2a f7 dd c4 96 20 d8 ab 0a 8f 00000: 

d1 b0 9a b9 72 a4 4b 40 af b8 a9 4d cf 41 dd 0a 00070: 
d1 b0 9a b9 72 a4 4b 40 af b8 a9 4d cf 41 dd 0a 00060: 
d1 b0 9a b9 72 a4 4b 40 af b8 a9 4d cf 41 dd 0a 00050: 
d1 b0 9a b9 72 a4 4b 40 af b8 a9 4d cf 41 dd 0a 00040: 
6f c8 05 89 78 d2 35 60 cb b2 9f a1 2d dd 26 c2 00030: 
6f c8 05 89 78 d2 35 60 cb b2 9f a1 2d dd 26 c2 00020: 
6f c8 05 89 78 d2 35 60 cb b2 9f a1 2d dd 26 c2 00010: 
6f c8 05 89 78 d2 35 60 cb b2 9f a1 2d dd 26 c2 00000: 

    

login success 

replace

login fail 

Figure 4: Password authentication assembly code of
OpenSSH. The execution of “login success” or “login fail”
will be determined by the result of the strcmp function, which
indicates whether the input password matches the correct one.

breach their confidentiality and integrity.

CIPHERSHADOW Example. As shown in Figure 4, The ma-
chine code for “login failed” and “login successful” corre-
sponds to different 16-byte chunks within the same 64-byte
block. Due to the encryption mode employed by CSV (see
Section 2.2), this arrangement is also reflected in their en-
crypted ciphertext. A malicious hypervisor can manipulate the
login verification process by replacing the ciphertext chunk
that contains the code for “login failed” with the chunk that
corresponds to the code for “login successful”. Consequently,
even if an incorrect password is provided by an illegal user,
the server will grant permissions, enabling unauthorized and
malicious access.

4.2.1 CIPHERSHADOW Gadgets

CIPHERSHADOW is exploitable with certain code or data
patterns. A gadget refers to a 16-byte ciphertext memory
chunk that an adversary can use to replace an adjacent ci-
phertext chunk. This substitution should allow the attacker
to manipulate the program’s execution successfully without
causing the program to crash. Such a ciphertext replacement
can be used by an adversary to compromise either the control
flow or the data flow of a program. Control flow gadgets alter
the program’s execution flow, while data flow gadgets can
modify data handling by changing operand values or data
structures.

Control Flow Gadgets. Control flow gadgets allow the ad-
versary to add new instructions or alter the operands of exist-
ing instruction, by replacing memory chunks in code pages.
Specifically, modifications and additions to control flow in-
structions such as jmp, call, and ret can affect the correct
execution of instruction sequences, potentially altering the re-
sult of the correct function call, Figure 5 illustrates examples
of control flow gadgets.
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F3 0F 1E FA 55 48 89 FD 53 48 83 EC 08 E8 CE 9B

04 00 48 8D 1D 47 ED 2B 00 31 F6 41 B9 52 04 00

00 00 41 B8 01 00 00 00 48 8D 0D 26 70 07 00 48 8B

call 0x5e590

call 0x1e590

(a) Call Gadget: Replacing the second 16-byte chunk in a
64-byte block with the third results in a function call to a
different address.

C3 0F 1F 80 00 00 00 00 48 8B 74 24 10 48 89 DF
F3 0F 1E FA 41 55 41 54 55 53 48 89 FB 48 83 EC

ret

endbr64

(b) Ret Gadget: Replacing the second chunk at the beginning
of the next function with one that includes a ret instruction
causes an immediate return.

Figure 5: Illustration of gadget manipulations by modifying
16-byte chunks in code blocks.

Data Flow Gadgets. Data flow gadgets pose a serious threat
to the program’s data flow, as they have the potential to hi-
jack memory or register states, leading to the processing of
incorrect data. They can be generated by modifying the ci-
phertext of the four adjacent 16-byte executable text or data
segments. The altered instruction sequence may change the
propagation of data in registers or memory, thereby disrupt-
ing the program’s data flow. Similarly, replacing within data
memory can cause altered data to flow, resulting in malicious
modifications to function parameters, return registers, and the
memory regions of local and global variables.

4.2.2 One-time Ciphertext Leakage

The CSV’s reuse of the tweak function within a 64-byte
block not only facilitates attacks due to ciphertext block re-
placement, but also enables new vectors for information leak-
age from one-time dump of the ciphertext memory. This one-
time ciphertext leakage allows attackers to extract sensitive
information of the VM, as discussed in Section 6.3.

5 CIPHERSHADOW Gadgets Scanner

This section presents a scanner for detecting CIPHER-
SHADOW gadgets in production binaries and evaluating their
exploit potential in sophisticated attack scenarios.

5.1 Overview
The workflow of the scanner is illustrated in Figure 6. The

scanner analyzes executables at the function level, where the
scanner first isolates the functions of the executable and then
analyzes each of moving windows within a function. A mov-
ing window is a 64-byte aligned memory block. Each window
comprises four movable chunks, which are 16-byte aligned

blocks. Shifting or duplicating chunks within a window can
still yield valid and meaningful plaintext, although certain
plaintext, when decoded as instructions, may cause applica-
tion to crash. To thoroughly explore potential vulnerabilities,
we apply a ciphertext replacement strategy to generate possi-
ble modified functions.

The analysis module comprises static control flow anal-
ysis and static data flow tracing, which are used to extract
the control flow graph (CFG) and the data flow graph (DFG)
from the original and modified functions. Subsequently, dur-
ing different tests, the CFG and DFG of the original functions
are compared with those of the modified functions. If dif-
ferences are detected–a screening procedure performed by
a unusable gadget filter–that excludes modifications likely
to cause crashes are performed. The remaining gadgets are
flagged as potentially exploitable.

5.2 Methodology

Reducing Search Space. There are 44 possible replacements
for movable chunks within a 64-byte moving window. How-
ever, complex replacement operations are likely to cause
crashes, resulting in a substantial amount of unfruitful explo-
ration. To reduce the search space, we only consider replacing
only a single chunk. For complex transformations that replace
multiple chunks will significantly alter the control flows of
the program, ultimately causing crashes. As our principle is
to locate gadgets that can potentially threaten program secu-
rity without crashing its execution, we only replace a single
chunk with each of the other chunks within a moving window,
resulting in only 12 (i.e., 3↗4) candidate gadgets per window.
Our analysis reveals minimal downstream impact, with newly
generated instructions differing from the original by only 4.27
instructions on average.

Static Data Flow Tracing. Static data flow trace checks if a
chunk replacement can lead to changes in data flow-related
instructions (such as mov, add, xchg, etc.). We first perform a
static data flow analysis from the entry point of the original
function, using symbolic values for initial register and mem-
ory values. We monitor data flow-related instructions and
update the register and memory sets based on the semantics
of each instruction until the end of the function. This allows
us to obtain the DFG, including program memory and register
states at every address within the function.

After replacing the movable chunk and obtaining the mod-
ified function, we locate the new instructions generated by
the replacement. If these new instructions alter the original
data flow, we use the register and memory values obtained
from the original function at this address as the initial state
set. Then we perform a static data flow analysis from the
new instruction using the same process as described above to
obtain the modified DFG. Afterward, these two data flow sets
are compared, with particular focus on whether the data flow
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Figure 6: Key components and workflows of CIPHERSHADOW gadget scanner.

of the relevant registers changes during the call, conditional
jump, and return instruction. If so, the new instructions are
recorded as a potential data-flow gadget.

Static Control Flow Gadget Detection. Static analysis fo-
cuses on specific control flow instructions, including jne, je,
jmp, call, and ret. The process begins with the generation
of a control flow graph of the original function. After each
replacement of the movable chunk, the original instructions
are overwritten by the newly generated instructions, which
may introduce new control flow instructions or modify exist-
ing ones. A new control flow graph of the modified function
is generated and compared with the original one. If there are
differences in the control flow graph, the altered instructions
are marked as potentially exploitable control flow gadgets.

Unusable Gadget Filter. Replacing a movable chunk in a
moving window may still generate instructions that ultimately
cause program to crash, even when generating gadgets trigger-
ing invalid control or data flows. To eliminate useless gadgets,
we define the following rules for filtering of usable gadgets.

• Jump to a non-executable memory address. The gener-
ated jump instructions have great randomness in their targets,
including illegal virtual addresses, unmapped address seg-
ments, program address space, shared library address space,
and kernel address space. Address space layout randomiza-
tion (ASLR) [46] and page table permissions restrict our
ability to identify valid jump targets beyond the current pro-
gram’s memory mapping. Consequently, we filter gadgets
to retain only those targeting executable pages within the
program’s address space.
• Generate Illegal Instruction. We filter gadgets generating
illegal instructions that violate the format of the x86 ISA.
• Access to an illegal memory address. We implement strict

gadget filtering that excludes any instructions causing mem-
ory access violations, whether through permission errors
(R/W/X), privilege level transgressions, or invalid address
accesses, ensuring only viable exploitation candidates re-
main for analysis.

Results. The scanner is implemented on top of angr [45].

Table 2 shows that there are numerous potential exploitable
gadgets in security-related functions. We can observe that re-
placing just a single 16-byte chunk is highly likely to change
the program’s control flow or data flow; moreover, most of
these will produce illegal instructions and illegal memory
accesses, leading to crashes. Manual efforts are needed after-
ward for exploiting the gadgets for actual attacks. The main
performance overhead of the scanner is influenced by the func-
tion size and the number of data flow gadgets obtained. When
newly added or deleted instructions affect data propagation,
complete static data flow tracing will be conducted from the
modified instructions to the function return, which accounts
for most of the overhead of the scanner. Additionally, since
the analysis is performed on binary files, angr uses the IR to
simplify the handling of complex assembly instructions, and
the translation process will also affect the cost of program
analysis. On average, the processing time for one moving
window is 4.2s.

6 CIPHERSHADOW Attack

In this section, we show case the power of CIPHER-
SHADOW attacks. First, we show CIPHERSHADOW can
be leveraged to collect application’s page fingerprints

(Section 6.1), thereby revealing the physical addresses of the
targeted applications to aid end-to-end attacks. Second, we
show CIPHERSHADOW can compromise confidential VMs by
enabling unauthorized logins (Section 6.2.1). Third, we show
even without software read/write permissions, adversaries
with one-shot ciphertext leakage can still leverage CIPHER-
SHADOW to disclose sensitive information such as training
datasets of AI applications (Section 6.3).

All experiments were carried out on two Hygon CPUs,
including Hygon C86 5285 with 16 CPU cores that support
CSV v1, and Hygon C86 7390 with 32 CPU cores that sup-
port both CSV v1 and v2.
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Application Function Name #64-byte Block Time Potential Control Flow Potential Data Flow U1 U2 U3 Control Flow Data Flow
Sshd do_authenticated 21 57.20s 228 158 54 79 105 95 53

Mysql-Server FSE_optimalTableLog_internal 5 22.37s 11 12 0 8 7 3 5
Nginx-Server resolve_srv_names 10 23.85s 68 48 16 24 31 28 17
Redis-Server genericZrangebyscoreCommand 19 171.37s 212 187 94 54 142 66 43

Table 2: Numbers of gadgets in security-sensitive functions. U1, U2, and U3 represent the numbers of filtered gadgets that will
cause a crash due to (1) jump to a non-executable memory address, (2) generate illegal instruction, and (3) access to an illegal
memory address, respectively. Potential reflects the number of gadgets before filtering. The size of each function is represented
as the number of 64-byte blocks in the function code.

F3 0F 1E FA C3 66 66 2E 0F 1F 84 00 00 00 00 00
F3 0F 1E FA E9 D7 59 08 00 0F 1F 80 00 00 00 00
F3 0F 1E FA C3 66 66 2E 0F 1F 84 00 00 00 00 00
F3 0F 1E FA E9 D7 59 08 00 0F 1F 80 00 00 00 00

31 C0 C3 66 66 2E 0F 1F 84 00 00 00 00 00 66 90 
F3 0F 1E FA E9 D7 59 08 00 0F 1F 80 00 00 00 00
48 8B 05 41 1E 2C 00 48 63 FF 48 8B 04 F8 C3 90 
31 C0 C3 66 66 2E 0F 1F 84 00 00 00 00 00 66 90 

1
0
0
0

0
0
1
1

Figure 7: An example of the identical 16-byte chunk within a
64-byte memory block. The appearance of the identical 16-
byte chunk may be caused by function prologues or epilogues,
loop unrolling, and compiler optimization.

6.1 Application Fingerprinting

Our analysis demonstrates that repeated 16-byte ciphertext
patterns within 64-byte memory blocks can function as dis-
tinctive fingerprints, enabling adversaries to precisely locate
physical pages. This achieves equivalent physical address
inference capabilities to existing page-fault-based [37] and
interrupt-based [49, 53] side-channel techniques.

Fingerprints Calculation As shown in Figure 7, the sequence
of identical 16-byte chunks within 64-byte memory pages can
be used as a feature to generate a fingerprint, which is the
same generated by both encrypted and plaintext pages.

Within each 64-byte block, the four 16-byte chunks can
exhibit 15 distinct patterns: (1) all chunks unique, (2) six
variations with two identical chunks and two distinct ones, (3)
three variations with two identical pairs, (4) four variations
with three identical chunks, and (5) all chunks identical. We
encode each pattern using a 4-bit identifier. Therefore, 4 bits
can be used to encode the similarity patterns for each 64-
byte block. By concatenating 64 consecutive 4-bit identifiers
from a 4KB memory page, we generate a compact 32-byte
fingerprint.

Evaluation of Fingerprint Uniqueness. To evaluate whether
identical 16-byte ciphertext patterns can uniquely identify
memory pages (i.e., exhibit minimal fingerprint collisions),
we conducted extensive analysis across multiple common
applications. Our evaluation assessed fingerprint uniqueness
both intra-program (within individual programs) and inter-

Program Pages Unique (%) Unique vs.
ssh

Unique vs.
nginx

Unique vs.
mysql

Unique vs.
qemu

ssh 217 15.28 — 13.89 12.50 10.65
nginx 293 21.84 20.82 — 20.48 16.38
mysql 1880 40.11 39.89 40.00 — 39.31
qemu 3904 30.46 30.33 30.20 30.20 —

Table 3: Evaluation of intra-program and -inter-program
uniqueness of page fingerprints. Unique represents the per-
centage of total pages that possess a unique fingerprint com-
pared to other pages.

program (across different programs). As shown in Table 3,
our results reveal that: (1) only 26.9% of all pages demon-
strate program-unique fingerprints on average, with higher
collision rates occurring within programs than between them;
(2) this stems from 45.8% of pages (on average) containing
no identical 16-byte blocks, generating non-distinctive fin-
gerprints; and (3) pages containing repeated 16-byte blocks
show significantly lower collision probabilities, confirming
their stronger discriminative power as fingerprints.

6.2 Malicious Login against OpenSSH
We selected exploitable gadgets from the scanner results

in Section 5 to achieve complete exploitation. We showcase
two different attack patterns, which allow bypassing functions
and hijacking library functions by modifying the Procedure
Linkage Table (PLT) or Global Offset Table (GOT), leading
to malicious login against OpenSSH running in the CSV.

6.2.1 Critical Function Bypass

We present a novel attack methodology that hijacks func-
tion returns using a single gadget, enabling malicious control-
flow manipulation to force specific return values. This
poses critical security risks to sensitive operations includ-
ing password validation and privilege checks. As a concrete
demonstration, Figure 8 illustrates our successful bypass of
OpenSSH’s do_authenticate function - the core authenti-
cation handler responsible for establishing secure communi-
cation channels post-authentication.

Figure 8a showcases the assembly code at the entry of the
do_authenticate function, and the threat code snippet lo-
cated at 0x27580, which can write to rax register and call
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another address. We replace the first movable chunk in the en-
try 64-byte block with the fourth chunk, leading to hijacking
of the control flow and data flow. The altered program flow is
shown in Figure 8b, where the do_authenticate function
is initially called at address 0xea63.The address of the next
instruction is then pushed onto the stack. When the execution
reaches 0x27588, the memory chunk replacement leads to
the addition of a call instruction. The next address is pushed
onto the stack and jumps to the target address 0x90830. Sub-
sequent pop instructions move the pushed address from top
of the stack to r15 which is a useless register before return,
restoring the stack state to its initial state when the function
was invoked. As a result, the function will directly return,
bypassing the critical functionality of the original function.

This attack highlights two key characteristics of CIPHER-
SHADOW: (1) the non-deterministic nature of control flow
manipulation, and (2) the varied impacts on program behav-
ior. The attack operates by injecting new instructions at the
function entry point that simultaneously alter both data flow
(through sensitive register modification) and control flow (via
redirection to other function endpoints). Remarkably, subse-
quent instructions naturally mitigate the injected instructions’
side effects while still achieving the attacker’s goal of function
logic bypass and corruption. However, this attack method ex-
hibits inherent limitations in return value manipulation, as its
effectiveness depends on: (1) the data flow alterations induced
by injected instructions, and (2) the runtime state of registers
and memory. In our OpenSSH case study, for example, the
injected xor instruction clears eax, forcing a return value
of 0. Furthermore, attackers can combine multiple gadgets
to create more sophisticated exploitation chains, potentially
achieving broader malicious capabilities through carefully
sequenced operations.

6.2.2 Library Function Hijack

This attack combines multiple gadgets to hijack the invo-
cation of library functions in a dynamically linked program
by replacing its 16-byte aligned PLT entry with one of three
adjacent entries, causing the manipulation of the return values
of those library functions.

The sys_auth_passwd function in OpenSSH is used to
verify the login user’s permissions. It uses the library function
strcmp to compare the input password with the correct one.
When the passwords match, strcmp returns 0. In a dynam-
ically linked program, the call to the strcmp function first
executes the trampoline code in the PLT, and then executes
the actual function in the dynamically linked library.

We have found two gadgets, the first gadget replaces
strcmp entry with DSA_free entry in PLT and another in
cfsetispeed alters the ciphertext chunk at 0xeb210 to the
chunk at 0xeb230. Combining these two gadgets can hijack
strcmp to cfsetispeed and return 0. The specific execution
path after exploitation is depicted in Figure 9. ✄ Retrieves

2/1

框码代72:02 9/7/4202

            

       mov  rdx,[rsp+0x18]  48 8b 54 24 18 ea68: 
        call 27580 e8 18 8b 01 00 ea63: 

                   ret c3  90832: 
                pop  r15  41 5f  90830: 

                    

 48 8b 35 94 ce 0b 00  mov  rsi, [rip+0xbce94]  275bd: 
call 90830 e8 a3 92 06 00         27588: 

      xor  eax,eax 31 c0            27586: 
    mov  rsi,[rax] 48 8b 30           27584: 
    mov  eax,[rsi+30h]  8b 46 30           27580: 

0000000000027580 do_authenticated:                     

 
 

94 ce 0b 00  mov  rsi, [rip+0xbce94]  48 8b 35  275bd:  
        call 90860 e8 a3 92 06 00 275b8:  

    xor  eax, eax 31 c0              275b6:  
mov  rsi, [rax] 48 8b 30               275b3:  
 mov  rax, [rsi+0x30]8b 46 30           48  275af:  

          push rbp 55           2758f:  
         mov  rbp, rdi 49 89 f4      2758c:  

                push r12   41 54  2758a:  
         push r13 41 55         27588:  

      push r14 41 56            27586:  
       push r15 41 57           27584:  

 endbr64  f3 0f 1e fa           27580:  
0000000000027580 do_authenticated:                      
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框码代72:02 9/7/4202

            

       mov  rdx,[rsp+0x18]  48 8b 54 24 18 ea68: 
        call 27580 e8 18 8b 01 00 ea63: 

                   ret c3  90832: 
                pop  r15  41 5f  90830: 

                    

 48 8b 35 94 ce 0b 00  mov  rsi, [rip+0xbce94]  275bd: 
call 90830 e8 a3 92 06 00         27588: 

      xor  eax,eax 31 c0            27586: 
    mov  rsi,[rax] 48 8b 30           27584: 
    mov  eax,[rsi+30h]  8b 46 30           27580: 

0000000000027580 do_authenticated:                     

 
 

94 ce 0b 00  mov  rsi, [rip+0xbce94]  48 8b 35  275bd:  
        call 90860 e8 a3 92 06 00 275b8:  

    xor  eax, eax 31 c0              275b6:  
mov  rsi, [rax] 48 8b 30               275b3:  
 mov  rax, [rsi+0x30]8b 46 30           48  275af:  

 
 
 
 
 
 
 
 

    

0000000000027580 do_authenticated:                     
 27580:  f3 0f 1e fa           endbr64 
 27584:  41 57                 push r15
 27586:  41 56                 push r14
 27588:  41 55                 push r13
 2758a:  41 54                 push r12  
 2758c:  49 89 f4     

          push rbp 2758f:  55          
         mov  rbp, rdi

replace

(a) Original function.

(b) The control flow after replacement.

Figure 8: Bypassing do_authenticated() in OpenSSH.

the exactly strcmp address from the PLT. ☎ Jumps to the
Libc library to call the cfsetispeed function. ✆ Clear the
eax register and immediately return. After the execution of
strcmp, the test instruction will set the Zero Flag, allowing
jump to the successful login.

The successful implementation of CIPHERSHADOW’s end-
to-end attack relies on accurately pinpointing the replacement
target of a 64-byte block in physical memory. To achieve this,
we combined page-fault tracking and application fingerprint-
ing as described in Section 6.1 to locate the physical page
containing the target block.

First, we perform offline fingerprint calculation on the plain-
text SSH binary file used in the VM to obtain the fingerprint
information of the target page. Subsequently, we use system-
wide code page fault tracking by clearing the execution bit of
all pages. When the adversary attempts to use SSH for logging
in, the attacker will generate the corresponding fingerprint for
each encrypted page that triggers a page fault and compare it
with the fingerprint obtained from the offline calculation. If
they match, it confirms successful location, thereby enabling
the calculation of the page-internal offset of the target 64-byte
block to carry out the aforementioned attack process.

It is important to note that the target page’s fingerprint in
the attack may not be unique within the application, meaning
that other pages may share the same fingerprint, leading to
difficulties in accurately locating the target page during the
attack. To address this, we have incorporated more granular
register change information used in CacheWarp [55] to en-

USENIX Association 34th USENIX Security Symposium    5771



 132f8: 85 c0          
 132fa: 75 14          
 13300: 5b             
 13301: b8 01 00 00 00 
 13306: 5d             
 13307: 41 5c          
 13309: c3             
 1330a: 5b             
 1330b: 31 c0          
 1330d: 5d             
 1330e: 41 5c          
 13310: c3             

 c8e0: repz nop edx
 c8e4:   f2 ff 25 15 a3 0d 00          jmpq 0xda305 DSA_free  
 c8eb:   0f 1f 44 00 00                
 c8f0:   f3 0f 1e fa                   
 c8f4:   f2 ff 25 0d a3 0d 00          
 c8f4:   0f 1f 44 00 00                
 c900:   f3 0f 1e fa                   
 c904:   f2 ff 25 05 a3 0d 00          

框码代73:90 32/8/4202

            

retqC3                    eb235: 
xor  eax,eax31 c0                 eb233: 
mov  eax,[rdi+0x8]89 47 08              eb230: 
lea  eax,rsi8d 86 ff ef ff ff     eb238: 
je   b26074 28                 eb236: 
test esi,0xffffeff0f7 c6 f0 ef ff ff     eb230: 

00000000000eb230 cfsetispeed:                     
retqC3                    eb215: 
xor  eax,eax31 c0                 eb213: 
mov  eax,[rdi+0x8]89 47 08              eb210: 

nopl0f 1f 44 00 00          c8fb: 
jmpq 0xda315 cfsetispeedf2 ff 25 15 a3 0d 00    c8f4: 
repz nop edxf3 0f 1e fa             c8f0: 
nopl0f 1f 44 00 00          c8fb: 
jmpq 0xda30d strcmpf2 ff 25 0d a3 0d 00    c8f4: 
repz nop edxf3 0f 1e fa             c8f0: 
nopl0f 1f 44 00 00          c8eb: 
jmpq 0xda305 DSA_freef2 ff 25 15 a3 0d 00    c8e4: 
repz nop edxf3 0f 1e fa             c8e0: 

  retq   c3              13310: 
  pop  r1241 5c           1330e: 
  pop  rbp5d              1330d: 
  xor  eax,eax31 c0           1330b: 
  pop  rbx5b              1330a: 
  retq   c3              13309: 
  pop  r1241 5c           13307: 
  pop  rbp5d              13306: 
  mov  eax,0x1b8 01 00 00 00  13301: 
  pop  rbx5b              13300: 

  jne  1331075 14           132fa: 
  test eax,eax85 c0           132f8: 
  call strcmpe8 d8 95 ff ff  132f3: 

Assembly Code  Binary code      Offset

    

 chunk from PLT
Replace two

 

            

retqC3                    eb235: 
xor  eax,eax31 c0                 eb233: 
mov  eax,[rdi+0x8]89 47 08              eb230: 
lea  eax,rsi8d 86 ff ef ff ff     eb238: 
je   b26074 28                 eb236: 
test esi,0xffffeff0f7 c6 f0 ef ff ff     eb230: 

00000000000eb230 cfsetispeed:                     
retqC3                    eb215: 
xor  eax,eax31 c0                 eb213: 
mov  eax,[rdi+0x8]89 47 08              eb210: 

    

Replace 

            

nopl 0x0(rax,rax,1)  0f 1f 44 00 00                 c90b: 
jmpq 0xda315 cfsetispeed    
repz nop edx
nopl 0x0(rax,rax,1)   
jmpq 0xda30d strcmp
repz nop edx
nopl 0x0(rax,rax,1)

  f3 0f 1e fa                   

  retq   
  pop  r12
  pop  rbp
  xor  eax,eax
  pop  rbx
  retq   
  pop  r12
  pop  rbp
  mov  0x1,eax
  pop  rbx
  jne  13310
  test eax,eax
  call strcmpe8 d8 95 ff ff  132f3: 

Assembly Code  Binary code      Offset

    

 

Figure 9: sys_auth_passwd function hijacking.

hance the uniqueness of our page fingerprints. Specifically,

sequences of colliding pages to distinguish between the two
pages. When tracking a physical page with the same finger-
print as the target page, we use single-step execution to cap-
ture the register change pattern. If it is similar to that analyzed

we analyze the register patterns changed by the instruction

offline, it confirms a match to the target physical page.
In this attack, the first target PLT page does not have

a unique fingerprint, while the second gadget’s page does.
Therefore, we use page fingerprinting and single-step exe-
cution (discussed in Section 2.3.1), to precisely locate the
call strcmp instruction. Afterwards, we utilize page faults
to track the physical page corresponding to the PLT, mod-
ify the PLT entry corresponding to strcmp, and then employ
page fingerprinting to identify the memory page containing
the second gadget, thereby achieving the entire attack. Across
20 repeated attack trials, we accurately identified the target
memory page and successfully logged in each time.

6.3 Inference Attacks Due to One-Shot Cipher-
text Leakage

In addition to enabling active corruption of confidential
VMs by replacing neighboring ciphertext chunks, CSV’s en-
cryption mode introduces a distinct form of information leak-
age attack. Specifically, an adversary can perform a one-shot
memory bus snooping or cold-boot attack to monitor the ci-
phertext memory and infer whether two 16-byte plaintext
chunks within the same 64-byte memory region are identical.

This vulnerability originates from CSV’s deterministic en-
cryption scheme operating within fixed-size memory win-
dows. While alternative encryption modes—including AES-
CTR (Intel SGX v1), AES-XTS (Intel TDX, Scalable SGX),
and AES-XEX (ARM CCA/AMD SEV)—provide inherent
resistance to such attacks, CSV v3’s memory access restric-
tions still fail to fully mitigate the risk against physical adver-
saries.

Attack Setup. To demonstrate real-world impact, we show
how a single ciphertext observation can enable reconstruction

(a) Original 1 (b) Original 5 (c) Original 3

(d) Recovered 1 (↭) (e) Recovered 5 (↭) (f) Recovered 3 (✂)

Figure 10: Recovered 28!28 image from the MNIST training
dataset. ↭ indicates that the model’s predictions for the orig-
inal image and the recovered image are the same. ✂ indicates
that the predictions are different.

of machine learning training data. When a protected VM
trains a computer vision model, CIPHERSHADOW exploits
ciphertext repetition patterns to partially recover input images,
despite memory encryption.

As a concrete example, we consider a realistic training
scenario involving a Multi-layer Perceptron Classifier (MLP-
Classifier) implemented in Python and trained on the MNIST
dataset—a benchmark of grayscale images of handwritten
digits. Each image is 28 ↗ 28 pixels, with sparse content:
background pixels are mostly zero, while digits appear as
clusters of non-zero grayscale values. During training, the
input images are loaded into contiguous memory as default
numpy.ndarray
of the training data consists of a densely packed buffer of
pixel values, where each image occupies 28↗28↗4 bytes (4
bytes per float32 pixel) and is stored sequentially in memory.
This setup mimics a typical in-memory training pipeline and

structures. As a result, the memory layout

allows analysis of its memory footprint.

Attack Results. A one-shot ciphertext leakage reveals con-
tiguous 64-byte memory regions containing repeated 16-byte
ciphertext patterns. We exploit this to identify training data
segments by: (1) mapping identical ciphertexts to black back-
ground pixels (i.e., 0s), and (2) assigning distinct ciphertexts
to non-zero pixel values. The reconstructed image set is then
evaluated by comparing predictions from the trained MLP
model against original image outputs, with matching pre-
dictions confirming successful reconstruction. We tested on
5,000 reconstructed images and achieved an average recovery
success rate of 77.14%. Our experiments further reveal that
even for unsuccessfully reconstructed images, the numerical
content remains visually discernible to human observers, as
illustrated in Figure 10.

7 Countermeasures

Our discussions with Hygon indicate that CSV v3 imple-
ments read and write access control mechanisms [7], which
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are sufficient to defend against CIPHERSHADOW in certain
scenarios: It prevents application fingerprinting (Section 6.1)
and ciphertext replacing (Section 6.2.2) from software ad-
versaries, but they remain vulnerable to one-shot ciphertext
leakage from adversaries with hardware access (Section 6.3).
CSV v3 uses SPOT and encrypted NPT to protect the in-
tegrity of memory mappings, thereby enabling a virtual remap-
ping check. However, there is no documentation describing
whether it includes a physical remapping check, and we have
not yet experimentally verified whether it is vulnerable to
physical memory-remapping attacks. Therefore, we conjec-
ture that the security level of the memory encryption of CSV
v3 is level-3, the same as SEV-SNP.

A more effective hardware solution, however, would be to
address the flawed design choice of unequal granularity in the
memory encryption mechanism. By aligning the tweak func-
tion granularity with the encryption blocks, this vulnerability
can be inherently eliminated, even though it may potentially
increase the latency of key derivation.

8 Conclusion

This paper presents the first comprehensive security analy-
sis of Hygon CSV. Through systematic investigation of VM-
based TEE vulnerabilities on the CSV platform, we uncover
a new hardware memory encryption flaw: the misalignment
between tweak function granularity and encryption blocks
causes ciphertext repetition within 64-byte blocks when pro-
cessing identical plaintext. This architectural vulnerability
enables severe security consequences including sensitive
data leakage and control-flow hijacking. We formalize these
threats as CIPHERSHADOW attacks, develop an automated
gadget scanner for vulnerability detection, and demonstrate
practical exploits in real-world deployment scenarios.

Open science

All necessary research artifacts including datasets, scripts,
binaries, source code, and PoCs for validating known
SEV attacks on CSV, will be made publicly available at
https://doi.org/10.5281/zenodo.15614377.

Ethics Considerations

We identified the vulnerability of tweak repetition in CSV’s
memory encryption back in early 2023 and promptly reported
it to both Hygon and Alibaba Cloud, the latter offers com-
mercial CSV-based VM rental services. Following the ini-
tial disclosure, we engaged in multiple follow-up discussions
with Hygon via video conferences. Hygon acknowledged the
vulnerability in CSV v1/v2 and asked us to postpone the dis-
closure to prevent public concern before mitigation could be
deployed. The vendor indicated that the upcoming CSV v3,

integrated into its 4th-generation CPUs, would address the
issue through architectural changes.

In coordination with Hygon, we aligned our paper sub-
mission with the commercial release timeline of CSV v3.
Although CSV v3 was originally scheduled for release in Oc-
tober 2023, it was delayed due to manufacturing issues and
was not launched at scale until March 2024. Accordingly, we
submitted the first draft of our paper in 2024.

During the Usenix Security revision process, we expanded
the investigation to validate known SEV attacks against Hy-
gon CSV. The results, presented in Table 1, were disclosed to
Hygon on May 19, 2025. As these attack vectors are already
publicly documented, Hygon responded that they had existing
awareness of the attacks and their potential applicability to
CSV v1 and v2.

In addition to ethical disclosure, all experiments were con-
ducted exclusively on isolated laboratory servers under con-
trolled conditions, with no access to users’ personal data or
sensitive information. As a result, no harm was caused by
the techniques or methods applied. We adhered to standard
ethical guidelines and principles, including respecting privacy,
avoiding harm, and maintaining transparency.
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