ARTIFACT
EVALUATED
susenix

»

AVAILABLE

Automated Soundness and Completeness Vetting of Polygon zKEVM

Xinghao Peng'®, Zhiyuan Sun’*%, Kunsong Zhao', Zuchao Ma,
Zihao Li', Jinan Jiang®, Xiapu Luo™*, Yingian Zhang*

TThe Hong Kong Polytechnic University

Abstract

Zero-knowledge rollups have emerged as popular layer 2
scaling solutions for blockchains. Polygon zkEVM, a leading
deployment of zk rollups, leverages non-deterministic execu-
tion to derive free inputs from an unconstrained command
evaluator when implementing the zZkEVM. This mechanism
significantly simplifies the design of zZKEVM and enhances
the performance of proof generation. However, it introduces
the challenge of requiring developers to define constraints for
free inputs, a task that demands strong mathematical expertise
and is prone to errors. As a component of the layer-2 infras-
tructure, the ZKEVM’s vulnerabilities could lead to powerful
attacks. However, despite their importance, the security of
free inputs in zkEVM remains unexplored.

In this paper, we present the first systematic exploration
of free inputs in Polygon zkEVM. Our study reveals critical
soundness and completeness issues with them. In particular,
we uncover a new attack surface, termed the dual execution
path attack, which targets unsound implementations of free in-
puts and can lead to chain splits. Moreover, we design the first
tool, FreeVer, which facilitates the verification of the sound-
ness and completeness of free inputs with formal semantics.
Additionally, it automatically generates formal specifications
for correct constraints by constructing prover state graphs that
model both the behaviors of malicious and honest provers.
It then uses the states from the honest prover as specifica-
tions to assist in the verification of states from the malicious
one. FreeVer also adopts optimization strategies to reduce
the complexity of constraints for effective verification. Our
evaluation results show that FreeVer can correctly identify
all previously disclosed free input related vulnerabilities and
detect 7 new vulnerabilities in Polygon zZKEVM. All detected
bugs are submitted through the bug bounty program and are
confirmed as high impact vulnerabilities.

§ Equal Contribution. % The corresponding author.

tSouthern University of Science and Technology

1 Introduction

Blockchains rely on distributed networks and intricate consen-
sus mechanisms to ensure security and integrity [21,22,47,48].
However, these mechanisms introduce significant perfor-
mance overhead, resulting in low transaction throughput
and high transaction costs [2]. To address this issue, zero-
knowledge rollups have emerged as layer 2 scaling solu-
tions [11,18,35,37]. The core concept is to bundle transactions
into batches, execute them using an off-chain virtual machine,
and generate a validity proof to guarantee computational in-
tegrity. This validity proof is then submitted to and verified
by a layer 1 on-chain verifier in a single transaction [10]. By
shifting expensive on-chain computations off-chain and veri-
fying the validity proof cheaply on-chain, zk rollups maintain
the same security guarantees as layer 1 blockchains while
improving throughput and reducing costs [6].

Polygon zkEVM [37] is a prominent deployment of zero-
knowledge rollups [19]. Polygon zZKEVM is implemented as a
combination of several state machines [42], where state transi-
tions can be proved with zkSTARK [4,34]. It also implements
two domain-specific languages: the polynomial identity lan-
guage (PIL) and the zero-knowledge assembly (zkASM) [36].
PIL defines polynomial identities (a.k.a. polynomial con-
straints) for the state transitions of the state machines [40],
while zkASM is the assembly language for these state ma-
chines and is used to implement EVM instructions and trans-
action processing logic [41]. The validity proof is accepted
by the verifier only if the execution of the EVM adheres to all
the constraints defined in PIL [42].

For performance considerations, zkASM supports non-
deterministic execution with free inputs [36]. Specifically, it
provides support for computations not directly handled by the
state machines through command evaluations [39]. Command
evaluation is performed by an external command evaluator,
and the resulting outputs are provided to the zZkASM execu-
tor as free inputs [39]. These free inputs are subsequently
verified using zkASM instructions. This mechanism reduces
the complexity of state machine design, thereby enhancing

USENIX Association

34th USENIX Security Symposium 4093

Command Free inputs | zkASM
Evaluator "1 Executor
A ZKASM —A A
Commands interpreted by E
evaluated by '
1 [${E%A}| =>C 1 Constrain
2 [${(E/A} | =B 5
3 0 A =D E
4 E | :ARITH '
‘ ' PIL
“Constrain

Figure 1: Free inputs

performance. Furthermore, verifying results often requires
fewer computational steps than calculating them, which also
contributes to performance improvement [11, 13].

Figure | presents an example of using free inputs. The
zkASM code calculates the quotient and remainder of one
number divided by another. Since division and modulus op-
erations are not directly supported in zkASM, it relies on a
command evaluator to evaluate commands and derive the re-
sults as free inputs (lines 1-2). Because PIL only constrains
the zkASM code interpreted by the executor (all zkASM code
except for the commands), developers must ensure that the
provided free inputs are correct. This is achieved indirectly
using the ARITH instruction in zkASM, which asserts that
A*B+C==D*2"256+E. In other words, it constrains the free in-
puts such that the quotient B multiplied by the divisor A plus
the modulus C must equal the dividend E.

As with the challenge of defining constraints in Circom
[5,23], checking free inputs is also prone to errors. In fact,
the previous example contains an underconstrained vulner-
ability: the free inputs could be malformed—for instance,
the provided remainder might be larger than the divisor. To
properly constrain the free inputs, an additional LT instruction
must be applied to ensure that the remainder is smaller than
the divisor. Free input related vulnerabilities arise due to the
mismatch between the command and the zZkASM instructions
used to verify them. Specifically, two types of vulnerabilities
can occur:

Soundness vulnerabilities: These arise when the constraints
on the free inputs are too loose. Malicious provers can exploit
such underconstrained inputs to produce valid proofs with
invalid data.

Completeness vulnerabilities: These occur when the con-
straints on the free inputs are overly strict. As a result, valid
data cannot produce valid proofs.

Currently, identifying the soundness and completeness of
free inputs relies on manual audits, a process that is both
time-intensive and prone to oversight.

To bridge this gap, we conduct an in-depth investigation of
security issues related to free inputs in Polygon zkEVM [37],
one of the leading deployments of zk rollups [19]. Our study

uncovers a new class of underconstrained vulnerabilities,
which we term dual execution path vulnerabilities, and in-
troduces a novel and powerful attack that leverages these
vulnerabilities to cause chain splits. We also propose a novel
formal verification framework designed to automatically ver-
ify the constraints of free inputs in Polygon zkEVM. This
task is non-trivial, and the challenges are as follows:
Challenge 1: Difficulty in extracting free input constraints.
The constraints of free inputs are deeply intertwined with
the broader constraints of the virtual machine, resulting in a
constraint system that is prohibitively large and complex for
effective reasoning. Consequently, extracting the constraints
of free inputs is essential for effective verification but poses a
significant challenge.

Challenge 2: Unsolvable constraints for SMT solvers. Ver-
ification of free inputs relies on symbolic exploration and
reasoning, both of which utilize SMT solvers. However, Poly-
gon zZkEVM frequently performs word composition and de-
composition, which significantly increases the complexity of
symbolic expressions. Additionally, the interpretation of free
inputs often involves algorithms with loops that cannot be
explored using symbolic values. These factors render most of
the constraints for free inputs unsolvable, posing substantial
challenges to both path exploration and verification.
Challenge 3: Difficulty in automatic generation of specifi-
cations for correct constraints. A fundamental question in
verification is determining the correct constraints [5]. Tools
such as CIVER [16] and CODA [20] rely on experts to manu-
ally define type refinements and pre/post conditions, respec-
tively. However, these approaches are labor-intensive and
prone to oversight.

To address these challenges, we first develop executable
symbolic formal semantics for zkASM. The semantics en-
able the symbolic execution of zZkASM code, allowing us
to extract constraints for free inputs (addressing C1). Next,
we optimize the symbolic execution by introducing a novel
lazy evaluation technique and simplifying semantic rules for
zkASM code that involves complex algorithms with loops
(addressing C2). Finally, we model the behavior of honest and
malicious provers using prover state graphs (PSGs). These
PSGs facilitate analyzing issues in free inputs by extracting
concrete specifications from the graphs (addressing C3).

We collect a dataset containing all disclosed free inputs
related vulnerabilities in Polygon zZkEVM and the correspond-
ing fix from 7 public reports [14,28-32,43] by well-known
Web3 security companies. The verification results show that
our tool could correctly identify the soundness and complete-
ness of all samples in this dataset. We also run FreeVer against
the Polygon zZkEVM implementation [41] and it uncovers 6
soundness issues and 1 completeness issue, which are re-
ported to and confirmed as high impact vulnerabilities by the
Polygon team.

We summarize our contributions as follows:

¢ We reveal a new class of underconstrained vulnerabilities in

4094 34th USENIX Security Symposium

USENIX Association

Polygon zkEVM, and introduce a novel and powerful dual
execution path attack against it. The attack can cause chain
splits and allow attackers to profit from double spending.

* We design and implement a formal verification framework,
FreeVer, to verify the constraints of free inputs in Polygon
zkEVM. To the best of our knowledge, FreeVer is the first
automated tool for detecting completeness and soundness
vulnerabilities related to free inputs.

¢ QOur evaluation of FreeVer reveals 7 new vulnerabilities in
Polygon zkEVM, all of which are submitted to the Polygon
team through bug bounty program and confirmed as high
impact vulnerabilities.

2 Background and Threat Model

We provide a brief introduction to the Polygon zkEVM [37]
and the K Framework [7].

2.1 Polygon zZkEVM

In this study, we focus primarily on the design and implemen-
tation of the prover, named zkProver, of Polygon zkEVM. For
a comprehensive and detailed overview of the entire architec-
ture, we refer readers to the official documentation [36].

We first explain important terminologies:

e State machines: zkProver follows a modular design, con-
sisting of one main state machine, six secondary state ma-
chines, and six auxiliary state machines. Each secondary state
machine specializes in a specific type of computation (e.g.,
arithmetic, hashing, etc.), while the auxiliary state machines
handle tasks such as padding and memory alignment. The
main state machine dispatches tasks to the other state ma-
chines.

e Polynomial identity language: PIL is a domain specific
language used by zkProver. PIL defines polynomial identities
(i.e., constraints) that the computations of the state machines
must satisfy.

o Zero-knowledge assembly: zkASM is another domain
specific language designed for zkProver. It is the assembly of
the state machines and is used to implement the ROM.

e ROM: The ROM is a program written in zkASM. It
interprets all EVM opcodes and handles batch processing and
transaction execution logic. Within the Polygon zkEVM, the
ROM serves a role similar to that of the EVM Interpreter
in Ethereum. The official implementation for ROM is in the
zkevm-rom repository [41].

o 7kASM Executor: The executor is a program that inter-
prets the zkASM code and generate the execution trace. Its
execution must satisfies the constraints defined in PIL in or-
der to generate a validity proof. The executor is a component
of the zkProver, implemented as part of the zkevm-prover
repository [39].

SNARK Proof
PIL
- List of polynomial
constlraints Rapid SNARK
ROM
STARK Proof
- List of instructions

l ’S TARK Recursion|

Input
zkASM Executor

CMD Evaluator

Figure 2: Overview of Polygon zkEVM proof generation

- Transactions

Execution Trace

e Execution trace: The execution trace is a record of state
transitions represented as a table with predetermined dimen-
sions. Each row corresponds to an intermediate state, and the
rows are arranged sequentially in execution order.

o Counters: There are six counters that track how many
rows of the execution trace have been used during compu-
tation. Each state machine is limited to a maximum of 23
rows. If all rows are exhausted, the prover triggers an out-of-
counters (OOC) error and generates a proof indicating that no
blockchain state changes occurred due to the error.

o Free input: A free input is derived from computations
that are not handled by state machines. It is the evaluation
result of a command. Since PIL only constrains state machine
computations, commands are not constrained.

e Command evaluator: It is a component of the zkProver
that evaluates free input commands, implemented in the
zkevm-prover repository [39].
zkProver workflow. The workflow of zkProver is illustrated
in Figure 4. The zkASM Executor interprets the ROM, and
takes the transactions to be proved as input. The executor
also verifies the interpretation against the constraints speci-
fied in PIL [40]. During execution, the executor can query
an external command evaluator to generate free inputs. The
executor records all internal states as an execution trace. This
trace is then passed into the proving system, which first gen-
erates STARK proofs using STARK recursion. Subsequently,
SNARK is used to produce a succinct proof that verifies the
STARK proof.

2.2 K Framework

K is a matching logic [8,25] based framework specifically
designed for defining formal language semantics. It auto-
matically generates parsers, interpreters, symbolic executors,
model checkers, and deductive verifiers directly from syntax
and semantics definitions [9,17]. K has been successfully used
to formalize instruction sets (e.g., x86-64 ISA [9], EVM [15])
and programming languages (e.g., C, Java [45], Solidity [17]),
with these formal semantics enabling the discovery of crit-

USENIX Association

34th USENIX Security Symposium 4095

ical real-world bugs, such as the x86-64 ISA inconsistency
between specification and implementation [9].

To implement a language in K, users specify the syntax,
rewrite rules, and configuration of it. The syntax is described
using the conventional Backus-Naur form [46]. The seman-
tics are expressed as a parametric transition system, which
consists of a set of reduction rules, known as rewrite rules,
applied over the configuration. The configuration organizes
the program’s code and state into units called cells, which are
labeled and can be nested. A rewrite rule represents a single
step in the transition between configurations.

Consider a simple language whose syntax, configuration,
and semantic rules are defined in Listing 1. This language
supports only two statements: 8-bit integer variable definition
and increment. The syntax rules from lines 1 to 3 describe
that the language allows variable definitions and increments,
and statements are evaluated sequentially from left to right.
The configuration specifies the initial program state, which
contains a k cell holding the statements and a vars cell that
starts as an empty map. The three rewrite rules then define
the semantics for single-step execution, variable definition,
and self-increment. From the semantics, we can deduce that
the integers in SIMPLE are 8-bit signed integers, since all
operations are modulo 256.

1 syntax Stmt ::= "var" Id "=" Int
2 ["++" Id

3 > left: Stmt Stmt
4

s configuration <k> $PGM:Stmt </k>

6 <vars> .Map </vars>

8 rule [step]:

9 <k> S1:Stmt S2:Stmt => S1 ~> S2 ... </k>

10 rule [def]:

11 <k> var X = I => .K ... </k>

12 <vars> V => V[X <- (I %$Int 256)] </vars>

13 rule [inc]:

14 <k> ++ X => K ... </k>

15 <vars> ... (X [-> V) => (X |[-> ((V +Int 1)) %Int
- 256) . </vars>

Listing 1: SIMPLE semantics

Given the semantics, we can construct specifications to
check certain properties. For example, to ensure that no in-
teger overflow occurs in a SIMPLE program (lines 3-4), we
could write the following claim and attempt to prove it using
K Framework. This claim asserts that after evaluating the
program, the final value of the variable $x should be larger
than its initial value (i.e., no integer overflow should occur). If
K fails to prove the claim, it indicates that an integer overflow
exists in this code snippet.

1 claim <k>

2 var $x = 255
3 ++ $x

4 => .K ...

5 </k>
6 <vars> ... $x |-> V ... </vars> ensures V >Int
< 255

2.3 Threat Model

We assume a trustless setup where an attacker has full access
to the implementations of the prover and verifier at the source
code level. Additionally, we assume the attacker can act as a
prover, submitting proofs for verification. Furthermore, we
assume the attacker can arbitrarily modify the execution trace,
provided the modified trace remains valid with respect to the
constraints, to exploit vulnerabilities related to free inputs.
Specifically, we define two kinds of prover:

Honest Prover: An honest prover faithfully executes transac-
tions and generates proofs. It follows the official implementa-
tion [39].

Malicious Prover: A malicious prover aims to exploit free
input related vulnerabilities in the ZKEVM system. To achieve
this, it modifies both the command evaluator and the zkASM
executor to derive malformed free inputs and execution traces.
Finally, it generates a malformed proof and submits it to the
layer 1 verifier contract to trigger chain splits.

3 The Dual Execution Path Attack

In this section, we uncover a new attack vector against Poly-
gon zKEVM, termed the dual execution path attack.
Vulnerable code pattern. zkASM code that: (D contains an
underconstrained free input, which can be exploited to ma-
nipulate the execution path;) still produces a valid output
even after maliciously altering the execution path; and @
consumes different counters on the original and manipulated
paths, is vulnerable to the dual execution path attack. For
instance, Figure 3 illustrates a vulnerability, simplified from a
real-world issue detected by FreeVer in Polygon zZkEVM. The
code takes two input values and performs either multiplica-
tion or addition based on whether the inputs are the same. It
branches based on a free input, derived from a command that
checks if the two inputs are equal. If they are the same, path 1
is taken; otherwise, path 2 is chosen. Since the jump is based
on a free input, the validity of the free input must be checked
on both paths. However, while path 1 includes an ASSERT in-
struction to ensure that A == C, path 2 lacks a similar check.
This underconstrained free input on path 2 enables malicious
provers to provide a non-zero free input, even when A and C
are both x, thereby manipulating the execution to follow path
2. Since both paths yield the same output 2x when the inputs
are equal, altering the path does not affect the validity of the
subsequent computations. However, the critical issue is that
the computations on the two paths consume different numbers
of counters, which can be exploited for powerful attacks.
The attack. The dual execution path attack exploits the dif-
fering consumption of counters across paths to generate two

4096 34th USENIX Security Symposium

USENIX Association

Vulnerable Code Attack

Malicious Transaction
- Use vulnerable code n times

Underconstrained Proof 1: valid Transaction

RPN . . > -TakePath1
i Path 1 E : ' - Consume @ + nC1 < Chnge

AddCto A
@ Controversial

C; counters
Proof 2: out-of-counters error

C1 < Cs —>| -TakePath2
- Consume @+ nC2 > Cinae

Figure 3: Dual execution path attack

conflicting but valid proofs, which can be utilized to cause a
chain-split. The attack proceeds as follows: First, the attacker
constructs a transaction that repetitively uses the vulnerable
code n times. For proof 1, the attacker does not manipulate
the execution path, so the proof consumes a total of o + nC}
counters, where o is the counter consumption of other com-
putations in the transaction. For proof 2, the attacker modifies
the free input to alter the execution path to path 2, causing
the total counter consumption to be o+ nC,. The malicious
prover adjusts z such that 0.+ nCy < Gy and 0t +nCs > Cigx.
As a result, proof 1 will successfully validate the transaction,
while proof 2 will demonstrate that the transaction fails due
to an out-of-counters error.

In Polygon zkEVM, transactions are first soft-finalized on
layer 2 and later hard-finalized on layer 1 once validity proofs
are submitted and verified. Currently, Polygon zkEVM relies
on centralized sequencer and zkProver to execute transac-
tions and maintain its layer 2 soft-finalized state. However,
by exploiting a dual-path attack, an adversary could submit a
malicious proof (e.g., Proof 2 in Figure 3) to layer 1 before the
official zkProver submits its valid proof (e.g., Proof 1 in Fig-
ure 3). This could cause the hard-finalized state maintained
by layer 1 smart contract to deviate from the soft-finalized
state maintained by layer 2 blockchain. As a result, Polygon
zkEVM would be forced to roll back its layer 2 state to match
the layer 1 state, creating a double-spending risk for applica-
tions such as cross-chain bridges that rely on soft-finalization.

Notably, the dual execution path vulnerability is common.
FreeVer has identified 6 instances of this issue, all of which
can be exploited to launch dual execution path attacks.

4 The FreeVer Framework

In this section, we first provide an overview of FreeVer, fol-
lowed by a detailed illustration of its main components.

4.1 Overview

FreeVer is a formal verification tool to verify the sound-
ness and completeness of free inputs in Polygon zkEVM.
As shown in Figure 4, it consists of three main components:
the zZkASM semantics, the PSG constructor, and the property
verifier.

zkASM semantics. Formal semantics of zkASM are defined
in K [7] to facilitate reasoning about the constraints over free
inputs. Apart from the syntax, rewrite rules, and configuration
defined according to the official zkASM executor implementa-
tion [39,40], FreeVer also adds a command switcher to toggle
the command evaluator. It also adds support for symbolic
value introduction to enable symbolic reasoning. Moreover, it
adopts optimizations to reduce unsolvable constraints.

PSG constructor. The PSG constructor executes the zkASM
function to be verified as honest and malicious provers, respec-
tively, and generates two aligned Prover State Graphs (PSGs)
that encode all reachable states during execution. The aligned
PSGs are then used by FreeVer to perform verification.
Property verifier. The property verifier takes as input the
aligned PSGs of each zkASM function and verifies constraints
over free inputs to identify potential soundness and complete-
ness issues. For soundness verification, it compares the cor-
responding leaves of the aligned PSGs to determine if their
states are consistent. Inconsistency indicates that the path
is unsound, allowing malicious provers to reach a state that
deviates from that of honest provers. For completeness, the
verifier employs a heuristic: it asserts that applying constraints
on free inputs does not cause unreachable nodes. If any node
is not reachable, it suggests that the constraints on the free
inputs are potentially incomplete.

4.2 zKASM Semantics

The design and implementation of the zkASM semantics aim
to achieve the following goals:

e G1: It must encode the same semantics as the original
zkASM, ensuring that executing our semantics produces the
same constraints as those specified in PIL.

e G2: It must be capable of modeling the behavior of both
honest and malicious provers.

e G3: It must support symbolic execution, enabling the ex-
ploration of all possible states during function execution.

e G4: It must produce simplified symbolic expressions to
minimize the occurrence of unsolvable constraints for SMT
solvers.

Given the lack of comprehensive documentation for
zkASM, we derive its semantics by referencing the official
implementations of the zkASM executor and command eval-
uator in C++ [39] and JavaScript [40], as well as the PIL con-
straints of the state machines [40]. Based on these references,
we implement the corresponding semantics (G1). Moreover,
to support executing both as an honest prover and a malicious

USENIX Association

34th USENIX Security Symposium 4097

zkASM Semantics PSG Constructor Property Verifier
Rewrite Rules ZKASM PSG (Honest) PSG (Honest) PSG (Malicious)
Function cmd
Symbolic Value (;11 EvalCmd . Arbitrary Value
Introduction N) Abort , Abort
Configuration [Symbolic — CheckPoggSS ------- >] CheckPoint
Rule Execution Engine Pass

Command Simplification 9 (Malicious) Reachable? P Equal? N
Switcher CO”;fd | Completeness L™ Soundness d

T

Figure 4: The workflow of FreeVer

prover, we implement a command switcher to toggle the be-
havior of free input commands. When the switch is on, the
semantics evaluate the commands faithfully, like an honest
prover. When it is off, the semantics supply a symbolic value
representing arbitrary inputs to mimic malicious provers (G2).
Subsequently, we add support for symbolic value introduction
to facilitate reasoning with symbolic inputs (G3). Finally, we
optimize the semantics to reduce the complexity of symbolic
expressions and simplify rules that are incompatible with
symbolic execution (G4).

4.2.1 Configuration

The configuration, as illustrated in Figure 5, is a data structure
that represents the state of the zkASM virtual machine (Note
that Polygon zkEVM modularizes the virtual machine into
13 state machines to optimize proof generation performance.
However, for the verification task, viewing it as a single virtual
machine is more intuitive and convenient). It consists of units
named cells, which are labeled and can be nested.

The top-level T cell contains two sub-cells: the k cell, which
is a default cell in the K Framework, and the ctx cell, which
encapsulates the actual virtual machine state. The k cell is a
special cell containing a sequence of computations.

The ctx cell encodes the state of the zkASM virtual ma-
chine and contains five sub-cells. The pc cell holds the pro-
gram counter. The mem cell encodes memory as a mapping
from addresses to 256-bit words. The Rom cell contains the
parsed zkASM program. The ProverInputs cell provides es-
sential information for EVM execution, including transaction
inputs, block attributes, etc. The pols cell is of particular in-
terest, as it contains a mapping from the name of each polyno-
mial to its corresponding value, an element in the Goldilocks
prime field [12]. This cell encapsulates all elements of the
state that must be verified by the prover (i.e., registers, free
inputs, and current PC value, etc.). For example, the 256-bit
register A is encoded as eight 32-bit unsigned integers, fitting
within the Goldilocks field (264 — 232 + 1), and labeled as A0,
Al,..., A7 in the pols cell, respectively.

4.2.2 Syntax

The zkASM syntax in K is defined using a variation of Backus-
Naur Form, directly translated from the JISON definition in

the official zkASM compiler [38].

Listing 2 provides an overview of the syntax. It defines five
types of statements for zZkASM (line 1). A Label statement
consists of an Id followed by a colon (line 3). It is used to
mark a jump or call target. A VarDef statement consists of
the keyword VAR, a scope definition (i.e., global or local), and
the name of the variable (line 4). Similarly, the ConstDef
statement is used to define a constant value (line 5). The Step
statement includes most of operations in zkASM. It can con-
tain an assignment (line 7), an opcode list (line 8), or both (line
6). The assignment assigns the value of the LHS expression
of the operator => to each register listed at the RHS. The LHS
expression is a linear combination of registers, constants, and
free inputs (e.g., 32 + 1). The opcode list includes zkASM
instructions, such as arithmetic instructions (ADD, SUB, etc.),
boolean instructions (LT, SLT, etc.), bitwise instructions (AND,
OR, etc.), control flow instructions (CALL, RETURN, JMP, etc.),
and constraint-checking instructions (ASSERT, ARITH, etc.).
The Command statements are expressions wrapped with ${}
or $${}. Commands can either be standalone on separate lines
or integrated into a Step statement, serving as the RegsSum
part.

1 syntax Stmt ::= Label | VarDef | ConstDef | Step | Cmd
2

3 syntax Label =Id ":"

4 syntax VarDef = "VAR" Scope Id

5 syntax ConstDef ::= "CONST" Id "=" NExpr

6 syntax Step := RegsSum "=>" Regs ":" OpList

7 | RegsSum "=>" Regs

8 | ":" OpList

9 syntax Cmd ti= "$S{" CmdExp "}"

10 | "${" CmdExp "}"

Listing 2: zkASM syntax

4.2.3 Rewrite Rules

Rewrite rules encode the semantics of zkASM. Each rule
rewrite the configuration matching the left part to the right
part, following the matching logic [8,25]. FreeVer implements
rules regarding program preprocessing, single step, command
evaluation, and instruction interpretation.

Preprocessing. The execution of zZkASM code begins with

4098 34th USENIX Security Symposium

USENIX Association

<<KSequence>k <<Int>pc <Addr — W256>mem <ID — Egoldilocks>p0]s < . ‘>R0m < . .>Proverlnpms>ctx>T

Figure 5: zkASM configuration

preprocessing. The initial k cell contains the zkASM program
($PGM). ’: T’ represents the type of a term. Here, the program
is of type Stmts, which is a list of Stmt separated by new
lines.

I syntax Stmts ::= List{Stmt, "\n"}
2 <k> $PGM :Stmts </k>

Preprocessing involves a loop that fetches the first statement
from the list and processes it. Once all the statements have
been processed (represented by .Stmts, which means an
empty statement list), the execution loop begins. The pre-
processing loop is defined with the following two rules:

1 rule <k> S:Stmt Ss:Stmts => #process(S) ~> Ss ... </k>
2 rule <k> .Stmts => #exec ... </k>

The ’=>" symbol represents a reduction of a cell from the
original expression on the LHS to the new expression on the
RHS. Cells without *=>’ are read-only and left unchanged.
The function #process processes a statement according to its
type and stores the corresponding information into subcells
of the Rom cell. Specifically, it resolves the offsets for each
Label, Step, and Cmd. Step statements and Cmd statements
are stored to the pgm cell and the cmd cell, respectively. For
VarDef statements, it allocates memory space and creates a
mapping between variable identifiers and the allocated mem-
ory offsets. Similarly, ConstDef statements are processed to
establish a mapping between constant variable names and
their corresponding values.

Single step. Single step is also defined as a loop with two

rules:

1 rule

2 <k>

3 #exec => PGM[PC] ~> CMDS[PC] orDefault .Command ~>
- #exec

4 </k>

5 <pc> PC => PC +Int 1 </pc>

6 <pgm> PGM </pgm>

7 <cmd> CMDS </cmd>

8 requires PC >=Int 0 andBool PC <Int size (PGM)

9 rule <k> #exec => .K </k> [owise]

The first rule specifies that if the program counter (PC) is in
a valid range and the next computation is the start of a new
single step cycle (represented by #exec), then a step from
the PGM cell and a command from the CMD cell (or an empty
command denoted by .Command) at the address pointed to
by the program counter are fetched. The content of k is then
replaced with a computation sequence, separated by the *~>’
symbol. This sequence includes the step, the command, and

the start of the next cycle, to be processed sequentially. The
second rule states that if PC points to an invalid address (spec-
ified with the owise attribute, meaning any other conditions
that do not satisfy the first rule), the single step loop ends with
empty computation (denoted by .X).

Step interpreting. The rule below defines the interpretation
of a full step with both assignment and opcode lists. The inter-
pretation contains three sequential computations. The first is
to calculate the sum of all input registers (IS) with the #sum
function. The second is to execute the opcodes (OL) one by
one. The last is to assign the summed value to output registers
(RL) with the #assign function. The ’...’ symbol means
that the left content in the k cell remains unchanged. Note
that the first =>" symbol is the assign operator in zkASM,
and the second is the rewrite operator in K.

1 rule <k>

2 IS:RegsSum => RL:Regs : OL:OpList => #sum(IS) ~> OL
< ~> #assign(RL)

3 </k>

Command evaluation. The command evaluation differs
when acting as an honest prover and as a malicious prover. To
model both behaviors, we first add a command switcher in
the configuration:

1 configuration <T> ... <switcher> Bool </switcher> </T>

The two rules below show how the switcher controls com-
mand evaluation. When the switcher is on (i.e., the switcher
cell stores true), the command is handled by the first rule,
which fetches the command expression E and puts it at the be-
ginning of the computation sequence. The expression is then
handled by other rules that encode the semantics of command
expressions to derive a result value. When the switcher is off,
the command is handled by the second rule, in which a sym-
bolic value ?X (the question mark indicates it is a symbolic
value introduced in this rule) representing an arbitrary value
from malicious provers is provided as the evaluation result.

1 rule <k> ${ E:CmdExp } => E ... </k>

2 <switcher> true </switcher>

3 rule <k> ${ _:CmdExp } => ?X:Int ... </k>
4 <switcher> false </switcher>

Symbolic value introduction. Though executing zkASM
code with concrete values allows us to verify certain paths
with certain inputs, it cannot explore all the states. Therefore,
we want to execute the code symbolicly. The syntax and rules
below add support for introducing symbolic values.

USENIX Association

34th USENIX Security Symposium 4099

1 syntax Stmt ::= "sym" "(" Reg, Int, Int ")"

2 | "sym" "(" Var, Int, Int ")"

3 rule <k> sym(R:Reg, Il:Int, I2:Int) => setReg(R, ?X)
- </k>

4 ensures ?X >=Int Il andBool ?X <Int I2

5 rule <k> sym(R:Reg, Il:Int, I2:Int) => setVar(R, ?X)
o </k>

6 ensures ?X >=Int Il andBool ?X <Int I2

Lines 1-2 define two new statements for introducing symbolic
values with upper and lower bounds into registers and vari-
ables. Lines 3-6 specify the corresponding rules. For example,
the statement sym (A, 0, 2°256) is interpreted as setting
register A to a symbolic value in the range [0,2%°).

4.2.4 Optimization

There are two main obstacles for SMT solvers in symbolic
execution. The first arises from word composition and de-
composition. zkASM operates on 256-bit integers but stores
them as eight 32-bit field elements to facilitate proving in
zkSTARK [12]. As a result, each write and read of registers
involves breaking down integers (Line 3 of Listing 3) and
reassembling them (Line 4 of Listing 3). However, the K
Framework cannot recognize that decomposing an integer
and then recomposing it yields the same value. Instead, it gen-
erates a complex expression in a straightforward manner. Con-
sequently, the complexity of symbolic expressions increases
with each read and write operation, quickly rendering them un-
resolvable for SMT solvers. The second challenge stems from
commands that utilize algorithms containing loops, which can
cause symbolic execution to fail when conditioned on sym-
bolic values. To address these issues, we optimize symbolic
execution using lazy evaluation and directly provide symbolic
results with constraints for algorithms involving loops.

Lazy evaluation. To mitigate the complexity introduced by
word composition and decomposition, FreeVer leverages the
lazy evaluation in Listing 3. Specifically, when converting
a 256-bit word to field element arrays, it stores the value as
fea (X), where X is a symbolic expression and fea represents
the breakdown of the parameter into eight 32-bit integers
(line 7). The calculation is deferred and only performed when
necessary (e.g., if fea (X) [0] is accessed, only the lowest
32 bits are extracted) (lines 10-13). As zkASM operates on
256-bit words, the value is usually fetched as a 256-bit integer.
In such cases, FreeVer simply removes the fea wrapper and
returns the value X (line 8).

Optimizing complex operations. In zZkASM, operations such
as field element inversion, square root extraction, and ellip-
tic curve operations are challenging to handle with symbolic
execution. This is due to the computation process potentially
containing loops conditioned on symbolic values, which pre-
vents symbolic execution from deriving the correct result. To
address this, we optimize the semantics by directly providing
the correctly constrained symbolic values for these operations

1 // Converting Scalar X to Fea and back

2 // results in a complex expression

3 rule Scalar2Fea(X) => I %Int pow32 , I /Int pow32 $Int
- pow32, ..., I /Int pow224 %$Int pow32

4 rule Fea2Scalar(F) => F[0] +Int F[1] *Int pow32 +Int ...
— +Int F[7] *Int pow224

5
6 // optimized rules

7 rule Scalar2Fea (X) => fea(X)

8 rule Fea2Scalar(fea(X)) => X

9 // Calculate only when neccessary

10 rule fea(I:Int)[0] => 1 $Int pow32
11 rule fea(I:Int)[1] => I /Int pow32 %Int pow32

13 rule fea(I:Int)[7] => I /Int pow224 %Int pow32

Listing 3: Lazy evaluation

based on mathematical facts, rather than calculating them as
we would in concrete algorithms.

Table | presents the summary of the optimized semantics
for free input commands. Specifically, FreeVer simplifies 11
function calls by replacing the original computations with op-
timized rewrite rules. These rewrite rules provide a symbolic
result directly, accompanied by the corresponding constraints
on these symbolic results. Each row in the table describes
the operation, its corresponding symbolic result, and the con-
straint applied to ensure the validity of the result. Note that
all operations used in the table are field operations. For exam-
ple, the operation inverseFpEc (I) computes the modular
multiplicative inverse in the FpEc field. The zkASM Executor
performs Montgomery inversion to calculate the result, which
is difficult for symbolic exploration. FreeVer optimizes this
by substituting the result with a symbolic value ?X under the
constraint /-7X = 1. The corresponding rule is:

1 rule <k> inverseFpEc(I) => ?X ... </k>
2 ensures I *Int ?X modInt FPEC ==Int 1 andBool ?X
- >=Int 0 andBool ?X <Int FPEC

The optimized operations span several cryptographic
functions, including modular inverses in various fields
(e.g., inverseFpEc, fpBN254inv), modular square roots
(e.g., sqrtFpEc), and elliptic curve point operations (e.g.,
xAddPointEc, yDblPointEc).

4.3 Prover State Graph Constructor

Given the state machine (i.e., the configuration in Figure 5)
and the state transition rules (i.e., the rewrite rules), FreeVer
can explore the reachable states of both honest and malicious
provers. To facilitate the comparison between the two types
of provers, FreeVer leverages a PSG constructor to produce
aligned prover state graphs.

A prover state graph G(V,E) is a directed acyclic graph
that encodes all reachable virtual machine states during the
execution of zkASM code, where a node n € V represents

4100 34th USENIX Security Symposium

USENIX Association

Table 1: Optimized semantics for free input commands

Operation Description

Result

Constraints

inverseFpEc(I) Compute modular multiplicative inverse in FpEc field

inverseFnEc (I) Compute modular multiplicative inverse in FnEc field

fpBN254inv (I) Compute modular multiplicative inverse in fpBN254 field

fp2InvBN254x (11, I2) Real part of inverse of (I;,)

fp2InvBN254y (11, I2) Imaginary part of inverse of (I1,1)

sqrtFpEc (I) Compute modular square root in FpEc field

sqrtFpEcParity (I, P) Compute modular square root in FpEc field with parity matching p

xAddPointEc (X1, Y1, X2, Y2) Add points (X;,Y;)and (X»,Y2), output x-coordinate

yAddPointEc Add points (X1,Y;) and (X»,Y»), output y-coordinate

Y1) Double point (Xj,Y;), output x-coordinate

(X1, Y1, X2, Y2)
xDblPointEc (X1,
(X1,

yDblPointEc (X1, Y1) Double point (Xj,Y)), output y-coordinate

72X I1-7X=1
72X 1-2X=1
72X I-7X=1

X MA(BHB)=1,2X=1"1

7 N (F+53)=1,7Y = (BN254P—b) - 21

X X X=1

X XX =1,(XSP)A1=0

X3 My (Xo—X)) =178 = (Y, —1) My, ?X3 =282 —X; — X,

7Y3 v (Xa—X;) =128 = (Ya—1;) - 2nv, ?X3 =2S-2S —X| — X5, 7Y3 = 7S (X; — ?X3) - ¥
7X3 v (2-¥;)=1,28=(3-X7)-?nv, 7X3 =78 28 —2.X;

(
Y3 Iv-(2-¥)) = 1,28 = (3-X7) - ?Inv, 7X3 = 7S -2S — 2. X}, 2Y3 = 7S - (X; — 7X3) - ¥

a single state and an edge e € E represents a rewrite rule
that transitions the state of the source node to the state of
the target node. The PSG constructor constructs such graphs
for honest and malicious provers, respectively. It then aligns
the two PSGs by establishing a correspondence between the
key nodes of the two graphs. The aligned PSGs facilitate the
verification by the property verifier.

PSG construction. The constructor provides the zkASM
semantics and the function to be verified as inputs to the sym-
bolic execution engine, which executes the zkASM function
according to the semantics. It runs under two settings: one
with the command switcher on and another with it off, to
model the different behaviors of honest and malicious provers.
During execution, it records the result of each rewrite (i.e., the
configuration) as a new node, with the rewrite rules forming
the edges from the source node to the new node.

PSG optimization. Since each node encodes a state of the
entire virtual machine, memory consumption can become
prohibitively large as the size of the PSG grows. To address
this issue, we optimize the PSG by keeping only the nodes of
interest. Specifically, we retain the source and target nodes of
branching rules, checkpoint rules, and leaf nodes that repre-
sent the end of execution. Branching rules are kept to align
honest and malicious PSGs, checkpoint rules apply constraints
and are kept for completeness verification, and leaf nodes are
retained for soundness verification. The edges connecting to
the removed nodes are merged. For example, consider three
nodes ny,ny,n3 connected by two edges e, e,. If node n; is
removed, the edges e; and e, are merged into a new edge ¢/,
which represents the sequential application of the two rules
represented by e and e;. All PSGs referred to later are the
optimized PSGs, unless explicitly stated otherwise.

PSG alignment. FreeVer constructs PSGs using the honest
prover’s state as a specification to check against the corre-
sponding malicious prover’s state. However, the correspon-
dence cannot be directly established due to differences be-
tween the two PSGs in terms of the number of nodes and paths.
These differences arise for two reasons. Firstly, when handling
free input commands, honest provers take multiple rewrite
steps to compute the free inputs, while malicious provers use

Algorithm 1: Align PSGs

Input :PSGs for honest (Gj) and malicious (G,,) provers
Output : Tuple of aligned nodes

1 Function align (G, Gp):

2 aligned +— 0

3 pending + {(G,.root, Gj,.root) }

4 while pending # 0 do

5 (mm,np) < pending.pop()

6 by, < proceedToBr (G, ny)

7

8

9

by, < proceedToBr (Gy, ny)
if isLeaf(by,) N isLeaf(by,) then
aligned « aligned U {(m, h)}

10 T, < resolveTargets (Gy, by)

11 Ty, < resolveTargets (Gy, by)

12 foreach (m,h) € matchRules(T,,,T;) do
13 pending < pending U {(m,h)}

14 return aligned

a single rewrite step to provide arbitrary values. Secondly,
the PSG for malicious provers contains more branches than
that for honest provers. This difference arises because honest
provers explore only valid execution paths, while malicious
provers can explore paths corresponding to invalid input data.
To address these issues, FreeVer performs alignment of the
PSGs.

FreeVer leverages Algorithm | for aligning PSGs. It takes
the two PSGs as inputs and outputs the set of aligned leaves.
The algorithm maintains a pending set, which contains cor-
responding node pairs in the two PSGs. The pending set is
initialized with the roots of the two PSGs (line 3). It then uses
a loop to traverse the two PSGs simultaneously. Specifically,
in each cycle, it pops a pair of nodes from the pending set and
starts traversing the PSGs at the two nodes, respectively, with
the procceedToBr function (lines 6-7). The function simply
follows the edges in the PSG until it encounters an edge that
represents a rule causing branches (e.g., JMPN, JMPC, etc.) or
reaches a leaf node, at which point it returns the node where
it stopped. If the two returned nodes are leaves, it indicates
that a pair of aligned leaves has been found (lines 8-9). If

USENIX Association

34th USENIX Security Symposium 4101

they are branch points, the algorithm resolves the targets of
the branches (lines 10-11) and decides the corresponding tar-
gets by checking if the applied rules are the same. Aligned
target nodes are then added to the pending set for further
exploration.

4.4 Property Verifier

In this section, we describe how FreeVer verifies the sound-
ness and completeness of zkASM functions.

Algorithm 2 illustrates the soundness verification pro-
cess of ZKASM code. It takes as input the optimized PSGs
for honest provers Gj, and malicious provers G,, and out-
puts the soundness of each successful execution path. The
VerifySoundness function checks each aligned pair of
nodes in the PSGs (Algorithm 1) using the equal function.
The function verifies that the two aligned nodes have equiv-
alent states. A path is sound if the corresponding nodes are
equal; otherwise, it is not.

Algorithm 2: Verify Soundness
Input :PSGs for honest (Gj) and malicious (G,,) provers
Output : Soundness results of paths.

1 Function VerifySoundness (Gy, Gp):

2 aligned < align (Gy, Gy,)

3 result < 0

4 foreach Py, P, € aligned do

5 if equal (P, P,) = true then

6

7

8

9

result < resultU {P,, — Sound}
else if equal (P, Py,) = false then
result < result U {P,, — Unsound}
else
10 result «— resultU {P,, — Unknown}
11 return result

State equivalence. If a path in the malicious PSG is sound,
the final node N, of this path must have an equal state to its
corresponding node N}, in the honest PSG. In other words, the
malicious prover cannot derive a state that deviates from the
state of the honest prover. Any discrepancy indicates that the
constraints on this path are unsound.

A node N is represented as a matching logic predicate:

fPN = And(Tconstraints ((Vsym)) chonﬁg (fVconcrete) (Vsym)))

where Peonsig defines an instantiation of the configuration
using both concrete values Voncrete and symbolic values Viym,
and Peonstraints IMPOSEs constraints on ‘Vsym.

To prove that two corresponding nodes, N,, and N, are
equal, we need to establish the following equivalence:

Tconstraintst A TconﬁgNm <~ chonstraintst A ?conﬁgNh

Given that N, always has the same or looser constraints than
Nj, (as N, imposes stricter constraints on the free inputs),
FreeVer only needs to verify whether:

fPconstraints;\/m A chonﬁgNm - Tconstraintst A chonﬁgNh

The inverse always holds. This implication can be trans-
formed into a Z3 formula by attempting to prove that the
following formula is unsatisfiable:

(A (Aee) (T

where ij and Cy, are the individual constraints from N,
and Ny, respectively; p,,, and py, represent the corresponding
elements in their configurations.

If the SMT solver returns unsat, it indicates that no sym-
bolic values exist that would cause the configurations to differ.
Therefore, the two states can be considered equal.

4.4.1 Completeness Verification

FreeVer verifies the completeness of a zkASM function with
a heuristic as in Algorithm 3. It checks that for every suc-
cessful execution path in the PSG of honest provers, every
target node of edges that apply a constraint rule is reachable,
meaning there exists some input that satisfies the constraints
applied by the edge. More specifically, it iterates over each
edge E in Gj,. For edges with passing rule identifiers (i.e.,
E.ruleiy € Rpqsy), it attempts to solve the target node con-
straints E.target onstraints- 1f the solver finds these constraints
unsatisfiable, this indicates potential overconstrained vulner-
abilities or misimplementations in the zkASM executor or
command evaluation, leading to incompleteness at that edge.
Note that this heuristic may not always detect completeness is-
sues, in some cases, unreachable nodes could also result from
dead code. We think reporting dead code is also meaningful,
as it helps developers to optimize the code.

Algorithm 3: Verify Completeness

Input :PSG for honest provers Gy,
Output : Res € {Complete,Incomplete,Unknown} for each
checkpoint
1 Rpass < passing rule ids of constraint-applying instructions.
2 foreach Edge E € G, do
3 if E.rule;q € Rpass then
4 r < solve (E.targetconstraints)
5 if » = unsat then
6 output (Incomplete at Edge E)
7
8
9

if r = unknown then
output (Unknown at Edge E)
if r = sat then
10 output (Complete at Edge E)

4102 34th USENIX Security Symposium

USENIX Association

5 Evaluation

In this section we describe the results of the evaluation derived
by answering the following three research questions (RQs).

* RQI: Can FreeVer correctly identify disclosed free inputs
related vulnerabilities?

* RQ2: How effective are the design choices of FreeVer in
improving the accuracy of verification?

* RQ3: Can FreeVer find new vulnerabilities in Polygon
zKEVM?

Benchmarks. To evaluate FreeVer and address these research
questions, we collect two datasets, Dyisciosed and Dyopy -
Daisclosea contains 9 free input-related vulnerabilities and
their fixes from 7 public audit reports [14, 28-32, 43] of
the Polygon zkEVM ROM. To the best of our knowledge,
Diisciosea 1S the most comprehensive dataset of vulnerabili-
ties related to free inputs in Polygon zkEVM. The summary
of these disclosed vulnerabilities is presented in Table 2. D,
comprises 55 functions extracted from the official implemen-
tation of the Polygon zZkEVM ROM (fork.5) [41].
Experimental settings. All experiments are conducted on a
server equipped with dual 96-core AMD EPYC 9654 CPUs
and 1.5 TB of memory. We implement FreeVer using K
Framework v7.151 [44] and utilize z3 v4.13.3 [24] as the
SMT solver. All verification tasks are executed in parallel,
with a maximum of 16 parallel processes per task and a mem-
ory limit of 64 GB.

Table 2: Disclosed Vulnerabilities

Function ID Root Cause Issue Source

IDENTITY Missing free input constraints
computeGasSendCall ~ Missing free input constraints
divARITH Incorrect remainder check Soundness ~ SpearBit
invFp2BN254 Missing range check Soundness Verichains
offsetUtil Missing range check at some paths ~ Soundness SpearBit
opCALLDATACOPY Missing free input constraints Soundness SpearBit

Soundness ~ SpearBit
Soundness SpearBit

opCREATE2 Missing free input constraints Soundness SpearBit
saveMemGAS Missing free input constraints Soundness SpearBit
subFpBN254 Misuse of free input Soundness Verichains

5.1 Correctness of FreeVer

To address RQ1, we apply FreeVer to Dyjsciosea - The re-
sults presented in Table 3 demonstrate that FreeVer correctly
constructs and aligns PSGs and successfully detects all the
vulnerabilities in Dyiscrosed -

PSG construction. The average size of the original PSGs for
honest provers is 744 nodes, while for malicious provers, it
is 719 nodes. After optimization, these sizes are significantly
reduced to 64 nodes and 69 nodes, respectively. The larger
original size of honest provers’ PSGs is due to the additional
rewrite steps required to compute free inputs, whereas ma-
licious provers often complete this process in a single step

using symbolic values. In contrast, the optimized PSGs for
malicious provers are slightly larger because they include
more failing paths. Despite these differences, the successful
paths in the PSGs of honest and malicious provers consis-
tently exhibit a one-to-one correspondence. This alignment
serves as the foundation for soundness verification, enabling
direct comparison between the states of honest and malicious
provers.

Soundness verification. The soundness verification results
report 13 unsound paths in the 9 buggy versions, all of
which we confirm to be true positives. For the fixed ver-
sions, all functions except subFp2BN254* are reported as
sound. After manually analyzing the implementation details,
we find that subFp2BN254*, which performs subtraction in
the BN254 prime field, assumes the input lies within the range
[0,BN254p) (where BN254p is the BN254 modulus), dele-
gating this constraint check to the caller. This design choice
likely aims to improve performance by avoiding redundant
checks. However, during verification, FreeVer provides sym-
bolic inputs in the range [0,22%%), which causes the function
to be flagged as unsound because it does not fully constrain
its free inputs in this case. FreeVer can verify the function
as sound if the input range is adjusted appropriately. Addi-
tionally, 12 paths are reported as unknown, all of which we
confirm to be sound. These cases result from SMT solver
timeouts. In summary, soundness verification achieves an ac-
curacy of 76%, identifying 25 sound paths and 13 unsound
paths out of a total of 50 paths. The average time for verifica-
tion is 71.08 seconds.

Completeness verification. The results show that all func-
tions are correctly reported as complete, except for one path
in offsetUtil, which is flagged as incomplete. Upon in-
vestigation, we find that this path corresponds to dead code,
which is removed in the fixed version. The average time for
completeness verification is 86.50 seconds.

Answer to RQ1: FreeVer can detect all disclosed free input
related vulnerabilities.

5.2 Ablation Study

To the best of our knowledge, FreeVer is the first tool capa-
ble of detecting free input-related vulnerabilities in Polygon
zkEVM. Since no existing baselines address this problem,
we evaluate FreeVer against the following three ablations to
assess its design:

e FreeVer-Naive: This ablation does not apply the optimiza-
tions described in § 4.2.4 and does not construct PSGs. In-
stead, it directly executes zk ASM functions to derive symbolic
expressions and constraints of the outputs. It then verifies
soundness by asserting that only one assignment of the free
inputs and outputs satisfies the constraints.

e FreeVer-Opt: Similar to FreeVer-Naive, but applies the opti-
mizations described in § 4.2.4.

USENIX Association

34th USENIX Security Symposium 4103

Table 3: Results of running FreeVer against Dy;cioseq - ¥ means the fixed version; H and M denote honest and malicious PSGs,

respectively.

Prover State Graph Construction

Completeness Verification Soundness Verification

Function ID Size Size Opt Paths Successful Paths Time (s) Completeness] Soundness]

H M H M H M H M H M c 1 u Tme® gy UUnknown) 1M
IDENTITY 426 423 40 42 5 7 2 2 166.76 151.56 2 0 0 86.5 I 1 0 16.54
IDENTITY* 804 801 47 54 5 10 1 1 385.58 32521 2 0 O 104.25 1 0 0 19.88
computeGasSendCall 316 316 16 18 2 4 2 2 117.16 98.93 2 0 0 40.17 0 2 0 16.13
computeGasSendCall* 438 438 36 40 4 8 2 2 199.79 203.63 2 0 0 82.61 2.0 0 17.08
divARITH 699 693 34 38 4 8 2 2 218.4 19536 2 0 O 7224 11 0 21.29
divARITH* 699 693 34 38 4 8 2 2 220.65 19491 2 0 0 74.03 2 0 0 17.64
invFp2BN254 2,050 1,940 234 256 26 48 12 12 861.44 669.34 2 0 0 553.93 4 4 4 377.13
invFp2BN254* 2,418 2,308 298 320 42 64 12 12 972.67 726.03 12 0 0 733.63 4 0 8 547.29
offsetUtil 130 122 22 22 4 4 3 3 45.86 49.25 2 1 0 73.25 2 1 0 16.27
offsetUtil* 261 257 36 38 5 7 3 3 106.55 98.27 30 0 115.81 3.0 0 18.36
opCALLDATACOPY 269 259 22 22 3 3 1 1 106.34 92.16 1 0 0 48.65 0 1 0 15.74
opCALLDATACOPY* 1,257 1,234 53 58 6 9 1 1 747.66 599.33 1 0 0 109.64 1 0 0 20.02
opCREATE2 715 708 43 50 4 9 1 1 33527 2983 1 0 O 82.56 0 1 0 18.43
opCREATE2* 714 711 41 48 4 9 1 1 316.4 266.78 1 0 0 82.45 1 0 0 17.41
saveMemGas 291 265 38 42 37 1 1 243.85 163.22 1 0 0 144.16 0 1 0 76.12
saveMemGas* 1,305 1,278 73 80 8 13 1 1 1,139 61531 1 0 0 158.77 1 0 0 27.60
subFpBN254 207 170 24 24 4 4 1 1 111.01 11392 1 0 0 32.38 0 1 0 17.80
subFpBN254* 392 332 54 54 10 10 2 2 198.49 1453 2 0 O 57.96 0 2 0 21.47

o FreeVer-PSG: Verifies soundness in the same way as
FreeVer but does not apply optimizations.

We evaluate these ablations on Dyjscoseq > focusing exclu-
sively on soundness verification, as the ablations cannot verify
completeness without PSGs for honest provers.

To further evaluate the effectiveness of Free Ver, we also de-
signed a baseline tool called FIFuzz, which employs fuzzing
techniques to detect soundness vulnerabilities in zZkASM code.
Specifically, FIFuzz tests zk ASM programs by generating ran-
dom invalid free inputs that deliberately deviate from the valid
inputs provided by the command evaluator. FIFuzz flags a
soundness vulnerability if the system accepts these malformed
free inputs. We implemented this fuzzer based on JsFuzz [1]
and tested all buggy functions within Dy;scjpseq for one hour.

The performance of each tool is summarized in Table 4.
FreeVer-Naive and FreeVer-Opt do not construct PSGs, mean-
ing they cannot distinguish constraints and outputs across dif-
ferent paths. Therefore, they verify soundness at the function
level rather than the path level. In contrast, FreeVer-PSG and
FreeVer construct PSGs, enabling soundness verification at a
finer granularity by individually checking successful paths.

FIFuzz fails to detect any bugs in the buggy functions from
Diisciosed - Moreover, since FIFuzz cannot guarantee that the
target functions are bug-free, it cannot confirm their sound-
ness. These results demonstrate that conventional fuzzing is
ineffective at identifying bugs related to free inputs.

FreeVer-Naive demonstrates the lowest accuracy (16.67%),
identifying only 2 sound functions and 1 unsound function.
FreeVer-PSG performs slightly better with an accuracy of
33.33% (identifying 4 sound paths out of 12). However, due to
the lack of optimizations, symbolic execution timeouts occur
for 11 functions during PSG construction, limiting the number
of verifiable buggy and fixed functions to 4 and 3, respectively.
FreeVer-Opt, which applies optimizations, achieves a signif-
icantly improved accuracy of 50.00% (identifying 5 sound

functions and 4 unsound functions). FreeVer outperforms all
ablations, with an accuracy of 76.00%, identifying 25 sound
paths and 13 unsound paths.

Ablations without optimizations (i.e., FreeVer-Naive and
FreeVer-PSG) require approximately 10 times more execu-
tion time due to the complexity of symbolic expressions.
FreeVer demonstrates exceptional efficiency, taking an av-
erage of 71.08 seconds for verification, while other ablations
suffer from increased complexity and longer execution times.

Table 4: Ablation results

Sound Unsound Unknown Accuracy Exec/Construction Time (s) Verify Time (s)
FIFuzz 0 0 9 0.00& 0 3600
FreeVer-Naive 2 1 15 16.67% 726.58 698.97
FreeVer-Opt 5 4 9 50.00% 71.55 108.50
FreeVer-PSG 4 0 8 33.33% 6,113.2/473.98 909.76
FreeVer 25 13 12 76.00% 360.72/278.16 71.08

Answer to RQ2: Optimizations and PSG construction are
effective designs that improve the accuracy of verification.

5.3 Finding New Vulnerabilities

We run FreeVer against Dy, to assess its ability to identify
new vulnerabilities. During PSG construction, we set an up-
per bound of 512 nodes for the prover state graph. In some
cases, the functions contain loops with up to 256 iterations or
loops without explicit upper bounds, restricted only by coun-
ters. To address these, we either provide concrete inputs to
explore the loop once or manually extract the relevant code
for verification.

The results show that out of the 55 functions, Free Ver suc-
cessfully constructs PSGs for 47 functions. Four functions fail
because they propagate symbolic values into MLOAD addresses,
resulting in state splits up to 0x20000 (the memory size of

4104 34th USENIX Security Symposium

USENIX Association

zkEVM), making the PSG prohibitively large. Therefore, PSG
construction of these functions fail because of out-of-memory.
Three additional functions depend on these failing functions
and thus fail as well. One function fails due to the complexity
introduced by 502 sequential function calls, where the com-
plexity of the symbolic expressions grows with execution and
eventually leads to performance issues with K Framework.
After removing duplicates, FreeVer reports 6 soundness
issues across 6 functions and 3 completeness issues. All the
soundness issues are vulnerable to the dual execution path
attack. Of the completeness issues, one is a true positive,
while the other is caused by dead code. All vulnerabilities
are reported to Polygon through the bug bounty program and
have been confirmed as high impact bugs.
Case study: completeness bug. The completeness vulner-
ability reported in the sqrtFpEc function 4 arises from an
inconsistency in handling the free input when no square root
is found. The function uses free input command to com-
pute the square root of a field element (line 3) and expects
$FPEC_NON_SQRT (defined as 2256 _ 1 in zkASM) when no
square root exists (lines 4-5). However, the command evalu-
ator returns 0 when no square root is found. This mismatch
between the expected value 22°° — 1 and the actual return
value O can lead to proof generation failures, even for valid
inputs. Furthermore, this discrepancy could be exploited to
launch a Denial-of-Service attack.

1 sqrtFpEc:

2 C :MSTORE (sqrtFpC_tmp)

${var _sqrtFpEc_sqrt = sqrtFpEc(C) } => A,C
< :MSTORE (sqrtFpC_res

$FPEC_NON_SQRT => B

$:EQ, JMPC (sqrtFpEc_End)

w

4
5
6 R
7 sqrtFpEc_End:
8 :RETURN

Listing 4: Completeness vulnerability in sqrtFpEc

Case study: soundness bug. The soundness vulnerability
in mulPointEc arises from the underconstrained free in-
put at line 4. The code snippet in Listing 5 performs el-
liptic curve point addition depending on whether the two
points are the same. If they are the same, the function
follows the mulPointSameInitialPoints branch; other-
wise, it follows the mulPointDiffInitialPoints branch.
These two branches perform different computations and
thus consume a different number of counters. In the
mulPointSameInitialPoints branch, the conditional ex-
pression for the free input is checked with ASSERT (note that
ASSERT checks that A == OP, where OP is C at line 5). How-
ever, a similar check is missing in the other branch. As a
result, malicious provers can provide O for this free input even
when A == C. By examining the constraints of the instruc-
tion ARITH_ECADD_DIFFERENT [40] used to verify the free

inputs in this branch, we find that data can be forged to pass
the check, even when A == C. Therefore, The function exists
a dual execution path vulnerability and is vulnerable to the
attack introduced in § 3.

mulPointEc:

1
2 e

3 ; check pl.x == p2.x

4 S{A == C} :JMPZ (mulPointDiffInitialPoints)

5 C :ASSERT

6

7 ; check pl.y == p2.y

8 D =>A

9 $:EQ, JMPC (mulPointSameInitialPoints)

10 1n
«— :MSTORE (mulPointEc_pl2_empty), JMP (mulPointEc_loop)

12 mulPointSameInitialPoints:

13 ; p2 == pl
14 On

< :MSTORE (mulPointEc_pl2_empty)
15 S => A :MLOAD (mulPointEc_pl_x)
16 ${xDblPointEc(A,B)} => E :MSTORE (mulPointEc_pl2_x)
17 ${yDblPointEc (A&,B) } :ARITH_ECADD_SAME,

— MSTORE (mulPointEc_pl2_y),JMP (mulPointEc_loop)

19 mulPointDiffInitialPoints:

20 ; p2.x !=pl.x ==>p2 !=npl
21 On
— :MSTORE (mulPointEc_pl2_empty)
2 ${xAddPointEc(A,B,C,D)} => E
— :MSTORE (mulPointEc_pl2_x)
23 ${yAddPointEc (A,B,C,D)} :ARITH_ECADD_DIFFERENT,

— MSTORE (mulPointEc_pl2_y)
24

Listing 5: Soundness vulnerability in mulPointEc

Answer to RQ3: FreeVer finds 6 soundness issues and 1
completeness issue in Polygon zkEVM, all of which are
confirmed as high impact vulnerabilities.

6 Discussion

Limitations. First, we observe that K Framework currently
struggles to handle symbolic bitwise operations (AND, OR, XOR)
in its symbolic execution engine. However, free input com-
mands use AND to mask higher bits of a 256-bit word (e.g.,
W & (2" —1)). As a workaround, we translate AND operations
into modulo operations (e.g., W % 2"). This approach is not
complete, but it works for all functions verified in our evalua-
tion. In cases where translation is not feasible, FreeVer may
produce false positives, flagging the code as unsound or in-
complete. This limitation could be resolved once K Frame-
work addresses this issue. Second, FreeVer produces false
negatives when the SMT solvers fail to solve the constraints.
This issue cannot be fully addressed because SMT solvers
are incomplete for polynomial equations over finite fields [3].

USENIX Association

34th USENIX Security Symposium 4105

However, our evaluations show that by symbolically executing
with optimized semantics and constructing PSGs to analyze
at the path granularity, FreeVer can significantly reduce the
occurrence of unsolvability.

Applicability to other zk rollups. While FreeVer is imple-
mented and evaluated for Polygon zkEVM, the methodology
of extracting specifications with executable semantics and
constructing PSGs for property verification can also be ap-
plied to check non-deterministic execution in other zk rollups
(e.g., the hints in Cairo [11]). In FreeVer, only the zkASM
semantics are specialized for Polygon zkEVM; other compo-
nents are language-agnostic (as they are based on K Frame-
work [7], which provide tool sets that are language-agnostic)
and can be reused. To apply FreeVerto a new zk rollup, users
only need to provide the corresponding semantics.
Transition to other formalization tools. While FreeVer
currently uses K for zkASM semantics, our core contribu-
tions—the abstract machine (i.e., the configuration), the state
transition system (i.e., the rewrite rules), and the symbolic
exploration optimizations—are tool-agnostic. These designs
can be adapted to other frameworks (such as Coq or Lean4)
with only syntactic adjustments. Additionally, FreeVer could
be extended to support alternative formal verification tools,
though we leave this as future work.

7 Related Work

Verification tools for Circom. Previous studies [16,20, 23]
primarily focus on detecting vulnerabilities in Circom, a
domain-specific language for implementing zkSNARK cir-
cuits. QED? [23] is a tool designed to verify the soundness
of a circuit. It combines a uniqueness constraint propagation
approach with SMT solvers to prove that, under the same
input signals, there is a unique assignment of output signals
that satisfies the circuit. CODA [20] presents a refinement
type system for Circom and leverages formal verification to
identify potential violations. CIVER [16] offers constructions
for specifying pre- and post-conditions, along with a scalable,
modular technique for verifying properties of constraint sys-
tems expressed as sets of polynomial equations over a large
prime field. These tools rely either on verifying uniqueness
of output (which we find insufficient to capture all security
issues, e.g., the dual execution path vulnerability in Polygon
zkEVM) [23] or additional information manually provided
by developers (but even experts can overlook constraints that
cause vulnerabilities) [16,20] to detect vulnerabilities. Conse-
quently, they fail to correctly capture the root cause of security
issues in zero-knowledge proof systems: the inconsistency
between witness generation and the constraints imposed on
the witness. In contrast, FreeVer adopts a novel approach in
which a concrete specification is automatically extracted from
honest prover PSGs and used to verify the constraints of free
inputs. This approach enables FreeVer to identify common
underconstrained vulnerabilities, as well as the novel dual

execution path vulnerability. Furthermore, FreeVer provides a
heuristic to detect completeness issues, which are not explored
in previous studies.

Formal semantics in K. K Framework [7] is a tool for defin-
ing formal semantics of programming languages. A key fea-
ture of K semantics is its executability, based on Matching
Logic [8,25-27,33]. The study in [9] presents a complete
semantics for the x86-64 instruction set, enabling formal ver-
ification of all x86-64 executables. Similarly, K Framework
has been used to define the semantics of EVM [7] and So-
lidity [17], facilitating formal verification of smart contracts.
A key difference between FreeVer and these works is that,
in addition to providing semantics for formal verification,
FreeVer can also automatically generate specifications. Fur-
thermore, Free Ver supports and optimizes symbolic execution,
allowing verification of all possible reachable states.

8 Conclusion

In this study, we uncover a novel dual execution path vulnera-
bility and introduce a powerful attack against it. We propose
FreeVer, a framework for formally verifying the soundness
and completeness of free inputs. Using FreeVer, we have de-
tected 7 previously unknown high impact vulnerabilities in
Polygon zZkEVM.

Acknowledgments

We sincerely thank the shepherd and the reviewers for their
invaluable insights and constructive comments. This work
is supported by Hong Kong RGC Projects (PolyU15224121,
PolyU15231223), and Hong Kong RGC Grant for Theme-
based Research Scheme Project (T43-513/23-N).

9 Ethics Considerations

The paper introduces a novel dual execution path attack and
proposes an automated formal verification tool to detect free
input-related vulnerabilities in Polygon zZkEVM. It aims to
(D improve the community’s knowledge about vulnerable im-
plementations, and 2) enhance detection techniques to better
defend against attacks that leverage free inputs.

Potential Risk 1. Attackers may improve their knowledge by
learning the new dual execution path attack. Therefore, we do
not directly share any exploits.

Potential Risk 2. Attackers may use the detected vulnera-
bilities to launch attacks. Therefore, we have submitted all
detected bugs to the Polygon team and confirmed that all of
them have been correctly fixed.

4106 34th USENIX Security Symposium

USENIX Association

10 Open Science

This research complies with the open science policy. The
artifacts are open-sourced at https://doi.org/10.5281/
zenodo.15609121, including the following:

* The source code of FreeVer, including the zkASM seman-
tics in K and the Python code for other components.

* The two datasets used in our evaluation, along with the
relevant scripts for evaluation.

* The documentation for setting up the execution environ-
ments for FreeVer and instructions for using Free Ver.

References
[1] Jsfuzz: coverage-guided fuzz testing for
javascript. https://gitlab.com/gitlab-org/

security-products/analyzers/fuzzers/jsfuzz,
2025.

[2] Seyed Mojtaba Hosseini Bamakan, Amirhossein Mo-
tavali, and Alireza Babaei Bondarti. A survey of
blockchain consensus algorithms performance eval-
uation criteria. Expert Systems with Applications,
154:113385, 2020.

[3] Marta Bellés-Muiioz, Miguel Isabel, Jose Luis Mufioz-
Tapia, Albert Rubio, and Jordi Baylina. Circom: A cir-
cuit description language for building zero-knowledge
applications. IEEE TDSC, 20(6):4733-4751, 2022.

[4] Eli Ben-Sasson, Iddo Bentov, Yinon Horesh, and
Michael Riabzev. Scalable, transparent, and post-
quantum secure computational integrity. Cryptology
ePrint Archive, 2018.

[5] Stefanos Chaliasos, Jens Ernstberger, David Theodore,
David Wong, Mohammad Jahanara, and Benjamin
Livshits. Sok: what don’t we know? understanding
security vulnerabilities in snarks. In Proc. USENIX
Security, 2025.

[6] Stefanos Chaliasos, Itamar Reif, Adria Torralba-Agell,
Jens Ernstberger, Assimakis Kattis, and Benjamin
Livshits. Analyzing and benchmarking zk-rollups. Cryp-
tology ePrint Archive, 2024.

[7] Xiaohong Chen and Grigore Rosu. A language-
independent program verification framework. In Proc.
ISoLA, 2018.

[8] Xiaohong Chen and Grigore Rosu. Matching u-logic.
In Proc. LICS, 2019.

[9] Sandeep Dasgupta, Daejun Park, Theodoros Kasampalis,
Vikram S Adve, and Grigore Rosu. A complete formal
semantics of x86-64 user-level instruction set architec-
ture. In Proc. PLDI, 2019.

[10] Ethereum. Ethereum documentation. https:

//ethereum.org/en/developers/docs/scaling/
zk-rollups/, 2024.

[11] Lior Goldberg, Shahar Papini, and Michael Riabzev.
Cairo-a turing-complete stark-friendly cpu architecture.
Cryptology ePrint Archive, 2021.

[12] Mike Hamburg. Ed448-goldilocks, a new elliptic curve.
Cryptology ePrint Archive, 2015.

[13] David Heath, Yibin Yang, David Devecsery, and
Vladimir Kolesnikov. Zero knowledge for everything
and everyone: Fast zk processor with cached oram for
ansi ¢ programs. In Proc. S&P, 2021.

[14] Hexens. Security review report for polygon
zkevm. https://github.com/0xPolygonHermez/
zkevm-rom/blob/main/audits/Hexens_Polygon_
zkEVM_PUBLIC_27.02.23.pdf, 2024.

[15] Everett Hildenbrandt, Manasvi Saxena, Nishant Ro-
drigues, Xiaoran Zhu, Philip Daian, Dwight Guth, Bran-
don Moore, Daejun Park, Yi Zhang, Andrei Stefanescu,
et al. Kevm: A complete formal semantics of the
ethereum virtual machine. In Proc. CSF, 2018.

[16] Miguel Isabel, Clara Rodriguez-Nufiez, and Albert Ru-
bio. Scalable verification of zero-knowledge protocols.
In Proc. S&P, 2024.

[17] Jiao Jiao, Shuanglong Kan, Shang-Wei Lin, David
Sanan, Yang Liu, and Jun Sun. Semantic understanding
of smart contracts: Executable operational semantics of
solidity. In Proc. S&P, 2020.

[18] Matter Labs. zksync era. https://github.com/
matter-labs/zksync-era/, 2024.

[19] Zihao Li, Xinghao Peng, Zheyuan He, Xiapu Luo, and
Ting Chen. famulet: Finding finalization failure bugs in
polygon zkrollup. In Proc. CCS, 2024.

[20] Junrui Liu, Ian Kretz, Hanzhi Liu, Bryan Tan, Jonathan
Wang, Yi Sun, Luke Pearson, Anders Miltner, Isil Dillig,
and Yu Feng. Certifying zero-knowledge circuits with
refinement types. In Proc. S&P, 2024.

[21] Zuchao Ma, Muhui Jiang, Feng Luo, Xiapu Luo, and
Yajin Zhou. Surviving in dark forest: Towards evading
the attacks from front-running bots in application layer.
In Proc. USENIX Security, 2025.

USENIX Association

34th USENIX Security Symposium 4107

https://doi.org/10.5281/zenodo.15609121
https://doi.org/10.5281/zenodo.15609121
https://gitlab.com/gitlab-org/security-products/analyzers/fuzzers/jsfuzz
https://gitlab.com/gitlab-org/security-products/analyzers/fuzzers/jsfuzz
https://ethereum.org/en/developers/docs/scaling/zk-rollups/
https://ethereum.org/en/developers/docs/scaling/zk-rollups/
https://ethereum.org/en/developers/docs/scaling/zk-rollups/
https://github.com/0xPolygonHermez/zkevm-rom/blob/main/audits/Hexens_Polygon_zkEVM_PUBL%20IC_27.02.23.pdf
https://github.com/0xPolygonHermez/zkevm-rom/blob/main/audits/Hexens_Polygon_zkEVM_PUBL%20IC_27.02.23.pdf
https://github.com/0xPolygonHermez/zkevm-rom/blob/main/audits/Hexens_Polygon_zkEVM_PUBL%20IC_27.02.23.pdf
https://github.com/matter-labs/zksync-era/
https://github.com/matter-labs/zksync-era/

[22]

[23]

[24]

[25]

[26]

[27]

(28]

[29]

[30]

[31]

(32]

[33]

Zuchao Ma, Muhui Jiang, Xiapu Luo, Haoyu Wang, and
Yajin Zhou. Uncovering nft domain-specific defects on
smart contract bytecode. IEEE TDSC, 2025.

Shankara Pailoor, Yanju Chen, Franklyn Wang, Clara
Rodriguez, Jacob Van Geffen, Jason Morton, Michael
Chu, Brian Gu, Yu Feng, and Is1l Dillig. Automated de-
tection of under-constrained circuits in zero-knowledge
proofs. Proceedings of the ACM on Programming Lan-
guages, 7:1510-1532, 2023.

Microsoft Research. The z3 theorem prover
v4.13.3. https://github.com/Z3Prover/z3/tree/
z3-4.13.3,2024.

Grigore Rosu. Matching logic. Logical Methods in
Computer Science, 13, 2017.

Grigore Rosu and Andrei Stefanescu. Checking reacha-
bility using matching logic. In Proc. OOPSLA, 2012.

Grigore Rosu, Andrei Stefanescu, Stefan Ciobaca, and
Brandon M Moore. One-path reachability logic. In
Proceedings of the 28th Annual ACM/IEEE Symposium
on Logic in Computer Science, 2013.

Spearbit. Polygon zkevm security review, decem-
ber 2022 engagement. https://github.com/
OxPolygonHermez/zkevm-rom/blob/main/audits/
zkEVM-engagement-1-Spearbit-27-March.pdf,
2022.

Spearbit. Polygon zkevm security review: Call-
data bugfix review. https://github.com/
0xPolygonHermez/zkevm-rom/blob/main/audits/
zkEVM-ROM-upgrade-2-Spearbit-21-August.pdf,
2023.

Spearbit. Polygon zkevm security review: Jan-
uary 2023 engagement. https://github.com/
OxPolygonHermez/zkevm-rom/blob/main/audits/
zkEVM-engagement-2-Spearbit-27-March.pdf,
2023.

Spearbit. Polygon zkevm security review: March
2023 engagement. https://github.com/
0xPolygonHermez/zkevm-rom/blob/main/audits/
zkEVM-engagement-3-Spearbit-6-April.pdf,
2023.

Spearbit. Polygon zkevm security review: zkevm rom
jun upgrade features review. https://github.com/
OxPolygonHermez/zkevm-rom/blob/main/audits/
zkEVM-ROM-upgrade-1-Spearbit-30-May.pdf,
2023.

Andrei Stefanescu, Stefan Ciobacd, Radu Mereuta, Bran-
don M Moore, Traian Florin Serbanutd, and Grigore

(34]

[35]

(36]

(37]

(38]

[39]

[40]

(41]

[42]

[43]

[44]

[45]

[46]

[47]

(48]

Rosu. All-path reachability logic. In International
Conference on Rewriting Techniques and Applications,
2014.

StarkWare Team. ethstark documentation—version 1.1.
Technical report, IACR preprint archive 2021, 2021.

Scroll Tech. Scroll.
scroll-tech, 2024.

https://github.com/

Polygon Technology. Polygon zkevm documenta-
tion. https://docs.polygon.technology/zkEVM/,
2024.

Polygon Technology. Polygon zkevm repositries.
https://github.com/0xpolygonhermez, 2024.

Polygon Technology. zkasm compiler repos-
itory. https://github.com/0xPolygonHermez/
zkasmcom, 2024.

Polygon Technology. zkevm prover in c++ repos-
itory. https://github.com/0xPolygonHermez/
zkevm-prover, 2024.

Polygon Technology. zkevm proverjs repos-
itory. https://github.com/0xPolygonHermez/
zkevm-proveris, 2024.

Polygon Technology. zkevm rom repository. https://
github.com/0xPolygonHermez/zkevm-rom, 2024.

Polygon Technology. zkprover documentation.
https://docs.polygon.technology/zkEVM/
architecture/zkprover, 2024.

Verichains. Security audit of polygon zkevm. https:
//github.com/0xPolygonHermez/zkevm-rom/
blob/main/audits/Polygon-zkEVM-Public-vl.
1-verichains-19-03-2024.pdf, 2024.

Runtime Verification. K framework v7.1.151.
https://github.com/runtimeverification/k/
tree/v7.1.151,2024.

Runtime Verification. K framework. https://github.
com/kframework, 2025.

Wikipedia. Backus—naur form.
//en.wikipedia.org/wiki/Backus%E2%80%
93Naur_form, 2024.

https:

Gavin Wood et al. Ethereum: A secure decentralised
generalised transaction ledger. Ethereum Project Yellow
Paper, 151(2014):1-32, 2014.

Kunsong Zhao, Zihao Li, Jianfeng Li, He Ye, Xiapu Luo,
and Ting Chen. Deepinfer: Deep type inference from
smart contract bytecode. In Proc. ESEC/FSE, 2023.

4108 34th USENIX Security Symposium

USENIX Association

https://github.com/Z3Prover/z3/tree/z3-4.13.3
https://github.com/Z3Prover/z3/tree/z3-4.13.3
https://github.com/0xPolygonHermez/zkevm-rom/blob/main/audits/zkEVM-engagement-1-Spearbit-27-March.pdf
https://github.com/0xPolygonHermez/zkevm-rom/blob/main/audits/zkEVM-engagement-1-Spearbit-27-March.pdf
https://github.com/0xPolygonHermez/zkevm-rom/blob/main/audits/zkEVM-engagement-1-Spearbit-27-March.pdf
https://github.com/0xPolygonHermez/zkevm-rom/blob/main/audits/zkEVM-ROM-upgrade-2-Spearbit-21-August.pdf
https://github.com/0xPolygonHermez/zkevm-rom/blob/main/audits/zkEVM-ROM-upgrade-2-Spearbit-21-August.pdf
https://github.com/0xPolygonHermez/zkevm-rom/blob/main/audits/zkEVM-ROM-upgrade-2-Spearbit-21-August.pdf
https://github.com/0xPolygonHermez/zkevm-rom/blob/main/audits/zkEVM-engagement-2-Spearbit-27-March.pdf
https://github.com/0xPolygonHermez/zkevm-rom/blob/main/audits/zkEVM-engagement-2-Spearbit-27-March.pdf
https://github.com/0xPolygonHermez/zkevm-rom/blob/main/audits/zkEVM-engagement-2-Spearbit-27-March.pdf
https://github.com/0xPolygonHermez/zkevm-rom/blob/main/audits/zkEVM-engagement-3-Spearbit-6-April.pdf
https://github.com/0xPolygonHermez/zkevm-rom/blob/main/audits/zkEVM-engagement-3-Spearbit-6-April.pdf
https://github.com/0xPolygonHermez/zkevm-rom/blob/main/audits/zkEVM-engagement-3-Spearbit-6-April.pdf
https://github.com/0xPolygonHermez/zkevm-rom/blob/main/audits/zkEVM-ROM-upgrade-1-Spearbit-30-May.pdf
https://github.com/0xPolygonHermez/zkevm-rom/blob/main/audits/zkEVM-ROM-upgrade-1-Spearbit-30-May.pdf
https://github.com/0xPolygonHermez/zkevm-rom/blob/main/audits/zkEVM-ROM-upgrade-1-Spearbit-30-May.pdf
https://github.com/scroll-tech
https://github.com/scroll-tech
https://docs.polygon.technology/zkEVM/
https://github.com/0xpolygonhermez
https://github.com/0xPolygonHermez/zkasmcom
https://github.com/0xPolygonHermez/zkasmcom
https://github.com/0xPolygonHermez/zkevm-prover
https://github.com/0xPolygonHermez/zkevm-prover
https://github.com/0xPolygonHermez/zkevm-proverjs
https://github.com/0xPolygonHermez/zkevm-proverjs
https://github.com/0xPolygonHermez/zkevm-rom
https://github.com/0xPolygonHermez/zkevm-rom
https://docs.polygon.technology/zkEVM/architecture/%20zkprover
https://docs.polygon.technology/zkEVM/architecture/%20zkprover
https://github.com/0xPolygonHermez/zkevm-rom/blob/main/audits/Polygon-zkEVM-Public-v1.1-verichains-19-03-2024.pdf
https://github.com/0xPolygonHermez/zkevm-rom/blob/main/audits/Polygon-zkEVM-Public-v1.1-verichains-19-03-2024.pdf
https://github.com/0xPolygonHermez/zkevm-rom/blob/main/audits/Polygon-zkEVM-Public-v1.1-verichains-19-03-2024.pdf
https://github.com/0xPolygonHermez/zkevm-rom/blob/main/audits/Polygon-zkEVM-Public-v1.1-verichains-19-03-2024.pdf
https://github.com/runtimeverification/k/tree/v7.1.151
https://github.com/runtimeverification/k/tree/v7.1.151
https://github.com/kframework
https://github.com/kframework
https://en.wikipedia.org/wiki/Backus%E2%80%93Naur_form
https://en.wikipedia.org/wiki/Backus%E2%80%93Naur_form
https://en.wikipedia.org/wiki/Backus%E2%80%93Naur_form

	Introduction
	Background and Threat Model
	Polygon zkEVM
	K Framework
	Threat Model

	The Dual Execution Path Attack
	The FreeVer Framework
	Overview
	zkASM Semantics
	Configuration
	Syntax
	Rewrite Rules
	Optimization

	Prover State Graph Constructor
	Property Verifier
	Completeness Verification

	Evaluation
	Correctness of FreeVer
	Ablation Study
	Finding New Vulnerabilities

	Discussion
	Related Work
	Conclusion
	Ethics Considerations
	Open Science

