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Dynamic Taint Analysis

1 include <string.h>

2 void main(int argc, char **argv){

3 char buf[16];

4 strcpy(buf, argv[1]);

5 return;

6 }
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Dynamic Taint Analysis

1 include <string.h>

2 void main(int argc, char **argv){ <-- Taint Source

3 char buf[16];

4 strcpy(buf, argv[1]); <-- Taint Propagation

5 return; <-- Taint Sink

6 }

…
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Dynamic Taint Analysis

Shadow Memory

Shadow Memory

Shadow Memory

mov [0x8000200], eax

mov eax, [0x8000300]

program logic taint logic

eax

eax

eax
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High Performance Overhead

Performance

Dynamic taint analysis frameworks often have a high performance overhead, which
stop them from deploying in real world computer systems.
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High Performance Overhead

Performance

Dynamic taint analysis frameworks often have a high performance overhead, which
stop them from deploying in real world computer systems.

Example

A dynamic taint analysis framework called libdft imposes about 4x slowdown for
gzip when compressing a file.
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Reason 1: Dynamic Instruction Instrumentation

Architecture of Intel Pin
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Insight 1

Taint logic can be instrumented statically via
static binary rewriting.
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Reason 2: Over Instrumentation

Example

test eax, eax

This instruction will not affect any
memory location or general register
and does not propagate taint.
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Reason 2: Over Instrumentation

Example

test eax, eax

This instruction will not affect any
memory location or general register
and does not propagate taint.

Insight 2

Taint logic can be instrumented selectively via
value set analysis.
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Static and Selective Instrumentation

Static Taint Analysis

Selective and static instrumentation is performed at compile time, which is equivalent
to perform static taint analysis.

Research Questions

RQ: How to perform this static taint analysis?
⇓
RQ: How to reason about aliasing relation in binary code?
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Value Set Analysis

Value set analysis

Value set analysis (VSA) is a static binary analysis technique, which over-approximates
the set of possible values for data objects at each program point.
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Value Set Analysis

Memory Regions

VSA separates the memory space into
three disjoint memory spaces: global,
stack, heap regions.

Stack

Heap

Global
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Value Set Analysis

Value Sets

VSA computes the region and value
sets based on:

1 instruction semantics

mov eax, [esp+4]
mov ebx, [0x8052160] 

Stack

Heap

Global
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Value Set Analysis

Value Sets

VSA computes the region and value
sets based on:

1 instruction semantics

2 data flow analysis

mov eax, [esp+4]
mov ebx, [0x8052160] 

Stack

Heap

Global
mov [0x8052100], ecx
mov ecx, eax

9 / 24



Introduction Motivation and Insights SelectiveTaint Evaluation Related Work Summary References

Static and Selective Instrumentation

Static Taint Analysis

Selective and static instrumentation is performed at compile time, which is equivalent
to perform static taint analysis.

Research Questions
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SelectiveTaint Approach

Strawman approach

Strawman approach identifies a must-tainted instruction set It using VSA.
However, VSA loses precision due to incomplete CFG and aliasing.

Our approach

Our approach conservatively identifies a must-not-tainted instruction set Iu using
VSA and taint the others.
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SelectiveTaint Approach

I: ideally tainted instruction

It: must-tainted instruction

Iu: must-not-tainted instruction

must-tainted analysis → imprecise
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SelectiveTaint Approach

I: ideally tainted instruction

It: must-tainted instruction

Iu: must-not-tainted instruction

conservative must-tainted analysis → under-taint
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SelectiveTaint Approach

I: ideally tainted instruction

It: must-tainted instruction

Iu: must-not-tainted instruction

conservative must-not-tainted analysis → over-taint
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SelectiveTaint Approach

I: ideally tainted instruction

It: must-tainted instruction

Iu: must-not-tainted instruction

We perform a conservative must-tainted analysis and taint the rest.

12 / 24
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Identification Policy

Unreachable instructions

Removed from must-not-tainted set

<version_etc_arn>:
804b7a0: push ebp

Potentially tainted instructions

Removed from must-not-tainted set
8055c3c: call 8048f30 <__IO_getc@plt>
8055c41: mov eax, edx

Untainted operand instructions

Added to must-not-tainted set

8096a07: inc ebp

None taint-propagation instructions

Added to must-not-tainted set

8062456: jmp 806238b <mbslen+0x8b>

13 / 24



Introduction Motivation and Insights SelectiveTaint Evaluation Related Work Summary References

Identification Policy

Unreachable instructions

Removed from must-not-tainted set

<version_etc_arn>:
804b7a0: push ebp

Potentially tainted instructions

Removed from must-not-tainted set
8055c3c: call 8048f30 <__IO_getc@plt>
8055c41: mov eax, edx

Untainted operand instructions

Added to must-not-tainted set

8096a07: inc ebp

None taint-propagation instructions

Added to must-not-tainted set

8062456: jmp 806238b <mbslen+0x8b>

13 / 24



Introduction Motivation and Insights SelectiveTaint Evaluation Related Work Summary References

Identification Policy

Unreachable instructions

Removed from must-not-tainted set

<version_etc_arn>:
804b7a0: push ebp

Potentially tainted instructions

Removed from must-not-tainted set
8055c3c: call 8048f30 <__IO_getc@plt>
8055c41: mov eax, edx

Untainted operand instructions

Added to must-not-tainted set

8096a07: inc ebp

None taint-propagation instructions

Added to must-not-tainted set

8062456: jmp 806238b <mbslen+0x8b>

13 / 24



Introduction Motivation and Insights SelectiveTaint Evaluation Related Work Summary References

Identification Policy

Unreachable instructions

Removed from must-not-tainted set

<version_etc_arn>:
804b7a0: push ebp

Potentially tainted instructions

Removed from must-not-tainted set
8055c3c: call 8048f30 <__IO_getc@plt>
8055c41: mov eax, edx

Untainted operand instructions

Added to must-not-tainted set

8096a07: inc ebp

None taint-propagation instructions

Added to must-not-tainted set

8062456: jmp 806238b <mbslen+0x8b>

13 / 24



Introduction Motivation and Insights SelectiveTaint Evaluation Related Work Summary References

Formal Proof of Must-not-tainted Analysis

Primary Inference Rules

Unreachable
@is ∈ source, is ; i, i ; is

Iu −= {i} UnknownOperand
∃o ∈ op(i), V [o] = (⊥,⊥,⊥)

Iu −= {i}

UntaintedOperand
∀o ∈ op(i), V [o] ⊆ Vu

Iu ∪= {i} NonPropagateOpcode
∀o ∈ op(i), V [o]

i
≡ V [o]

Iu ∪= {i}
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Formal Proof of Must-not-tainted Analysis

Auxiliary Inference Rules

Control-flows: Reachable
succ(i1, i2)
i1 ; i2

TransReachable
succ(i1, i2) succ(i2, i3)

i1 ; i3

Operands: LiteralOperand
l ∈ op(i) l : literal

Vu ∪= V [l]
LabelOperand

l ∈ op(i) l : label
Vu ∪= V [l]

TaintSource
o ∈ taintedop(is) is ∈ source

Vu −= V [o]
TaintPropagate

o1 ∈ sourceop(i) o2 ∈ destop(i) V [o1] ⊆ Vu
Vu −= V [o2]

Opcodes: PCRegChangeOpcode
V [pc] i V [pc] ∀o ∈ op(i), V [o]

i
≡ V [o]

Iu ∪= {i}

StatusRegChangeOpcode
V [status] i V [status] ∀o ∈ op(i), V [o]

i
≡ V [o]

Iu ∪= {i}
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Formal Proof of Must-not-tainted Analysis

Theorem 1

Must-not-tainted analysis is sound, except for the precision loss due to imprecise CFG
and VSA results.

Proof

We prove this theorem with induction.

1 In the first iteration, Iu is ∅, must-not-tainted analysis is sound.

2 We next prove if the kth iteration, must-not-tainted analysis is sound, it also holds
for the (k+1)th iteration.
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Design
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Binary
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Selective Binary Taint Analysis
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Performance Evaluation
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Performance Evaluation
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Results

On average 1.7x faster than libdft.
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Functionality Evaluation

Program Category Vulnerability CVE ID StaticTaintAll SelectiveTaint

SoX 14.4.2 Sound Processing Utilities Buffer Overflow CVE-2019-8356 X X
TinTin++ 2.01.6 Multiplayer Online Game Client Buffer Overflow CVE-2019-7629 X X
dcraw 9.28 Raw Image Decoder Buffer Overflow CVE-2018-19655 X X
ngiflib 0.4 GIF Format Decoding Library Buffer Overflow CVE-2018-11575 X X
Gravity 0.3.5 Programming Language Interpreter Buffer Overflow CVE-2017-1000437 X X
MP3Gain 1.5.2 Audio Normalization Software Buffer Overflow CVE-2017-14411 X X
NASM 2.14.02 Assembler and Disassembler Double Free CVE-2019-8343 X X
Jhead 3.00 Exif Jpeg Header Manipulation Tool Integer Underflow CVE-2018-6612 X X
Nginx 1.4.0 Web Server Buffer Overflow CVE-2013-2028 X X
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Functionality Evaluation

Program Category Vulnerability CVE ID StaticTaintAll SelectiveTaint

SoX 14.4.2 Sound Processing Utilities Buffer Overflow CVE-2019-8356 X X
TinTin++ 2.01.6 Multiplayer Online Game Client Buffer Overflow CVE-2019-7629 X X
dcraw 9.28 Raw Image Decoder Buffer Overflow CVE-2018-19655 X X
ngiflib 0.4 GIF Format Decoding Library Buffer Overflow CVE-2018-11575 X X
Gravity 0.3.5 Programming Language Interpreter Buffer Overflow CVE-2017-1000437 X X
MP3Gain 1.5.2 Audio Normalization Software Buffer Overflow CVE-2017-14411 X X
NASM 2.14.02 Assembler and Disassembler Double Free CVE-2019-8343 X X
Jhead 3.00 Exif Jpeg Header Manipulation Tool Integer Underflow CVE-2018-6612 X X
Nginx 1.4.0 Web Server Buffer Overflow CVE-2013-2028 X X

Results

Detected all nine tested vulnerability as libdft.
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Dynamic Taint Analysis

Papers Year Static Dynamic Hardware Parallel/Offline Neural Network
Suh et al. [SLD04] 2004 X X
Newsome et al. [NS05] 2005 X
Clause et al. [CLO07] 2007 X
Bosman et al. [BSB11] 2011 X
Kemerlis et al. [KPJK12] 2012 X
Jee et al. [JPK+12] 2012 X
Jee et al. [JKKP13] 2013 X X
Ming et al. [MWX+15] 2015 X X
Ming et al. [MWW+16] 2016 X X X
Banerjee et al. [BDCN19] 2019 X X
She et al. [SCS+20] 2020 X X X
SelectiveTaint [CLZ21] 2021 X
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Related Work

Binary Rewriting

Uroboros [WWW15], Ramblr [WSB+17], Multiverse [BLH18], Probabilistic
Disassembly [MKS+19], Ddisasm [FMS20], dyninst [BM11].

Alias Analysis on Binary

Points-to relations with Datalog [BN06], abstract address sets [DMW98], symbolic
value sets [ABZT98].
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Summary

Original
Binary

Rewritten
Binary

CFG
Reconstruction

Value Set
Analysis

Taint Instruction
Identification

Binary
Rewriting

Selective Binary Taint Analysis

SelectiveTaint
I Static and selective instruction instrumentation

I Conservative must-not-tainted analysis

The source code is available at https://github.com/OSUSecLab/SelectiveTaint. Email: {chen.4825, lin.3021}@osu.edu, yinqianz@acm.org
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