
Computer Security Laboratory

THE OHIO STATE UNIVERSITY

SelectiveTaint: Efficient Data Flow Tracking

With Static Binary Rewriting

Sanchuan Chen, Zhiqiang Lin, and Yinqian Zhang

USENIX Security 2021

Introduction Motivation and Insights SelectiveTaint Evaluation Related Work Summary References

Dynamic Taint Analysis

1 include <string.h>

2 void main(int argc, char **argv){

3 char buf[16];

4 strcpy(buf, argv[1]);

5 return;

6 }

…

argv

argc

return_addr

caller’s ebp

buf
(16 bytes)

stack

1 / 24

Introduction Motivation and Insights SelectiveTaint Evaluation Related Work Summary References

Dynamic Taint Analysis

1 include <string.h>

2 void main(int argc, char **argv){

3 char buf[16];

4 strcpy(buf, argv[1]);

5 return;

6 }

…

argv

argc

return_addr

caller’s ebp

buf
(16 bytes)

stack

buffer overflow

return address
overwritten

control flow
hijacked

1 / 24

Introduction Motivation and Insights SelectiveTaint Evaluation Related Work Summary References

Dynamic Taint Analysis

1 include <string.h>

2 void main(int argc, char **argv){ <-- Taint Source

3 char buf[16];

4 strcpy(buf, argv[1]); <-- Taint Propagation

5 return; <-- Taint Sink

6 }

…

argv

argc

return_addr

caller’s ebp

buf
(16 bytes)

stack

buffer overflow

return address
overwritten

control flow
hijacked

1 / 24

Introduction Motivation and Insights SelectiveTaint Evaluation Related Work Summary References

Dynamic Taint Analysis

Shadow Memory

Shadow Memory

Shadow Memory

mov [0x8000200], eax

mov eax, [0x8000300]

program logic taint logic

eax

eax

eax

2 / 24

Introduction Motivation and Insights SelectiveTaint Evaluation Related Work Summary References

High Performance Overhead

Performance

Dynamic taint analysis frameworks often have a high performance overhead, which
stop them from deploying in real world computer systems.

3 / 24

Introduction Motivation and Insights SelectiveTaint Evaluation Related Work Summary References

High Performance Overhead

Performance

Dynamic taint analysis frameworks often have a high performance overhead, which
stop them from deploying in real world computer systems.

Example

A dynamic taint analysis framework called libdft imposes about 4x slowdown for
gzip when compressing a file.

4 / 24

Introduction Motivation and Insights SelectiveTaint Evaluation Related Work Summary References

Reason 1: Dynamic Instruction Instrumentation

Architecture of Intel Pin

Operating System
Hardware

Instrumentation APIs

Pintool

Ap
pl

ic
at

io
n

JIT Compiler
Emulation Unit

…

Pin

5 / 24

Introduction Motivation and Insights SelectiveTaint Evaluation Related Work Summary References

Reason 1: Dynamic Instruction Instrumentation

Architecture of Intel Pin

Operating System
Hardware

Instrumentation APIs

Pintool

Ap
pl

ic
at

io
n

JIT Compiler
Emulation Unit

…

Pin

Insight 1

Taint logic can be instrumented statically via
static binary rewriting.

5 / 24

Introduction Motivation and Insights SelectiveTaint Evaluation Related Work Summary References

Reason 2: Over Instrumentation

Example

test eax, eax

This instruction will not affect any
memory location or general register
and does not propagate taint.

6 / 24

Introduction Motivation and Insights SelectiveTaint Evaluation Related Work Summary References

Reason 2: Over Instrumentation

Example

test eax, eax

This instruction will not affect any
memory location or general register
and does not propagate taint.

Insight 2

Taint logic can be instrumented selectively via
value set analysis.

6 / 24

Introduction Motivation and Insights SelectiveTaint Evaluation Related Work Summary References

Static and Selective Instrumentation

Static Taint Analysis

Selective and static instrumentation is performed at compile time, which is equivalent
to perform static taint analysis.

Research Questions

RQ: How to perform this static taint analysis?
⇓
RQ: How to reason about aliasing relation in binary code?

7 / 24

Introduction Motivation and Insights SelectiveTaint Evaluation Related Work Summary References

Static and Selective Instrumentation

Static Taint Analysis

Selective and static instrumentation is performed at compile time, which is equivalent
to perform static taint analysis.

Research Questions

RQ: How to perform this static taint analysis?
⇓
RQ: How to reason about aliasing relation in binary code?

7 / 24

Introduction Motivation and Insights SelectiveTaint Evaluation Related Work Summary References

Value Set Analysis

Value set analysis

Value set analysis (VSA) is a static binary analysis technique, which over-approximates
the set of possible values for data objects at each program point.

8 / 24

Introduction Motivation and Insights SelectiveTaint Evaluation Related Work Summary References

Value Set Analysis

Memory Regions

VSA separates the memory space into
three disjoint memory spaces: global,
stack, heap regions.

Stack

Heap

Global

9 / 24

Introduction Motivation and Insights SelectiveTaint Evaluation Related Work Summary References

Value Set Analysis

Value Sets

VSA computes the region and value
sets based on:

1 instruction semantics

mov eax, [esp+4]
mov ebx, [0x8052160]

Stack

Heap

Global

9 / 24

Introduction Motivation and Insights SelectiveTaint Evaluation Related Work Summary References

Value Set Analysis

Value Sets

VSA computes the region and value
sets based on:

1 instruction semantics

2 data flow analysis

mov eax, [esp+4]
mov ebx, [0x8052160]

Stack

Heap

Global
mov [0x8052100], ecx
mov ecx, eax

9 / 24

Introduction Motivation and Insights SelectiveTaint Evaluation Related Work Summary References

Static and Selective Instrumentation

Static Taint Analysis

Selective and static instrumentation is performed at compile time, which is equivalent
to perform static taint analysis.

Research Questions

RQ: How to perform this static taint analysis?
⇓
RQ: How to reason about aliasing relation in binary code?

10 / 24

Introduction Motivation and Insights SelectiveTaint Evaluation Related Work Summary References

Static and Selective Instrumentation

Static Taint Analysis

Selective and static instrumentation is performed at compile time, which is equivalent
to perform static taint analysis.

Research Questions

RQ: How to perform this static taint analysis?
⇓
RQ: How to reason about aliasing relation in binary code?

10 / 24

Introduction Motivation and Insights SelectiveTaint Evaluation Related Work Summary References

SelectiveTaint Approach

Strawman approach

Strawman approach identifies a must-tainted instruction set It using VSA.
However, VSA loses precision due to incomplete CFG and aliasing.

Our approach

Our approach conservatively identifies a must-not-tainted instruction set Iu using
VSA and taint the others.

11 / 24

Introduction Motivation and Insights SelectiveTaint Evaluation Related Work Summary References

SelectiveTaint Approach

I: ideally tainted instruction

It: must-tainted instruction

Iu: must-not-tainted instruction

must-tainted analysis → imprecise

12 / 24

Introduction Motivation and Insights SelectiveTaint Evaluation Related Work Summary References

SelectiveTaint Approach

I: ideally tainted instruction

It: must-tainted instruction

Iu: must-not-tainted instruction

conservative must-tainted analysis → under-taint

12 / 24

Introduction Motivation and Insights SelectiveTaint Evaluation Related Work Summary References

SelectiveTaint Approach

I: ideally tainted instruction

It: must-tainted instruction

Iu: must-not-tainted instruction

must-not-tainted analysis → imprecise

12 / 24

Introduction Motivation and Insights SelectiveTaint Evaluation Related Work Summary References

SelectiveTaint Approach

I: ideally tainted instruction

It: must-tainted instruction

Iu: must-not-tainted instruction

conservative must-not-tainted analysis → over-taint

12 / 24

Introduction Motivation and Insights SelectiveTaint Evaluation Related Work Summary References

SelectiveTaint Approach

I: ideally tainted instruction

It: must-tainted instruction

Iu: must-not-tainted instruction

We perform a conservative must-tainted analysis and taint the rest.

12 / 24

Introduction Motivation and Insights SelectiveTaint Evaluation Related Work Summary References

Identification Policy

Unreachable instructions

Removed from must-not-tainted set

<version_etc_arn>:
804b7a0: push ebp

Potentially tainted instructions

Removed from must-not-tainted set
8055c3c: call 8048f30 <__IO_getc@plt>
8055c41: mov eax, edx

Untainted operand instructions

Added to must-not-tainted set

8096a07: inc ebp

None taint-propagation instructions

Added to must-not-tainted set

8062456: jmp 806238b <mbslen+0x8b>

13 / 24

Introduction Motivation and Insights SelectiveTaint Evaluation Related Work Summary References

Identification Policy

Unreachable instructions

Removed from must-not-tainted set

<version_etc_arn>:
804b7a0: push ebp

Potentially tainted instructions

Removed from must-not-tainted set
8055c3c: call 8048f30 <__IO_getc@plt>
8055c41: mov eax, edx

Untainted operand instructions

Added to must-not-tainted set

8096a07: inc ebp

None taint-propagation instructions

Added to must-not-tainted set

8062456: jmp 806238b <mbslen+0x8b>

13 / 24

Introduction Motivation and Insights SelectiveTaint Evaluation Related Work Summary References

Identification Policy

Unreachable instructions

Removed from must-not-tainted set

<version_etc_arn>:
804b7a0: push ebp

Potentially tainted instructions

Removed from must-not-tainted set
8055c3c: call 8048f30 <__IO_getc@plt>
8055c41: mov eax, edx

Untainted operand instructions

Added to must-not-tainted set

8096a07: inc ebp

None taint-propagation instructions

Added to must-not-tainted set

8062456: jmp 806238b <mbslen+0x8b>

13 / 24

Introduction Motivation and Insights SelectiveTaint Evaluation Related Work Summary References

Identification Policy

Unreachable instructions

Removed from must-not-tainted set

<version_etc_arn>:
804b7a0: push ebp

Potentially tainted instructions

Removed from must-not-tainted set
8055c3c: call 8048f30 <__IO_getc@plt>
8055c41: mov eax, edx

Untainted operand instructions

Added to must-not-tainted set

8096a07: inc ebp

None taint-propagation instructions

Added to must-not-tainted set

8062456: jmp 806238b <mbslen+0x8b>

13 / 24

Introduction Motivation and Insights SelectiveTaint Evaluation Related Work Summary References

Formal Proof of Must-not-tainted Analysis

Primary Inference Rules

Unreachable
@is ∈ source, is ; i, i ; is

Iu −= {i} UnknownOperand
∃o ∈ op(i), V [o] = (⊥,⊥,⊥)

Iu −= {i}

UntaintedOperand
∀o ∈ op(i), V [o] ⊆ Vu

Iu ∪= {i} NonPropagateOpcode
∀o ∈ op(i), V [o]

i
≡ V [o]

Iu ∪= {i}

14 / 24

Introduction Motivation and Insights SelectiveTaint Evaluation Related Work Summary References

Formal Proof of Must-not-tainted Analysis

Auxiliary Inference Rules

Control-flows: Reachable
succ(i1, i2)
i1 ; i2

TransReachable
succ(i1, i2) succ(i2, i3)

i1 ; i3

Operands: LiteralOperand
l ∈ op(i) l : literal

Vu ∪= V [l]
LabelOperand

l ∈ op(i) l : label
Vu ∪= V [l]

TaintSource
o ∈ taintedop(is) is ∈ source

Vu −= V [o]
TaintPropagate

o1 ∈ sourceop(i) o2 ∈ destop(i) V [o1] ⊆ Vu
Vu −= V [o2]

Opcodes: PCRegChangeOpcode
V [pc] i V [pc] ∀o ∈ op(i), V [o]

i
≡ V [o]

Iu ∪= {i}

StatusRegChangeOpcode
V [status] i V [status] ∀o ∈ op(i), V [o]

i
≡ V [o]

Iu ∪= {i}

15 / 24

Introduction Motivation and Insights SelectiveTaint Evaluation Related Work Summary References

Formal Proof of Must-not-tainted Analysis

Theorem 1

Must-not-tainted analysis is sound, except for the precision loss due to imprecise CFG
and VSA results.

Proof

We prove this theorem with induction.

1 In the first iteration, Iu is ∅, must-not-tainted analysis is sound.

2 We next prove if the kth iteration, must-not-tainted analysis is sound, it also holds
for the (k+1)th iteration.

16 / 24

Introduction Motivation and Insights SelectiveTaint Evaluation Related Work Summary References

Design

Original
Binary

Rewritten
Binary

CFG
Reconstruction

Value Set
Analysis

Taint Instruction
Identification

Binary
Rewriting

Selective Binary Taint Analysis

17 / 24

Introduction Motivation and Insights SelectiveTaint Evaluation Related Work Summary References

Performance Evaluation

tar
gzip

bzip2 scp cat
comm cut

grep
head nl od ptx

shred tail

truncate uniq
average

0

1

2

3

4

5

6

S
lo

w
do

w
n

(n
or

m
al

iz
ed

ru
nt

im
e)

exim

memcached
proftpd

lighttpd
nginx

average
0

1

2

3

4

5

6
native
nullpin
libdft
StaticTaintAll
SelectiveTaint

18 / 24

Introduction Motivation and Insights SelectiveTaint Evaluation Related Work Summary References

Performance Evaluation

tar
gzip

bzip2 scp cat
comm cut

grep
head nl od ptx

shred tail

truncate uniq
average

0

1

2

3

4

5

6

S
lo

w
do

w
n

(n
or

m
al

iz
ed

ru
nt

im
e)

exim

memcached
proftpd

lighttpd
nginx

average
0

1

2

3

4

5

6
native
nullpin
libdft
StaticTaintAll
SelectiveTaint

Results

On average 1.7x faster than libdft.

19 / 24

Introduction Motivation and Insights SelectiveTaint Evaluation Related Work Summary References

Functionality Evaluation

Program Category Vulnerability CVE ID StaticTaintAll SelectiveTaint

SoX 14.4.2 Sound Processing Utilities Buffer Overflow CVE-2019-8356 X X
TinTin++ 2.01.6 Multiplayer Online Game Client Buffer Overflow CVE-2019-7629 X X
dcraw 9.28 Raw Image Decoder Buffer Overflow CVE-2018-19655 X X
ngiflib 0.4 GIF Format Decoding Library Buffer Overflow CVE-2018-11575 X X
Gravity 0.3.5 Programming Language Interpreter Buffer Overflow CVE-2017-1000437 X X
MP3Gain 1.5.2 Audio Normalization Software Buffer Overflow CVE-2017-14411 X X
NASM 2.14.02 Assembler and Disassembler Double Free CVE-2019-8343 X X
Jhead 3.00 Exif Jpeg Header Manipulation Tool Integer Underflow CVE-2018-6612 X X
Nginx 1.4.0 Web Server Buffer Overflow CVE-2013-2028 X X

20 / 24

Introduction Motivation and Insights SelectiveTaint Evaluation Related Work Summary References

Functionality Evaluation

Program Category Vulnerability CVE ID StaticTaintAll SelectiveTaint

SoX 14.4.2 Sound Processing Utilities Buffer Overflow CVE-2019-8356 X X
TinTin++ 2.01.6 Multiplayer Online Game Client Buffer Overflow CVE-2019-7629 X X
dcraw 9.28 Raw Image Decoder Buffer Overflow CVE-2018-19655 X X
ngiflib 0.4 GIF Format Decoding Library Buffer Overflow CVE-2018-11575 X X
Gravity 0.3.5 Programming Language Interpreter Buffer Overflow CVE-2017-1000437 X X
MP3Gain 1.5.2 Audio Normalization Software Buffer Overflow CVE-2017-14411 X X
NASM 2.14.02 Assembler and Disassembler Double Free CVE-2019-8343 X X
Jhead 3.00 Exif Jpeg Header Manipulation Tool Integer Underflow CVE-2018-6612 X X
Nginx 1.4.0 Web Server Buffer Overflow CVE-2013-2028 X X

Results

Detected all nine tested vulnerability as libdft.

21 / 24

Introduction Motivation and Insights SelectiveTaint Evaluation Related Work Summary References

Dynamic Taint Analysis

Papers Year Static Dynamic Hardware Parallel/Offline Neural Network
Suh et al. [SLD04] 2004 X X
Newsome et al. [NS05] 2005 X
Clause et al. [CLO07] 2007 X
Bosman et al. [BSB11] 2011 X
Kemerlis et al. [KPJK12] 2012 X
Jee et al. [JPK+12] 2012 X
Jee et al. [JKKP13] 2013 X X
Ming et al. [MWX+15] 2015 X X
Ming et al. [MWW+16] 2016 X X X
Banerjee et al. [BDCN19] 2019 X X
She et al. [SCS+20] 2020 X X X
SelectiveTaint [CLZ21] 2021 X

22 / 24

Introduction Motivation and Insights SelectiveTaint Evaluation Related Work Summary References

Related Work

Binary Rewriting

Uroboros [WWW15], Ramblr [WSB+17], Multiverse [BLH18], Probabilistic
Disassembly [MKS+19], Ddisasm [FMS20], dyninst [BM11].

Alias Analysis on Binary

Points-to relations with Datalog [BN06], abstract address sets [DMW98], symbolic
value sets [ABZT98].

23 / 24

Introduction Motivation and Insights SelectiveTaint Evaluation Related Work Summary References

Summary

Original
Binary

Rewritten
Binary

CFG
Reconstruction

Value Set
Analysis

Taint Instruction
Identification

Binary
Rewriting

Selective Binary Taint Analysis

SelectiveTaint
I Static and selective instruction instrumentation

I Conservative must-not-tainted analysis

The source code is available at https://github.com/OSUSecLab/SelectiveTaint. Email: {chen.4825, lin.3021}@osu.edu, yinqianz@acm.org

24 / 24

https://github.com/OSUSecLab/SelectiveTaint

Introduction Motivation and Insights SelectiveTaint Evaluation Related Work Summary References

References I

Wolfram Amme, Peter Braun, Eberhard Zehendner, and Francois Thomasset, Data dependence analysis of assembly code, Proceedings of the

1998 International Conference on Parallel Architectures and Compilation Techniques (Washington, DC, USA), PACT ’98, IEEE Computer
Society, 1998, pp. 340–347.

S. Banerjee, D. Devecsery, P. M. Chen, and S. Narayanasamy, Iodine: Fast dynamic taint tracking using rollback-free optimistic hybrid

analysis, Proceedings of the 40th IEEE Symposium on Security and Privacy, SP ’19, 2019, pp. 712–726.

Erick Bauman, Zhiqiang Lin, and Kevin Hamlen, Superset disassembly: Statically rewriting x86 binaries without heuristics, Proceedings of the

25th Annual Network and Distributed System Security Symposium (San Diego, CA), NDSS ’18, Feb. 2018.

Andrew R. Bernat and Barton P. Miller, Anywhere, any-time binary instrumentation, Proceedings of the 10th ACM SIGPLAN-SIGSOFT

Workshop on Program Analysis for Software Tools (New York, NY, USA), PASTE ’11, ACM, 2011, pp. 9–16.

David Brumley and James Newsome, Alias analysis for assembly, Tech. report, Carnegie Mellon University, 2006.

Erik Bosman, Asia Slowinska, and Herbert Bos, Minemu: The world’s fastest taint tracker, Proceedings of the 14th International Symposium

on Recent Advances in Intrusion Detection (Berlin, Heidelberg), RAID ’11, Springer Berlin Heidelberg, 2011, pp. 1–20.

James Clause, Wanchun Li, and Alessandro Orso, Dytan: A generic dynamic taint analysis framework, Proceedings of the 2007 International

Symposium on Software Testing and Analysis (New York, NY, USA), ISSTA ’07, ACM, 2007, pp. 196–206.

Sanchuan Chen, Zhiqiang Lin, and Yinqian Zhang, Selectivetaint: Efficient data flow tracking with static binary rewriting, 30th USENIX

Security Symposium (USENIX Security 21), USENIX Association, August 2021.

24 / 24

Introduction Motivation and Insights SelectiveTaint Evaluation Related Work Summary References

References II

Saumya Debray, Robert Muth, and Matthew Weippert, Alias analysis of executable code, Proceedings of the 25th ACM SIGPLAN-SIGACT

Symposium on Principles of Programming Languages (New York, NY, USA), POPL ’98, ACM, 1998, pp. 12–24.

Antonio Flores-Montoya and Eric Schulte, Datalog disassembly, Proceedings of the 29th USENIX Security Symposium, USENIX Security ’20,

USENIX Association, August 2020, pp. 1075–1092.

Kangkook Jee, Vasileios P. Kemerlis, Angelos D. Keromytis, and Georgios Portokalidis, ShadowReplica: Efficient parallelization of dynamic

data flow tracking, Proceedings of the 20th ACM Conference on Computer and Communications Security (New York, NY, USA), CCS ’13,
ACM, 2013, pp. 235–246.

Kangkook Jee, Georgios Portokalidis, Vasileios P. Kemerlis, Soumyadeep Ghosh, David I. August, and Angelos D. Keromytis, A general

approach for efficiently accelerating software-based dynamic data flow tracking on commodity hardware, Proceedings of the 19th Annual
Network and Distributed System Security Symposium, NDSS ’12, 2012.

Vasileios P. Kemerlis, Georgios Portokalidis, Kangkook Jee, and Angelos D. Keromytis, libdft: Practical dynamic data flow tracking for

commodity systems, Proceedings of the 8th ACM SIGPLAN/SIGOPS Conference on Virtual Execution Environments (New York, NY, USA),
VEE ’12, ACM, 2012, pp. 121–132.

Kenneth Miller, Yonghwi Kwon, Yi Sun, Zhuo Zhang, Xiangyu Zhang, and Zhiqiang Lin, Probabilistic disassembly, Proceedings of the 41st

International Conference on Software Engineering, ICSE ’19, IEEE Press, 2019, p. 1187–1198.

Jiang Ming, Dinghao Wu, Jun Wang, Gaoyao Xiao, and Peng Liu, StraightTaint: Decoupled offline symbolic taint analysis, Proceedings of the

31st IEEE/ACM International Conference on Automated Software Engineering (New York, NY, USA), ASE ’16, ACM, 2016, pp. 308–319.

24 / 24

Introduction Motivation and Insights SelectiveTaint Evaluation Related Work Summary References

References III

Jiang Ming, Dinghao Wu, Gaoyao Xiao, Jun Wang, and Peng Liu, TaintPipe: Pipelined symbolic taint analysis, Proceedings of the 24th

USENIX Security Symposium (Washington, D.C.), USENIX Security ’15, USENIX Association, 2015, pp. 65–80.

James Newsome and Dawn Song, Dynamic taint analysis for automatic detection, analysis, and signature generation of exploits on commodity

software, Proceedings of the 12th Annual Network and Distributed Systems Security Symposium, NDSS ’05, 2005.

Dongdong She, Yizheng Chen, Abhishek Shah, Baishakhi Ray, and Suman Jana, Neutaint: Efficient dynamic taint analysis with neural

networks, 2020 IEEE Symposium on Security and Privacy (SP), IEEE, 2020, pp. 1527–1543.

G. Edward Suh, Jaewook Lee, and Srinivas Devadas, Secure program execution via dynamic information flow tracking, 11th international

conference on Architectural support for programming languages and operating systems, 2004, pp. 85–96.

Ruoyu Wang, Yan Shoshitaishvili, Antonio Bianchi, Aravind Machiry, John Grosen, Paul Grosen, Christopher Kruegel, and Giovanni Vigna,

Ramblr: Making reassembly great again, Proceedings of the 24th Annual Network and Distributed System Security Symposium, NDSS ’17,
2017.

Shuai Wang, Pei Wang, and Dinghao Wu, Reassembleable disassembling, Proceedings of the 24th USENIX Security Symposium (Washington,

D.C.), USENIX Security ’15, USENIX Association, 2015, pp. 627–642.

24 / 24

	Introduction
	

	Motivation and Insights
	

	SelectiveTaint
	

	Evaluation
	

	Related Work
	

	Summary
	

	References
	

