
Towards Formal Verification of State Continuity for
Enclave Programs

Mohit Kumar Jangid
The Ohio State University

Guoxing Chen
Shanghai Jiao Tong University

Yinqian Zhang
Southern University of Science and

Technology

Zhiqiang Lin
The Ohio State University

Outline

● Background
● Motivation
● Our approach
● Case study - Sawtooth
● Conclusion

Outline

● Background
● Motivation
● Our approach
● Case study - Sawtooth
● Conclusion

App App

OS

Hardware

Operating system protects user
data by

Assumption

OS is trusted

● Process isolation

● Access control (privileged
access to devices)

App App

OS

Hardware

Is it possible to protect the user
data when OS is compromised?

 App App

OS

Hardware

● Trusted hardware solution to
protect confidentiality and
integrity of the runtime code
and data.

Intel SGX

● App is divided into trusted and
untrusted code section.

● Hardware encrypted trusted
code run inside the protected
memory regions (enclaves).

State Continuity

● Classic definition: protected module must resume from the same
execution state after TCB (Trusted Computing Base) interrupts

● New TCB modules in SGX context:
○ Enclave memory (local/global variables)
○ Non-volatile memory (monotonic counters)
○ Persistent storage (sealed data)

● New threat model in SGX context:
○ Controls the privileged code (OS and application code)
○ Arbitrary thread and process instantiation
○ Permute, reorder enclave calls
○ Access to ecall or ocall arguments and returns
○ Replay, modify of data in untrusted code

State Continuity for Enclave Programs

● Enclave program states always executes on the expected TCB state under
the SGX threat model and TCB interrupts

Expected TCB States All Enclave Executions

Ecall A

Ecall B

Ecall C

Monotonic
Counter

Monotonic
Counter

Sealed Data

Enclave Program

Example SGX Application -- Sawtooth

● Permissioned Blockchain Framework
● Consensus algorithm: Proof-of-Elapsed-Time (PoET)
● Leverages Intel SGX for fair node participation
● Each node workflow

○ Signup and register into the blockchain network
○ Participate in the block leader election

Sawtooth Block Leader Election

Election 1
Create Reference Objects

● Generate random wait duration
● Create reference monotonic counter (MC_ref)
● Seal the duration and MC_ref

Election 2
 Verify Proof of Elapsed Time

● Unseal and verify the sealed object
● Verify elapsed time
● Compare MC_ref
● PoETCertificate

Ecall E1

Ecall E2

Wait random duration

Monotonic Counter ++

X X X

Sawtooth Expected TCB States

1. Monotonic Counter Value < MC_Ref PoETCertificateX
2. Monotonic Counter Value = MC_Ref PoETCertificate

3. Monotonic Counter Value > MC_Ref Abort

What Could Go Wrong?

Ecall E1
Seal

Unseal
Ecall E1

Ecall E1

Ecall E2

Ecall E1

Ecall E2

Ecall E1

Ecall E2

Ecall E1

Ecall E2

Outline

● Background
● Motivation
● Our approach
● Case study - Sawtooth
● Conclusion

Maintaining State Continuity is Important

State continuity TCB modules are prevalent in many open SGX applications.

196 open source SGX
applications

● 59 -- Sealing
● 15 -- Monotonic Counters
● 05 -- Global variables.

The Research Problem

State continuity properties are difficult to verify in the SGX environment. Why?

Manual efforts is tedious and error prone

1. Clearly understand trusted & untrusted boundary
2. Correct coordination of heterogeneous TCB modules
3. Carefully apply thread synchronization and locks

Is there a systematic approach to
verify state continuity ?

Outline

● Background
● Motivation
● Our approach
● Case study - Sawtooth
● Conclusion

Our Approach

● Use Symbolic Verification Tool -- Tamarin, to verify state continuity property

Multiset
Rewriting Rules

Security
Property

First Order Logic Tamarin
Prover

Property does not
hold ⇒ Attack

Property Holds
Verified

Design
Logic

Key Observation
Cryptographic Protocols and SGX Environment share common features

A B

S

A

B

SEcall

Ecall

Ecall

SGX Environment

Key Exchange Protocols

Tamarin MSR and query language State Cont. Properties
SGX Thread Model

Our Approach

App

Code Section

Enclave
Execution Logic

SGX Threat Logic

Transformation icon cite: https://icon-library.com/icon/transformation-icon-3.html

State Cont.
Property

Tamarin Model
MSRs

Systematic Transformation Tamarin
Prover

Property does not
hold ⇒ Attack

Property Holds
Verified

● SGX primitives
● Model templates for 3

open source SGX apps

Our Contribution

Model Primitives used in our work

SGX primitives Programming primitives

1. Enclave threads
2. Association network of SGX entities
3. Monotonic counters
4. Local/Global variables
5. SGX threat model
6. Key derivation
7. Sealing

1. Locks
2. Loops
3. Branching
4. Database (Read only)

SGX Threat Model
SGX Threat Model Construction Realized by

Thread and process instantiation Using the thread policy based on the ecall facts
Fecallin the first enclave thread rule and binding
ecall sequences of rules using thread facts Fthread

Permute or reorder ecalls Modeling the first enclave thread rule open to
executability without order dependencies of
timepoints and facts

Pause enclave execution at instruction level Modeling instructions in individual rules and
utilizing atomic rule executability

Read access to ecall returns; Read/Modify
access to ecall or ocall arguments and returns

Arguments and returns pass through public
channel

Replay, modify of sealing, ecall or arguments
and returns

Public channel use in combination Tamarin's
inbuilt Dolev Yao adversary capabilities

Outline

● Background
● Motivation
● Our approach
● Sawtooth -- Tamarin Model
● Conclusion

Recall -- Sawtooth

Each node workflow

1. Signup and register into the blockchain network
2. Election Ecall 1
3. Election Ecall 2

Recall -- Sawtooth Block Leader Election

Election 1
Create Reference Objects

● Generate random wait duration
● Create reference monotonic counter (MC_ref)
● Seal the duration and MC_ref

Election 2
 Verify Proof of Elapsed Time

● Unseal and verify the sealed object
● Verify elapsed time
● Compare MC_ref
● PoETCertificate

Ecall E1

Ecall E2

Wait random duration

Monotonic Counter ++

Tamarin Model for Sawtooth

● What components of the workflow do we need?
○ SGX entities -- ISV, User, Nodes, Processes
○ Entity association network
○ Enclave threads
○ Sealed sign-up information
○ Monotonic Counter

Tamarin Model for Sawtooth

● What components of the workflow do we need?
○ SGX entities -- ISV, User, Nodes, Processes
○ Entity association network
○ Enclave threads
○ Sealed sign-up information
○ Monotonic Counter

SGX Entities

1. Signup
2. Ecall E1
3. Ecall E2

A user at a node
Bl

oc
kc

ha
in

 In
te

rf
ac

e 1. Signup
2. Ecall E1
3. Ecall E2

A user at a node

Bl
oc

kc
ha

in
 In

te
rf

ac
e

Blockchain Network deployed by a developer (ISV)

SGX Entities

1. Signup
2. Ecall E1
3. Ecall E2

A user at a node

Blockchain Network deployed by a developer (ISV)

Bl
oc

kc
ha

in
 In

te
rf

ac
e 1. Signup

2. Ecall E1
3. Ecall E2

A user at a node

Bl
oc

kc
ha

in
 In

te
rf

ac
e 1. Signup

2. Ecall E1
3. Ecall E2

A user at a node

Blockchain Network deployed by a developer (ISV)

Bl
oc

kc
ha

in
 In

te
rf

ac
e 1. Signup

2. Ecall E1
3. Ecall E2

A user at a node

Bl
oc

kc
ha

in
 In

te
rf

ac
e

ISV 1 ISV 2

1. Signup
2. Ecall E1
3. Ecall E2

P1
1. Signup
2. Ecall E1
3. Ecall E2

P2

Tamarin Model for Sawtooth

● What components of the workflow do we need?
○ SGX entities -- ISV, User, Nodes, Processes
○ Entity association network
○ Enclave threads
○ Sealed sign-up information
○ Monotonic Counter

Entity Association Network
● Tamarin Fr(*) Fact produces unique variables
● Tamarin Rules can in instantiated unbounded times

Fr(ISV) ISV1

ISV1 (U1N1)∀ ISV
i

Fr(User) Fr(Node)

∀ ISV
i
User

k
Node

k

Fr(Process)

ISV1 (U2N2)

ISV2

ISV2 (UxNx) ISV2 (UyNy)

(ISV1 (U1N1)) P1 (ISV1 (U1N1)) P2

● Variables can be passed on through Rules using Tamarin Facts

Tamarin Model for Sawtooth

● What components of the workflow do we need?
○ SGX entities -- ISV, User, Nodes, Processes
○ Entity association network
○ Enclave threads
○ Sealed sign-up information
○ Monotonic Counter

Enclave Thread Construction

● Persistent Fact (!F) can be consumed unbounded times.
● Linear and persistent Fact dependencies allows configuration of single and multiple thread

Fthread

Fthread

Enclave Thread

Association Network

Fecall dependency

Association Network

!Fecall dependency

Single Thread Multiple Threads

● Linear Fact (F) can be consumed only once.

Tamarin Model for Sawtooth

● What components of the workflow do we need?
○ SGX entities -- ISV, User, Nodes, Processes
○ Entity association network
○ Enclave threads
○ Sealed sign-up information
○ Monotonic Counter

State Continuity Property

Fair election participation of each node in the blockchain requires that

a node must not generate two certificates with same MC_ref

All

PoETCertificate (node , MC_ref) @t1 &

PoETCertificate (node , MC_ref) @t2

 == > # t1 =# t2

First Order Logic Query

Sawtooth Model
 Multiset Rewriting Rules

State Cont. Property
First Order Logic Tamarin Prover

Property does not hold
⇒ Attack

Apply patch in the model

Property Holds
Verified

Verification

Sawtooth Attack Trace

Summary of Case Studies

Conclusion

● First attempt towards using symbolic verification tools to verify the state
continuity for SGX enclave programs.

● We demonstrate our approach using three open-source SGX applications,
resulting into reusable SGX primitives and model templates.

● Tamarin Prover can effectively model SGX-specific semantics and operations;
and state continuity properties.

● Our Tamarin code is released at Github:
https://github.com/OSUSecLab/SGX-Enclave-Formal-Verification.

https://github.com/OSUSecLab/SGX-Enclave-Formal-Verification

Thank you

Follow up questions at jangid.6@osu.edu.

Mohit Kumar Jangid
The Ohio State University

Guoxing Chen
Shanghai Jiao Tong University

Yinqian Zhang
Southern University of Science and

Technology

Zhiqiang Lin
The Ohio State University

