Why Does Your Data Leak? Uncovering the Data Leakage in Cloud from Mobile Apps Chaoshun Zuo, Zhiqiang Lin, and Yinqian Zhang Department of Computer Science and Engineering The Ohio State University IEEE S&P 2019 # The Mobile Backend as a Service (mBaaS) Clouds Client Server # The Mobile Backend as a Service (mBaaS) Clouds 0000 #### **Authentication** Cloud Resources #### **Authentication** **Authorization** **Authorization** **Authorization** **Authorization** **Authorization** **Authorization** # Our Discovery # Our Discovery troduction Our Discovery LEAKSCOPE Evaluation Related Work Summary References ## Our Discovery #### The Root Causes of the Cloud Data Leakage - Misuse of Various Keys in Authentication - ► Microsoft Azure Storage - ► Microsoft Azure Notification Hubs - ► Amazon AWS - Misconfiguration of User Permissions in Authorization - Google Firebase - ► Amazon AWS # Misuse of Various Keys in Authentication **Authorization** # Misuse of Root Keys in Microsoft Azure | Service | Key Type | Example | | | |--------------|------------|--|--|--| | | Account | DefaultEndpointsProtocol=https; | | | | Azure | Key | AccountName=*;AccountKey=* | | | | Storage | | https://*.blob.core.windows.net/* | | | | | SAS | ?sv=*&st=*&se=*&sr=b& | | | | | | sp=rw&sip=*&spr=https&sig=* | | | | | | Endpoint=sb://*.servicebus.windows.net/; | | | | | Listening | ${\sf SharedAccessKeyName} =$ | | | | | Key | Default Listen SharedAccessSignature; | | | | Notification | | SharedAccessKey=* | | | | Hub | | Endpoint=sb://*.servicebus.windows.net/; | | | | | Full | ${\sf SharedAccessKeyName} =$ | | | | | Access Key | DefaultFullSharedAccessSignature; | | | | | | SharedAccessKey=* | | | ## Misuse of Root Keys in Microsoft Azure | Service | Key Type | Example | | |---------------------|--------------------|--|--| | Azure
Storage | Account
Key | DefaultEndpointsProtocol=https;
AccountName=*;AccountKey=* | | | | SAS | https://*.blob.core.windows.net/* ?sv=*&st=*&se=*&sr=b& sp=rw&sip=*&spr=https&sig=* | | | Notification
Hub | Listening
Key | Endpoint=sb://*.servicebus.windows.net/; SharedAccessKeyName= DefaultListenSharedAccessSignature; SharedAccessKey=* | | | | Full
Access Key | Endpoint=sb://*.servicebus.windows.net/;
SharedAccessKeyName=
DefaultFullSharedAccessSignature;
SharedAccessKey=* | | ntroduction Our Discovery LEARSCOPE Evaluation Related Work Summary Reference 0000 000 000 0000 00000 00 00 00 #### Our Discovery #### The Root Causes of the Cloud Data Leakage - Misuse of Various Keys in Authentication - Microsoft Azure Storage - Microsoft Azure Notification Hubs - Amazon AWS - Misconfiguration of User Permissions in Authorization - Google Firebase - ► Amazon AWS # Misconfiguration of User Permissions in Authorization **Authorization** # Misconfiguration of User Permissions in **Authorization** # Misconfiguration of User Permissions in Google Firebase ``` "rules": { "users": { "$uid": { ".read": "$uid === auth.uid", ".write": "$uid === auth.uid" } } } ``` Figure: A Correct Firebase Authorization Rule # Misconfiguration of User Permissions in Google Firebase ``` "rules": { "users": { "$uid": ".read": "$uid === auth.uid", ".write": "Suid === auth.uid" Figure: A Correct Firebase Authorization Rule "rules": { "rules": { ".read": "auth != null", ".read": true, ".write": "auth != null" ".write": true (a) (b) ``` Figure: Two Misconfigured Firebase Authorization Rules ntroduction Our Discovery LEAKSCOPE Evaluation Related Work Summary Reference #### Problem Statement #### How to automatically detect the cloud leakage at scale - How to systematically identify various keys used by mobile apps (Cloud APIs) - When to identify the relevant key strings that are used by mobile apps (String Analysis) - Mow to design an obfuscation-resilient approach to identify cloud APIs and key strings of our interest (Obfuscation-Resilient) - How to determine the vulnerability without leaking sensitive information in the cloud (Vulnerability Confirmation) # Introducing LEAKSCOPE #### Cloud API Identification #### Cloud API Identification | Cloud
Service | APIs | Definition | Indexes of The String
Parameters of Our Interest | |------------------|------|---------------------------------------------------------------------------------------|-----------------------------------------------------| | | 1* | TransferUtility: TransferObserver downloadUpload(String, String, File) | 0 | | | 2* | AmazonS3Client: void S3objectAccess(String, String,) | 0 | | AWS | 3 | CognitoCredentialsProvider: void <init>(String,String,String,String,)</init> | 1 | | | 4 | BasicAWSCredentials: void <init>(String,String)</init> | 0,1 | | | 5 | MobileServiceClient: void <init>(String,Context)</init> | 0 | | | 6 | MobileServiceClient: void <init>(String,String,Context)</init> | 0,1 | | Azure | 7 | NotificationHub: void <init>(String,String,Context)</init> | 1 | | | 8 | CloudStorageAccount: CloudStorageAccount parse(String) | 0 | | | 9 | FirebaseOptions: void <init>(String,String,String,String,String,String,String)</init> | 0,1,2,5 | | Firebase | 10 | FirebaseOptions: void <init>(String,String,String,String,String,String)</init> | 0,1,2,5 | # String Value Analysis #### String Value Analysis ``` 1 package com appname 2 public class ImagesHelper (private final String storageAccountKey; private final String storageAccountName; private ImagesHelper (Context arg3) { int v0 = 2131099713; int v1 = 2131099712: this.storageAccountName = 10 this.getResources().getString(v0); 11 this.storageAccountKev = 12 this.getResources().getString(v1); 13 14 15 public void downloadImages(Callback arg5, 16 OnDownloadImagesUpdateListener arg6) (17 StringBuilder v0 = new StringBuilder(): 18 v0.append("DefaultEndpointsProtocol=http:AccountName="): 19 v0.append(this.storageAccountName): 20 v0.append(":AccountKey="): 21 v0.append(this.storageAccountKev): 22 String v1 = v0.toString(): 23 CloudStorageAccount v7 = CloudStorageAccount.parse(v1); 24 ... ``` ## Vulnerability Identification ## Vulnerability Identification ## Distributions of the Testing Apps | | Total | | Non-Obfuscated | | Obfuso | cated | |---------------------|---------|-------|----------------|-------|--------|-------| | | #Apps | % | #Apps | % | #Apps | % | | w/ Cloud API | 107,081 | - | 85,357 | 79.71 | 21,724 | 20.29 | | w/ AWS only | 4,799 | 4.48 | 4,548 | 5.33 | 251 | 1.16 | | w/ Azure only | 899 | 0.84 | 720 | 0.84 | 179 | 0.82 | | w/ Firebase only | 99,186 | 92.63 | 78,475 | 91.94 | 20,711 | 95.34 | | w/ AWS & Azure | 3 | 0.00 | 2 | 0.00 | 1 | 0.00 | | w/ AWS & Firebase | 1,973 | 1.84 | 1,427 | 1.67 | 546 | 2.51 | | w/ Azure & Firebase | 210 | 0.20 | 174 | 0.20 | 36 | 0.17 | | w/ Three Services | 11 | 0.01 | 11 | 0.01 | 0 | 0.00 | ## Distributions of the Testing Apps | | Total | | Non-Obf | uscated | Obfuscated | | | |---------------------|---------|-------|---------|---------|------------|-------|--| | | #Apps | % | #Apps | % | #Apps | % | | | w/ Cloud API | 107,081 | - | 85,357 | 79.71 | 21,724 | 20.29 | | | w/ AWS only | 4,799 | 4.48 | 4,548 | 5.33 | 251 | 1.16 | | | w/ Azure only | 899 | 0.84 | 720 | 0.84 | 179 | 0.82 | | | w/ Firebase only | 99,186 | 92.63 | 78,475 | 91.94 | 20,711 | 95.34 | | | w/ AWS & Azure | 3 | 0.00 | 2 | 0.00 | 1 | 0.00 | | | w/ AWS & Firebase | 1,973 | 1.84 | 1,427 | 1.67 | 546 | 2.51 | | | w/ Azure & Firebase | 210 | 0.20 | 174 | 0.20 | 36 | 0.17 | | | w/ Three Services | 11 | 0.01 | 11 | 0.01 | 0 | 0.00 | | ## Result of Cloud API Identification & String Value Analysis | | | | Non-Obfuscated | | | | | Obf | fuscated | | |----------|-----------------------|------|----------------|--------|----------------|--------|-----------|--------|----------------|--------| | | String Parameter Name | APIs | #API-Call | #APP | #Resolved Str. | % | #API-Call | #APP | #Resolved Str. | % | | | bucketName | 1* | 2,460 | 1,229 | 2,190 | 89.02 | 398 | 1,229 | 321 | 80.65 | | | bucketName | 2* | 2,069 | 1,703 | 2,045 | 98.84 | 444 | 439 | 442 | 99.55 | | AWS | identityPoolId | 3 | 3,458 | 3,458 | 3,315 | 95.86 | 291 | 291 | 266 | 91.41 | | | accessKey | 4 | 3,280 | 1,769 | 2,650 | 80.79 | 277 | 203 | 199 | 71.84 | | | secretKey | 4 | 3,280 | 1,769 | 2,646 | 80.67 | 277 | 203 | 197 | 71.12 | | | appURL | 5 | 185 | 39 | 185 | 100.00 | 11 | 4 | 11 | 100.00 | | | appURL | 6 | 824 | 316 | 817 | 99.15 | 32 | 21 | 32 | 100.00 | | Azure | appKey | 6 | 824 | 316 | 809 | 98.18 | 32 | 21 | 31 | 96.88 | | | connectionString | 7 | 700 | 513 | 643 | 91.86 | 207 | 189 | 200 | 96.62 | | | connectionString | 8 | 345 | 97 | 303 | 87.83 | 29 | 21 | 22 | 75.86 | | | google_app_id | 9 | 2,378 | 1,228 | 2,222 | 93.44 | 935 | 908 | 934 | 99.89 | | | google_api_key | 9 | 2,378 | 1,228 | 2,230 | 93.78 | 935 | 908 | 927 | 99.14 | | | firebase_database_url | 9 | 2,378 | 1,228 | 2,039 | 85.74 | 935 | 908 | 882 | 94.33 | | | google_storage_bucket | 9 | 2,378 | 1,228 | 2,050 | 86.21 | 935 | 908 | 882 | 94.33 | | Firebase | google_app_id | 10 | 154,664 | 78,859 | 143,735 | 92.93 | 20,723 | 20,385 | 20,657 | 99.68 | | | google_api_key | 10 | 154,664 | 78,859 | 137,589 | 88.96 | 20,723 | 20,385 | 20,199 | 97.47 | | | firebase_database_url | 10 | 154,664 | 78,859 | 118,786 | 76.80 | 20,723 | 20,385 | 18,077 | 87.23 | | | google_storage_bucket | 10 | 154,664 | 78,859 | 119,606 | 77.33 | 20,723 | 20,385 | 18,041 | 87.06 | | | | Non-Obfuscated | | Obfuse | cated | |----------|------------------------|----------------|-------|--------|-------| | | The Root Cause | #Apps | % | #Apps | % | | | Account Key Misuse | 85 | 9.37 | 18 | 8.33 | | Azure | Full Access Key Misuse | 101 | 11.14 | 12 | 5.56 | | | Root key Misuse | 477 | 7.97 | 92 | 11.53 | | AWS | "Open" S3 Storage | 916 | 15.30 | 195 | 24.44 | | | "Open" Database | 5,166 | 6.45 | 1,214 | 5.70 | | Firebase | No Permission Check | 6,855 | 8.56 | 2,168 | 10.18 | | | | Non-Obf | fuscated | Obfuscated | | | |----------|------------------------|---------|----------|------------|-------|--| | | The Root Cause | #Apps | % | #Apps | % | | | | Account Key Misuse | 85 | 9.37 | 18 | 8.33 | | | Azure | Full Access Key Misuse | 101 | 11.14 | 12 | 5.56 | | | | Root key Misuse | 477 | 7.97 | 92 | 11.53 | | | AWS | "Open" S3 Storage | 916 | 15.30 | 195 | 24.44 | | | | "Open" Database | 5,166 | 6.45 | 1,214 | 5.70 | | | Firebase | No Permission Check | 6,855 | 8.56 | 2,168 | 10.18 | | | | # Non-Vulnerable Apps | | | # Vulnerable Apps | | | | | |-------------------------------|-----------------------|-------|----------|-------------------|-------|-----|----------|-------------| | #Downloads | Azure | AWS | Firebase | Obfuscated% | Azure | AWS | Firebase | Obfuscated% | | 1,000,000,000 - 5,000,000,000 | 0 | 0 | 1 | 100.00 | 0 | 0 | 0 | 0.00 | | 500,000,000 - 1,000,000,000 | 0 | 0 | 3 | 66.67 | 0 | 0 | 0 | 0.00 | | 100,000,000 - 500,000,000 | 0 | 1 | 35 | 58.33 | 0 | 1 | 9 | 50.00 | | 50,000,000 - 100,000,000 | 0 | 4 | 67 | 45.07 | 0 | 2 | 12 | 71.43 | | 10,000,000 - 50,000,000 | 2 | 35 | 480 | 47.78 | 1 | 4 | 75 | 50.00 | | 5,000,000 - 10,000,000 | 3 | 32 | 467 | 37.85 | 1 | 6 | 66 | 38.36 | | 1,000,000 - 5,000,000 | 16 | 136 | 2,405 | 32.15 | 2 | 21 | 369 | 30.10 | | 500,000 - 1,000,000 | 10 | 105 | 1,823 | 29.36 | 1 | 29 | 260 | 28.28 | | 100,000 - 500,000 | 65 | 356 | 6,987 | 26.01 | 14 | 66 | 1,026 | 26.13 | | 50,000 - 100,000 | 42 | 249 | 4,608 | 25.52 | 11 | 50 | 695 | 25.13 | | 10,000 - 50,000 | 167 | 679 | 12,868 | 24.85 | 21 | 174 | 1,862 | 21.88 | | 5,000 - 10,000 | 82 | 369 | 6,090 | 24.05 | 11 | 100 | 770 | 23.61 | | 1,000-5,000 | 272 | 976 | 15,920 | 21.42 | 40 | 248 | 1,977 | 20.66 | | 0-1,000 | 464 | 3,844 | 49,626 | 15.92 | 111 | 754 | 6,402 | 20.30 | Table: The Number of Apps that Have Used the Cloud APIs in Each of The Accumulated Download Category. | | # Non-Vulnerable Apps | | | # Vulnerable Apps | | | | | |-------------------------------|-----------------------|-------|----------|-------------------|-------|-----|----------|-------------| | #Downloads | Azure | AWS | Firebase | Obfuscated% | Azure | AWS | Firebase | Obfuscated% | | 1,000,000,000 - 5,000,000,000 | 0 | 0 | 1 | 100.00 | 0 | 0 | 0 | 0.00 | | 500,000,000 - 1,000,000,000 | 0 | 0 | 3 | 66.67 | 0 | 0 | 0 | 0.00 | | 100,000,000 - 500,000,000 | 0 | 1 | 35 | 58.33 | 0 | 1 | 9 | 50.00 | | 50,000,000 - 100,000,000 | 0 | 4 | 67 | 45.07 | 0 | 2 | 12 | 71.43 | | 10,000,000 - 50,000,000 | 2 | 35 | 480 | 47.78 | 1 | 4 | 75 | 50.00 | | 5,000,000 - 10,000,000 | 3 | 32 | 467 | 37.85 | 1 | 6 | 66 | 38.36 | | 1,000,000 - 5,000,000 | 16 | 136 | 2,405 | 32.15 | 2 | 21 | 369 | 30.10 | | 500,000 - 1,000,000 | 10 | 105 | 1,823 | 29.36 | 1 | 29 | 260 | 28.28 | | 100,000 - 500,000 | 65 | 356 | 6,987 | 26.01 | 14 | 66 | 1,026 | 26.13 | | 50,000 - 100,000 | 42 | 249 | 4,608 | 25.52 | 11 | 50 | 695 | 25.13 | | 10,000 - 50,000 | 167 | 679 | 12,868 | 24.85 | 21 | 174 | 1,862 | 21.88 | | 5,000 - 10,000 | 82 | 369 | 6,090 | 24.05 | 11 | 100 | 770 | 23.61 | | 1,000-5,000 | 272 | 976 | 15,920 | 21.42 | 40 | 248 | 1,977 | 20.66 | | 0-1,000 | 464 | 3,844 | 49,626 | 15.92 | 111 | 754 | 6,402 | 20.30 | Table: The Number of Apps that Have Used the Cloud APIs in Each of The Accumulated Download Category. ## Engaging with the Cloud Providers **Disclosed** all the vulnerabilities we have identified. Cloud providers further notified the app developers. - Microsoft immediately corrected the wrong documentation - ② Google plans to provide more user-friendly SDKs when configuring user permissions in authorization. - Amazon added new permission checks with its S3 storage in November 2017 (two weeks before we disclosed our details to them) ## Disclaimer on the use of account key after we disclosed the vulnerability ## Google's Update - The big additions on Google's side are tools for local emulation and writing tests against the database products including their security rules, which they expect to have a marked improvement on the ability of customers to test and validate security rules. - Additionally, they have alerting for customers (sent every few weeks) for anyone using the Realtime Database or Cloud Firestore with open rules. - They're exploring more options, but those are a start. #### Related Work - Protocol Reverse Engineering. A large body of research focusing on protocol reverse engineering [Bed, MLK+06, CKW07, CS07, WMKK08, LJXZ08, MWKK09, CPKS09] - Oynamic Analysis. Monkey [mon17] automatically executes and randomly navigates an app. AppsPlayground [RCE13] and SMV-Hunter [SSG+14] more intelligent. A3E [AN13], a targeted exploration of mobile apps. DynoDroid [MTN13] instruments the Android framework and uses adb to monitor UI interaction and generate UI events. #### Related Work - Mobile App Vulnerability Discovery. - ► Client Side: TaintDroid [EGC⁺10], PiOS [EKKV11], CHEX [LLW⁺12], SMV-Hunter [SSG⁺14]. - ► Server Side: AUTOFORGE [ZWWL16], SMARTGEN [ZL17], AUTHSCOPE [ZZL17]. - Misconfiguration Vulnerability Identification: FIREMAN [YMS+06], ConfErr [KUC08], ConfAid [AF10], SPEX [XZH+13]. roduction Our Discovery LeakSCOPE Evaluation Related Work Summary Reference 100 000000 000000 00 000 00 #### LEAKSCOPE #### LEAKSCOPE - ► A static analysis to identify server side data leakage vulnerabilities - It performs cloud API identification, string value analysis to identify the vulnerabilities ### Experimental Result w/ 100K apps - ▶ 15,098 apps' cloud servers are vulnerable - ► 200 Azure, 1,600 AWS, 13,200 Firebase - Responsible disclosures were made to the cloud providers Source code of LEAKSCOPEhas been made available at https://github.com/OSUSecLab/LeakScope #### **Future Works** - We only scratched the tip of the iceberg of the security of cloud based backend – mBaaS cloud backend. - What about their backend software stack (e.g., VMs, operating systems, network stacks)? - What about other vulnerabilities (e.g., SQL injection, XSS, XXE)? ntroduction Our Discovery LEAKSCOPE Evaluation Related Work Summary Reference 0000 000000 000000 00 0000 00 000 #### **Future Works** - We only scratched the tip of the iceberg of the security of cloud based backend – mBaaS cloud backend. - What about their backend software stack (e.g., VMs, operating systems, network stacks)? - What about other vulnerabilities (e.g., SQL injection, XSS, XXE)? "The Betrayal At Cloud City: An Empirical Analysis Of Cloud-Based Mobile Backends". Omar Alrawi, Chaoshun Zuo, Ruian Duan, Ranjita Kasturi, Zhiqiang Lin, Brendan Saltaformaggio. In USENIX Security, August 2019. #### Thank You # Why Does Your Data Leak? ## Uncovering the Data Leakage in Cloud from Mobile Apps Chaoshun Zuo, Zhiqiang Lin, and Yinqian Zhang Department of Computer Science and Engineering The Ohio State University IEEE S&P 2019 #### References I Mona Attariyan and Jason Flinn, *Automating configuration troubleshooting with dynamic information flow analysis*, Proceedings of the 9th USENIX Conference on Operating Systems Design and Implementation (Vancouver, BC, Canada), OSDI'10, 2010, pp. 237–250. Tanzirul Azim and Iulian Neamtiu, *Targeted and depth-first exploration for systematic testing of android apps*, Proceedings of the 2013 ACM SIGPLAN International Conference on Object Oriented Programming Systems Languages & Applications (New York, NY, USA), OOPSLA '13, ACM, 2013, pp. 641–660. Marshall Beddoe, The protocol informatics project, http://www.4tphi.net/~awalters/PI/PI.html. Weidong Cui, Jayanthkumar Kannan, and Helen J. Wang, Discoverer: Automatic protocol reverse engineering from network traces, Proceedings of the 16th USENIX Security Symposium (Security'07) (Boston, MA), August 2007. Juan Caballero, Pongsin Poosankam, Christian Kreibich, and Dawn Song, Dispatcher: Enabling active botnet infiltration using automatic protocol reverse-engineering, Proceedings of the 16th ACM Conference on Computer and and Communications Security (CCS'09) (Chicago, Illinois, USA), 2009, pp. 621–634. Juan Caballero and Dawn Song, *Polyglot: Automatic extraction of protocol format using dynamic binary analysis*, Proceedings of the 14th ACM Conference on Computer and and Communications Security (CCS'07) (Alexandria, Virginia, USA), 2007, pp. 317–329. W. Enck, P. Gilbert, B.G. Chun, L.P. Cox, J. Jung, P. McDaniel, and A.N. Sheth, *TaintDroid: an information-flow tracking system for realtime privacy monitoring on smartphones*. OSDI, 2010. M. Egele, C. Kruegel, E. Kirda, and G. Vigna, Pios: Detecting privacy leaks in ios applications, NDSS, 2011. #### References II Lorenzo Keller, Prasang Upadhyaya, and George Candea, *Conferr: A tool for assessing resilience to human configuration errors*, Dependable Systems and Networks With FTCS and DCC, 2008. DSN 2008. IEEE International Conference on, IEEE, 2008, pp. 157–166. Zhiqiang Lin, Xuxian Jiang, Dongyan Xu, and Xiangyu Zhang, *Automatic protocol format reverse engineering through context-aware monitored execution*, Proceedings of the 15th Annual Network and Distributed System Security Symposium (NDSS'08) (San Diego, CA), February 2008. Long Lu, Zhichun Li, Zhenyu Wu, Wenke Lee, and Guofei Jiang, *Chex: statically vetting android apps for component hijacking vulnerabilities*, Proceedings of the 2012 ACM conference on Computer and communications security, ACM, 2012, pp. 229–240. Justin Ma, Kirill Levchenko, Christian Kreibich, Stefan Savage, and Geoffrey M. Voelker, *Unexpected means of protocol inference*, Proceedings of the 6th ACM SIGCOMM on Internet measurement (IMC'06) (Rio de Janeriro, Brazil), ACM Press, 2006, pp. 313–326. Ui/application exerciser monkey, https://developer.android.com/tools/help/monkey.html, 2017. Aravind Machiry, Rohan Tahiliani, and Mayur Naik, *Dynodroid: An input generation system for android apps*, Proceedings of the 2013 9th Joint Meeting on Foundations of Software Engineering, ACM, 2013, pp. 224–234. Paolo Milani Comparetti, Gilbert Wondracek, Christopher Kruegel, and Engin Kirda, *Prospex: Protocol Specification Extraction*, IEEE Symposium on Security & Privacy (Oakland, CA), 2009, pp. 110–125. Vaibhav Rastogi, Yan Chen, and William Enck, Appsplayground: Automatic security analysis of smartphone applications, Proceedings of the Third ACM Conference on Data and Application Security and Privacy (New York, NY, USA), CODASPY '13, ACM, 2013, pp. 209–220. #### References III David Sounthiraraj, Justin Sahs, Garrett Greenwood, Zhiqiang Lin, and Latifur Khan, *Smv-hunter: Large scale, automated detection of ssl/tls man-in-the-middle vulnerabilities in android apps*, Proceedings of the 21st Annual Network and Distributed System Security Symposium (NDSS'14) (San Diego, CA). February 2014 Gilbert Wondracek, Paolo Milani, Christopher Kruegel, and Engin Kirda, *Automatic network protocol analysis*, Proceedings of the 15th Annual Network and Distributed System Security Symposium (NDSS'08) (San Diego, CA). February 2008. Tianyin Xu, Jiaqi Zhang, Peng Huang, Jing Zheng, Tianwei Sheng, Ding Yuan, Yuanyuan Zhou, and Shankar Pasupathy, *Do not blame users for misconfigurations*, Proceedings of the Twenty-Fourth ACM Symposium on Operating Systems Principles (Farminton, Pennsylvania), SOSP '13, 2013, pp. 244–259. Lihua Yuan, Jianning Mai, Zhendong Su, Hao Chen, Chen-Nee Chuah, and Prasant Mohapatra, Fireman: A toolkit for firewall modeling and analysis, Proceedings of the 2006 IEEE Symposium on Security and Privacy, SP'06, 2006, pp. 199–213. Chaoshun Zuo and Zhiqiang Lin, Exposing server urls of mobile apps with selective symbolic execution, Proceedings of the 26th World Wide Web Conference (Perth, Australia), April 2017. Chaoshun Zuo, Wubing Wang, Rui Wang, and Zhiqiang Lin, *Automatic forgery of cryptographically consistent messages to identify security vulnerabilities in mobile services*, Proceedings of the 21st Annual Network and Distributed System Security Symposium (NDSS'16) (San Diego, CA). February 2016. Chaoshun Zuo, Qingchuan Zhao, and Zhiqiang Lin, Authscope: Towards automatic discovery of vulnerable authorizations in online services, Proceedings of the 24th ACM Conference on Computer and Communications Security (CCS'17) (Dallas, TX), November 2017. ### Thank You | | App Name | App Description and Functionality | Obfuscated? | Data in Database/Storage | Privacy Sensitive? | |----------|---------------|------------------------------------------------------|-------------|---------------------------------------|--------------------| | | A1 | Sending messages with multiple fancy features | ✓ | User Photos | ✓ | | | A2 | Editing user photos with magical enhancements | ✓ | User Photos | ✓ | | S | A3 | Editing user photos with featured specialties | ✓ | User Photos; Posted Pictures | ✓ | | AWS | A4 | Allowing users to organize and upload photos | × | User Uploaded Pictures | ✓ | | • | A5 | Helping users in planning and booking trips | ✓ | User Photos | ✓ | | | A6 | A game app to build and design attractive hotels | X | User Backups | ✓ | | | A7 | A game app to express revenges on game NPCs | × | Premium Plug-ins | X | | | A10 | Helping users to start a diet and control weight | √ | User Photos; Posted Pictures | ✓ | | | A11 | Calculating and tracking calories for human health | × | User Photos | ✓ | | | A12 | Showing fertility status from correspondent kits | × | User Uploaded Pictures | ✓ | | | A13 | Helping users to easily play a popular game | × | Configurations about the Game | X | | Azure | A14 | A real time translation tool, for calls, chats, etc. | × | User Photos; Chat History | ✓ | | Az | A15 | Showing images of nations' commemorative coins | ✓ | Coins Images | X | | - | A16 | A convenient tool to take notes with rich content | ✓ | User Uploaded Pictures | ✓ | | | A17 | A convenient tool for users to schedule a taxi | × | Driver Photos | ✓ | | | A18 | Allowing users to buy/renew general insurances | X | Inspection Videos | ✓ | | | A19 | Providing accurate local weather forecast | ✓ | Device Info (IMEI, etc.) | ✓ | | | A20 | Editing and enhancing users photos and selfies | X | User Info (①④); User Private Messages | ✓ | | | A21 | Allowing users to guess information about music | ✓ | Music Details | X | | | A22 | Allowing users to sell and buy multiple products | × | User Info (@4); Transactions | ✓ | | se | Photo Collage | Creating photo collage with personal photos | ✓ | User Info (23) | ✓ | | pas | A23 | Helping users to translate and learn languages | ✓ | User Info (①); Quiz Data | ✓ | | Firebase | A24 | Editing user photos with effects for cartoon avatar | X | User Info (①); User Pictures | ✓ | | 1 " | A25 | Help users to learn how to draw human bodies | ✓ | User Info (①②③); User Pictures | ✓ | | | A26 | An offline bible learning app with texts and audios | Х | User Info (134) | ✓ | | | A27 | Music platform for hiphop mixtapes and musics | X | User Info (①②③); Play List | √ | | | A28 | Helping users to learn drawing different things | ✓ | User Info (1023); User Pictures | ✓ | Symbol ① denotes the user name, ② the user ID, ③ the user email, and ④ the user token.