
Cache Side Channels:
State of the Art and Research Opportunities

Yinqian Zhang, Ph.D.
Assistant Professor
The Ohio State University

Self Introduction
• Research interests

� Computer system security, (micro-architectural) side-channel attacks and defenses

• Recent publications on side channels
� Cloud computing (S&P’11, CCS’12, CCS’13, CCS’14, Security’15, Security’16,

RAID'16, CCS’16a, AsiaCCS'17b)
� Smartphones (CCS’15, CCS’16b, NDSS’18a)
� Intel SGX (AsiaCCS'17a, CCS’17a, CCS’17b)

• Fortunate to served on the following conference PCs in the past 3 years
� IEEE S&P: 2016, 2017, 2018
� ACM CCS: 2015, 2016, 2017
� USENIX Security: 2017
� NDSS: 2017, 2018

2

Cache Side-Channel Attacks

The Basics

Threat Models
• Cache side-channel attacks

� Time driven
� Trace driven
� Access driven

• Access-driven cache attacks
� Logical accesses to the target computer system
� Share cache(s) with the victim program
� Attacker accesses its own memory region (and time the accesses) to infer victim’s use

of the shared cache
� Evict+Time
� Prime+Probe
� Flush+Reload
� …...

4

Prime+Probe Attacks

5

Time

PROBEPRIME-PROBE IntervalPRIME

Cache Set
4-way set

associative
Cache

Flush+Reload Attacks

Time

Flush-Reload Interval

Victim

Reload

Process

Flush

Attacker

Cache

Shared
memory

pages

clflush

6

cacheline sized
and aligned

memory block

Other Attack Techniques
• Evict+Time Attacks

� Attacker evicts one or more cache sets
� Attacker measures the total execution time of a cryptographic operation

• Flush+Flush Attacks
� Similar to Flush+Reload attacks
� The second Flush to replace Reload in the Flush+Reload attacks

• Prime+Abort Attacks
� Leverage hardware transaction memory
� Use transaction aborts to replace timing

7

Taxonomy of Cache Side-Channel Attacks
• Shared cache sets

� Attacker and victim share the same cache set(s)
� In physically-indexed cache (e.g., last-level cache) attacks, attacker needs to know

virtual-to-physical mapping of the victim
� Example: Prime+Probe, Prime+Abort

• Shared cache lines
� Attacker and victim share the same cache lines
� Attacker needs to share some physical memory pages with the victim
� Example: Flush+Reload, Flush+Flush

8

Agenda

• Research directions in cache
side-channel attacks

� From same core to cross core
� From x86 to ARM
� New attack techniques
� Beyond cryptographic attacks
� Non-native code attacks
� Attacks against strong isolation

9

• Research directions in cache
side-channel defenses

� Cache partition
� Access randomization
� Removing high-resolution timers
� Runtime attack detection
� Patching vulnerable programs

Research Direction 1

From Same Core to Cross Core

From Same-core Attacks to Cross-core Attacks
• Single-core processors

� Simultaneous multi-threading (SMT)
� Intel Pentium 4 (Hyper-Threading): 2002

• Multi-core processors
� Intel Pentium D: 2005
� AMD Athlon 64 X2: 2005

• Inclusive last-level caches
� Intel Nehalem: 2008

• Non-inclusive last-level caches
� Skylake-SP processors 2017 (Core i9)

11

2005: SMT-based L1 cache attacks

2014: cross-core Flush+Reload attacks

2015: cross-core Prime+Probe attacks

Existing Studies (1)
• Yarom and Falkner, FLUSH+RELOAD: a High Resolution, Low Noise,

L3 Cache Side-Channel Attack, USENIX Security 2014.

• Flush-Reload Attacks on last-level caches using the clflush instruction.
� First invention of the name Flush+Reload Attacks
� Same-core Flush+Reload attacks was invented before:

� D. Gullasch and E. Bangerter and S. Krenn, Cache games -- Bringing access-based cache
attacks on AES to practice, IEEE S&P 2011.

• A fine-grained channel that requires memory sharing between the two
parties
� Finer-grained than Prime+Probe attacks
� Requires inclusive cache to propagate cache invalidation (clflush) to other cores
� A number of follow-up works

12

Existing Studies (2)
• Liu, Yarom, et al., Last-Level Cache Side-Channel Attacks are Practical,

IEEE S&P, 2015.
• Irazoqui et al., S$A: A Shared Cache Attack That Works across Cores

and Defies VM Sandboxing -- and Its Application to AES, IEEE S&P,
2015.

• Prime+Probe attacks on last-level caches by taking advantage of cache
inclusiveness
� Prime: Cache line eviction in the LLC also invalidates other per-core caches
� Probe: Memory accesses from other cores will miss in their private caches, thus also

affects the shared LLC

13

Existing Studies (3)
• Irazoqui et al., Cross Processor Cache Attacks, ASIACCS 2016.

• Cross-CPU Flush+Reload attacks by leveraging cache coherence
protocols

14*Figures copied from the original paper.

Open Research Questions
• New micro-architecture design features require new side-channel attack

designs
� Cache line replacement policy (LRU, random, adaptive policies)
� LLC: inclusive, non-inclusive, exclusive
� Cache internal structure: L1 cache banks, LLC slices
� Implementation of cache line invalidation instructions, e.g., clflush
� Cache coherence control.

15

Research Direction 2

From x86 to ARM

Cache Side-Channel Attacks on ARM
• Targets of ARM cache attacks:

� Mobile devices (e.g., Android, iOS)
� ARM-powered data centers

• Challenges:
� Unclear ARM specifications (and whether they are strictly followed on a specific

chip)
� Unclear processor implementation details

� Cache line replacement policy
� Cache inclusiveness
� Implementation of cache line invalidation instructions
� Cache coherence control.

� Difference in the instruction set architecture (compared to x86)

17

Existing Studies
• Lipp et al., ARMageddon: Cache Attacks on Mobile Devices, USENIX

Security 2016.
� Prime+Probe, Flush+Reload, Evict+Reload attacks

• Zhang et al., Return-Oriented Flush-Reload Side Channels on ARM and
Their Implications for Android Devices, ACM CCS 2016.
� Flush+Reload attacks

• Green et al., AutoLock: Why Cache Attacks on ARM Are Harder Than
You Think, USENIX Security 2017.
� An undocumented autolock mechanism that affects Prime+Probe attacks

18

Open Research Questions
• Understanding of the attack vectors

� Conflicted research results (even on the same types of devices)
� Lack of ground truth (ARM specification?)

• Demonstration of attacks that matter
� Need a compelling example

19

Research Direction 3

New Attack Techniques

New Cache Side-Channel Attack Techniques
• 2005: L1 cache Prime+Probe and Evict+Time attacks using SMT
• 2007: L1 cache Prime+Probe attacks without SMT
• 2010: L1 cache Flush+Reload attacks without SMT
• 2014: Cross-core Flush+Reload attacks
• 2015: Cross-core Prime+Probe attacks
• 2016: Cache storage-channel attacks
• 2016: Cross-core Flush+Flush attacks
• 2017: Cross-core Prime+Abort attacks
• 2017: Side channels leveraging Intel Processor Trace

� Need to be performed with kernel privileges
21

Existing Studies (1)
• Guanciale et al., Cache Storage Channels: Alias-Driven Attacks and

Verified Countermeasures, IEEE S&P 2016.

• Root cause of the side channels
� Accessing the same physical address through virtual aliases with mismatched

cacheability attributes.
� Executing self-modifying code without flushing the instruction cache

• Enabling Prime+Probe cache attacks without timers
� Extracting 128-bit key from an AES encryption service running in TrustZone
� Subverting modular exponentiation in the same platform

22

Existing Studies (2)
• Gruss et al., Flush+Flush: A Fast and Stealthy Cache Attack, DIMVA

2016

• Measure the execution time of the second Flush
� Key insight: clflush executes faster if cache hit

• Compared to Flush+Reload attacks
� Lower execution time than Flush
� Flush+Flush attacks are not detectable by hardware performance counters

� Reload typically induce a large number of cache misses

23

Existing Studies (3)
• Disselkoen et al., Prime+Abort: A Timer-Free High-Precision L3 Cache

Attack using Intel TSX, USENIX Security 2017.

• Use Intel Transactional Synchronization Extensions (TSX) to monitor
cache line eviction
� Transaction aborts if cache lines in write-set or read-set are evicted
� L1 Prime+Abort: with SMT
� LLC Prime+Abort

• Key differences from Prime+Probe
� Timer-less attacks
� Less noisy
� Slightly less information (Prime+Abort is binary)

24

Existing Studies (4)
• Lee et al., Inferring Fine-grained Control Flow Inside SGX Enclaves

with Branch Shadowing, USENIX Security 2017.

• Main contribution: demonstration of BTB side channel attacks on SGX
• Use Intel Processor Trace to measure timing between branch

instructions
� Need system privilege – only useful in SGX side-channel attacks
� Similarly, hardware performance counters have been demonstrated to replace timers

� But SGX does not allow HPC in enclave mode

25

Open Research Questions
• Incremental improvements

� Reduce noise
� Improve accuracy, robustness

• Significant improvements
� New techniques for cache side channels
� Addressing some limitations of previous attacks
� Challenge existing defenses

26

Research Direction 4

Beyond Cryptographic Attacks

Targets of Cache Side-Channel Attacks
• Cryptographic attacks

� Modular exponentiation (RSA): Square-and-multiply
� Key dependent table accesses (AES): s-box
� Scalar multiplication (ECDSA) : double-and-add

• User privacy

• Address space layout randomization (ASLR)
� JavaScript code infer browser user space ASLR
� Native code infer kernel space ASLR (KASLR)

28

Existing Studies (1)
• Oren et al., The Spy in the Sandbox: Practical Cache Attacks in

JavaScript and their Implications, ACM CCS 2015.
� Tracking user behavior

� e.g., proximity sensor

• Zhang et al., Return-Oriented Flush-Reload Side Channels on ARM and
Their Implications for Android Devices, ACM CCS 2016.
� Detecting hardware events

� e.g., touchscreen interrupts
� Tracing software execution path

� e.g., push notification, display updates

29

Existing Studies (2)
• Gras et al., ASLR on the Line: Practical Cache Attacks on the MMU,

NDSS 2017.

• Malicious JavaScript code de-randomizes the layout of the browser’s
address space, solely by accessing memory

• Key techniques:
� Prime+Probe and Evict+Time attacks to infer page table accesses after a page walk
� To address coarse-grained performance.now()

� Time to tick: performance.now() until tick
� Shared memory counter: A web worker thread to create a software clock

30

Open Research Questions
• What other secrets might be vulnerable to cache side channels?

� Secret-dependent memory accesses
� Text data itself is usually not a target

• High-impact targets will advance the research field
� Software/hardware vendors’ attention will motivate invention and adoption of

defenses

31

Research Direction 5

From Native Code to JavaScript

JavaScript Cache Side-Channel Attacks
• Unprivileged JavaScript code running in browsers
• Oren et al., The Spy in the Sandbox: Practical Cache Attacks in

JavaScript and their Implications, ACM CCS 2015.
� Prime+Probe attacks using JavaScript

� Constructing cache eviction set (using JavaScript code)
� Timer: performance.now()

• Gras et al., ASLR on the Line: Practical Cache Attacks on the MMU,
NDSS 2017.
� Prime+Probe and Evict+Time attacks to infer page table accesses after a page walk
� Timer: Timing to tick or shared memory counter in a JavaScript web worker

33

Open Research Questions
• Attacks from other non-native languages

� Challenges:
� Lack of clflush instructions
� Creating eviction buffers
� High-resolution timers

� Example scenarios
� Java
� JavaScript in non-browser settings

• Attacks against non-native languages
� Challenges:

� Memory management in the runtime is complex
� Example scenarios

� Managed cloud applications, PaaS, Microservice, etc.

34

Research Direction 6

Attacks against Strong Isolation

Attacks against Strong Isolation
• Virtualization and cloud computing

� Same-core attacks
� Cross-core attacks

• Trusted Execution Environments
� SGX side-channel attacks
� TrustZone side-channel attacks

36

Cross-VM Side-Channel Attacks
• Prime+Probe side-channel attacks

� Same-core attacks
� Zhang et al., Cross-VM Side Channels and Their Use to Extract Private Keys, ACM CCS

2012
� Cross-core attacks

� Liu et al., Last-Level Cache Side-Channel Attacks are Practical, IEEE S&P, 2015.
� Irazoqui et al., S$A: A Shared Cache Attack That Works across Cores and Defies VM

Sandboxing -- and Its Application to AES, IEEE S&P, 2015.
� Inci et al., Seriously, get off my cloud! Cross-VM RSA Key Recovery in a Public Cloud, 2015

• Flush+Reload side-channel attacks
� Requires cross-VM memory deduplication
� Existing studies

� Yarom and Falkner, FLUSH+RELOAD: a High Resolution, Low Noise, L3 Cache Side-
Channel Attack, USENIX Security 2014.

� Yarom and Benger, Recovering OpenSSL ECDSA Nonces Using the FLUSH+RELOAD
Cache Side-channel Attack, IACR eprint, 2014

� Irazoqui et al., Fine Grain Cross-VM Attacks on Xen and Vmware, BDCLOUD, 2014 37

SGX Side-Channel Attacks
• L1 cache Prime+Probe side-channel attacks with SMT

� Brasser et al., Software Grand Exposure: SGX Cache Attacks Are Practical, USENIX
Workshop on Offensive Technologies (WOOT), 2017

• LLC Prime+Probe side-channel attacks
� Schwarz et al., Malware Guard Extension: Using SGX to Conceal Cache Attacks,

Conference on Detection of Intrusions and Malware & Vulnerability Assessment
(DIMVA), 2017

• L1 cache Prime+Probe side-channel attacks with interrupts
� Hähnel et al., High-Resolution Side Channels for Untrusted Operating Systems,

USENIX ATC, 2017

38

TrustZone Side-Channel Attacks
• Zhang et al., TruSpy: Cache Side-Channel Information Leakage from

the Secure World on ARM Devices, https://eprint.iacr.org/2016/980.pdf
� Cache Prime+Probe attacks against TrustZone secure world

� Attackers may be a kernel module in the normal world or an Android app
� A single core CortexA-8 processor on a Freescale i.MX53 development board

• Guanciale et al., Cache Storage Channels: Alias-Driven Attacks and
Verified Countermeasures, IEEE S&P 2016.
� Prime+Probe attacks without timers

� Accessing the same physical address through virtual aliases with mismatched cacheability
attributes.

� Executing self-modifying code without flushing the instruction cache

39

Open Research Questions
• Cache side-channel attacks to break stronger security isolation has

motivated this research field in the past few years.
• Cloud computing

� Attacks demonstrated in public clouds already
� Need stronger evidence to demonstrate the practicality of the attacks

• Trusted Execution Environment
� Cache attacks against SGX is well studied; targeting known vulnerable software is

less interesting
� A real-world cache side-channel attack against TrustZone is missing

40

Cache Side-Channel Defenses

Direction 1: Cache Partition

Hardware Solutions
• New hardware designs to partition cache

� Redesign of CPU caches
� Simulation for performance evaluation
� Adoption by CPU vendors is difficult

• Existing Studies
� Wang and Lee, New cache designs for thwarting software cache-based side channel

attacks, ISCA 2007
� Wang and Lee, A novel cache architecture with enhanced performance and security,

MICRO 2008
� Domnitser et al., Non-monopolizable caches: Low-complexity mitigation of cache side

channel attacks. ACM Trans. Archit. Code Optim. 8, 4 (Jan. 2012)
� Kong et al., Architecting Against Software Cache-Based Side-Channel Attacks. IEEE

Trans. Comput. 62, 7 (July 2013).
42

System-level Spatial Partition
• Key ideas

� Statically or dynamically partition the shared caches by modifying operating systems
or hypervisors

• Existing Studies
� Raj et al., Resource Management for Isolation Enhanced Cloud Services. ACM CCSW

2009.
� Shi et al., Limiting cache-based side-channel in multi-tenant cloud using dynamic

page coloring. DSN-W 2011.
� Kim et al., STEALTHMEM: system-level protection against cache-based side channel

attacks in the cloud. USENIX Security 2012.
� Zhou et al., A Software Approach to Defeating Side Channels in Last-Level Caches.

CCS 2016.
� Liu et al., CATalyst: Defeating Last-Level Cache Side Channel Attacks in Cloud

Computing. HPCA 2016. 43

System-level Temporal Partition
• Key ideas

� Cleanse caches upon context switch
� Disallow shared use of resources

• Existing Studies
� Zhang and Reiter, Du ̈ppel: Retrotting Commodity Operating Systems to Mitigate

Cache Side Channels in the Cloud. CCS 2013.
� Varadarajan et al., Scheduler-based Defenses against Cross-VM Side-channels.

USENIX Security 2014.
� Zhou et al., A Software Approach to Defeating Side Channels in Last-Level Caches.

CCS 2016.

44

Open Research Questions
• Hardware solutions

� Better design of cache coherence protocols, last-level cache inclusiveness, and effect
of cache invalidation instructions

• System-level solutions
� Solutions in cloud computing has been broadly studied

� Need solutions that work well with the cloud business model
� Scenarios like mobile OS or browsers are less explored

� cache partition for JavaScript code
� Android-level cache partition

45

Cache Side-Channel Defenses

Direction 2: Access Randomization

Hardware Solutions
• New hardware design to introduce randomization in cache uses

� Randomizing cache line replacement

• Existing studies
� Wang and Lee. Covert and Side Channels Due to Processor Architecture. ACSAC

2006.
� Wang and Lee, New cache designs for thwarting software cache-based side channel

attacks, ISCA 2007
� Wang and Lee, A novel cache architecture with enhanced performance and security,

MICRO 2008
� Keramidas et al. Non Deterministic Caches: A Simple and Effective defense against

side channel attacks. Design Automation for Embedded Systems (2008).
� Liu and Lee. Random Fill Cache Architecture. MICRO 2014.
� Liu et al. GhostRider: A Hardware-Software System for Memory Trace Oblivious

Computation, ASPLOS 2015.

47

Software Solutions
• Compiler assisted approach to transform applications to randomize its

memory access patterns.
• Existing Studies

� Liu et al. GhostRider: A Hardware-Software System for Memory Trace Oblivious
Computation, ASPLOS 2015.

� Crane et al. Thwarting Cache Side-channel Attacks through Dynamic Software
Diversity. NDSS 2015.

� Rane et al. Raccoon: Closing Digital Side-Channels through Obfuscated Execution.
USENIX Security 2015

48

Open Research Questions
• Leveraging randomness for side-channel protection needs further

investigation
� Randomness may be a target of side channels
� Entropy-based evaluation?

• More studies are warranted in this direction

49

Cache Side-Channel Defenses

Direction 3: Removing High-
Resolution Timers

Removing High-Resolution Timers
• Hardware solutions

� Martin et al. TimeWarp: Rethinking Timekeeping and Performance Monitoring
Mechanisms to Mitigate Side-Channel Attacks. ISCA 2012.

• Hypervisor solutions
� Aviram et al. Determinating Timing Channels in Compute Clouds. CCSW 2010.
� Vattikonda et al. Eliminating Fine Grained Timers in Xen. CCSW 2011
� Li et al. StopWatch: A Cloud Architecture for Timing Channel Mitigation, DSN 2013

• Browser solutions
� Kohlbrenner and Shacham, Trusted Browsers for Uncertain Times, USENIX

Security 2016.
� Cao et al. Deterministic Browser, CCS 2017

51

Cache Side-Channel Defenses

Direction 4: Runtime Attack
Detection

Runtime Attack Detection
• System-assisted side-channel attack detection (for Cloud)

� Demme et al., On the Feasibility of Online Malware Detection with Performance
Counters. ISCA 2013.

� Zhang et al., CloudRadar: A Real- Time Side-Channel Attack Detection System in
Clouds. RAID 2016.

• Compiler-assisted side-channel attack detection (for SGX)
� Shih et al., T-SGX: Eradicating Controlled-Channel Attacks Against Enclave

Programs, NDSS 2017.
� Chen et al., Detecting Privileged Side-Channel Attacks in Shielded Execution with

DÉJÀ VU, ASIACCS 2017.
� Gruss et al., Strong and Efficient Cache Side-Channel Protection using Hardware

Transactional Memory. USENIX Security 2017.

53

Open Research Questions
• Reducing performance overhead of runtime detection

� How to apply detection systems in cloud computing
� Will cloud providers adopt the technology?

• Attack detection systems in other scenarios
� Browser? Mobile devices?

• Security policies upon side-channel attack detection
� What to do after detection?
� False detection rate?

54

Cache Side-Channel Defenses

Direction 5: Patching Vulnerable
Programs

Existing Software Solutions
• Eliminating side-channel vulnerabilities

� Molnar et al. The Program Counter Security Model: Automatic Detection and
Removal of Control-Flow Side Channel Attacks. 2005

� Coppens et al. Practical Mitigations for Timing-Based Side-Channel Attacks on
Modern x86 Processors. IEEE S&P 2009.

� Shinde et al. Preventing Page Faults from Telling Your Secrets, ASIACCS 2016.

• Detecting side-channel vulnerabilities
� Doychev et al., CacheAudit: A tool for the static analysis of cache side channels.

USENIX Security 2013.
� Wang et al., CacheD: Identifying Cache-Based Timing Channels in Production

Software. USENIX Security 2017.
� Xiao et al., Stacco: Differentially Analyzing Side-Channel Traces for Detecting

SSL/TLS Vulnerabilities in Secure Enclaves. ACM CCS 2017.

56

Open Research Questions
• Neither vulnerability detection nor elimination is completely solved
• New tools are still needed

� Compiler-assisted solutions (with source code)
� Binary rewriting (without source code)

• Leveraging program analysis techniques
� Static analysis: improve accuracy
� Dynamic analysis: improve coverage

57

Cache Side Channels: Research Directions

• Research directions in cache
side-channel attacks

� From same core to cross core
� From x86 to ARM
� New attack techniques
� Beyond cryptographic attacks
� Non-native code attacks
� Attacks against strong isolation

58

• Research directions in cache
side-channel defenses

� Cache partition
� Access randomization
� Removing high-resolution timers
� Runtime attack detection
� Patching vulnerable programs

Thank You!
yinqian@cse.ohio-state.edu

